
Chapter One Machine Scheduling Problems

 1

Machine Scheduling Problem (MSP)

6. Local Search Methods (LSM)

Local search methods (LSM) form a very general class of heuristic to

treat discrete optimization problems (DOP). Such problems are given by a

finite set S of feasible solutions and an objective function f:S→R. the goal

is to find a solution with minimal objective value, i.e., we look for a

solution s*S with

f (s*) =)}s(f{Min
Ss

Generally speaking, LSM move iteratively through the solution set S

of a DOP. Based on the current and may be on the previous visited

solutions, a new solution is chosen.

Basic structure of local search algorithm

Choose an initial solution;

REPEAT

Choose a solution from the neighborhood of the current solution and

move to this solution;

UNTIL stopping criteria is met.

Evolutionary Algorithms (EAs) or Local Search Methods have

been shown to be successful for a wide range of optimization problems.

While these algorithms work well for many optimization problems in

practice, a satisfying and rigorous mathematical understanding of their

performance is an important challenge in the area of evolutionary

computing [32].

6.1 Simulated Annealing (SA)

Simulated annealing (SA) is an algorithmic method that is able to

escape from local minima. It is a randomized LSM for two reasons: First,

from the neighborhood of a solution a neighbor is randomly selected.

Second, in addition to better-cost neighbors, which are always accepted if

they are selected, worse-cost neighbors are also accepted, although with a

probability that is gradually decreased in the course of the algorithm’s

execution. The randomized nature enables asymptotic convergence to

optimum solutions under certain mild conditions. Nevertheless, the energy

landscape, which is determined by the objective function and the

neighborhood structure, may admit many and/or “deep” local minimum.

Therefore, avoiding local minima is a crucial part of the performance of

the algorithm [46].

Chapter One Machine Scheduling Problems

 2

SA algorithm starts to work by generating random initial solution (s),

then the difference ∆ = F(s')−F(s) and neighbor (s') in the objective

function is calculated. If ∆<0, the neighbor (s') will be accepted to be the

new solution in the next iteration since it has a better function value. If the

objective function value does not decrease (i.e.∆ ≥ 0), the generated

neighbor may also be accepted with a probability exp(−∆/T), where T is a

control parameter called temperature. This temperature is always reduced

by a cooling technique in every iteration. As a stopping criteria, one may

use e.g. a given number of iteration, a time limit or a given number of

iterations without an improvement of the best objective function value. In

the first two cases, one must adjust the cooling scheme in such a way that

SA stops with a small temperature. Let p(Δ,T) = 𝑒xp(-Δ𝐶𝑜𝑠𝑡/T) is the

probability depends on exponential function and FT be the final

temperature [34].

Algorithm (1): Simulated Annealing (SA) Algorithm

Step 1: Input: T, FT, cooling rate, s;

Step 2: s' = s; Cost = Evaluate (s');

Step 3: while (T > FT) do

s1 = Mutate (s');

NewCost = Evaluate (s1);

ΔCost = NewCost −Cost;

if (ΔCost ≤ 0) OR (p (Δ,T) > Rand) then

Cost = NewCost;

s' = s1;

 end

T = cooling rate × T;

end

Step 4: Output: the best s';

6.2 Genetic Algorithm (GA)

Genetic Algorithms (GA’s) are search algorithms based on the

mechanics of natural selection and natural genetics. GA is an iterative

procedure, which maintains a constant size population of candidate

solutions. During each iteration step (Generation) the structures in the

current population are evaluated, and, on the basic of those evaluations,

a new population of candidate solutions formed. The basic GA cycle shown

in figure (2) [10].

Chapter One Machine Scheduling Problems

 3

Algorithm (2): Genetic Algorithm (GA)

Generation=0;

Initialize G(Pop); {G=Generation ; Pop=Population}

Evaluate G(Pop);

While (GA has not converged or terminated)

Generation = Generation + 1;

Select G(Pop) from G(Pop-1);

Crossover G(Pop);

Mutate G(Pop);

Evaluate G(Pop);

End (While)

6.3 Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) has found applications in

a lot of areas. In general, all the application areas that the other evolutionary

techniques are good at are good application areas for PSO [83].

PSO was originally developed by a social-psychologist J. Kennedy

and an electrical engineer R. Eberhart in 1995 [58] and emerged from

earlier experiments with algorithms that modeled the “flocking behavior”

seen in many species of birds. It is yet another optimization algorithm that

falls under the soft computing umbrella that covers genetic and

evolutionary computing algorithms as well.

PSO is an extremely simple concept, and can be implemented without

complex data structure. No complex or costly mathematical functions are

used, and it doesn’t require a great amount of memory [79]. The facts of

PSO has fast convergence, only a small number of control parameters, very

simple computations, good performance, and the lack of derivative

computations made it an attractive option for solving the problems.

The PSO algorithm depends in its implementation in the following

two relations:

vid = w* vid + c1 * r1* (pid -xid) + c2 * r2 * (pgd -xid) …(1)

Old Population New Population

Selectio

n

Mutatio

n

Matin

g

Crossover

Evaluation

Figure (2) Basic cycle of GA.

Chapter One Machine Scheduling Problems

 4

xid = xid + vid …(2)

where w is the inertia weight for convergence, c1 and c2 are positive

constants, r1 and r2 are random functions in the range [0,1],

xi=(xi1,xi2,…,xid) represents the ith particle; pai=(pi1,pi2,…,pid) represents

the (pbest) best previous position (the position giving the best fitness value)

of the ith particle; the symbol g represents the index of the best particle

among all the particles in the population, vi=(vi1,vi2,…,vid) represents the

rate of the position change (velocity) for particle i [83].

Algorithm (3): Particle Swarm Optimization (PSO) algorithm

1. Initialize a population of particles with random positions and

velocities on d-dimensions in the problem space.

2. PSO operation includes:

a. For each particle, evaluate the desired optimization fitness function

in d variables.

b. Compare particle's fitness evaluation with its pbest. If current value

is better than pbest, then set pbest equal to the current value, and pai

equals to the current location xi.

c. Identify the particle in the neighborhood with the best success so

far, and assign it index to the variable g.

d. Change the velocity and position of the particle according to

equations (1) and (2).

3. Loop to step (2) until a criterion is met.

Like the other evolutionary algorithms, a PSO algorithm is

a population based on search algorithm with random initialization, and

there is an interaction among population members. Unlike the other

evolutionary algorithms, in PSO, each particle flies through the solution

space, and has the ability to remember its previous best position, survives

from generation to another.

A number of factors will affect the performance of the PSO. These

factors are called PSO parameters, these parameters are [58]:

1. Number of particles in the swarm affects the run-time significantly, thus

a balance between variety (more particles) and speed (less particles)

must be sought.

2. Maximum velocity (vmax) parameter. This parameter limits the

maximum jump that a particle can make in one step.

3. The role of the inertia weight w, in equation (2.1a), is considered critical

for the PSO’s convergence behavior. The inertia weight is employed to

control the impact of the previous history of velocities on the current

one.

4. The parameters c1 and c2, in equation (2.1a), are not critical for PSO’s

convergence. However, proper fine-tuning may result in faster

Chapter One Machine Scheduling Problems

 5

convergence and alleviation of local minima, it better to choose

a larger cognitive parameter c1 than a social parameter c2 but with

c1 + c2 = 4.

5. The parameters r1 and r2 are used to maintain the diversity of the

population, and they are uniformly distributed in the range [0,1].

Flowchart of PSO algorithm is depicted in figure (3) [92].

6.4 Bee Algorithm (BA)
Honey Bees Optimization (MBO) is a new development which is

based on the haploid-diploid genetic breeding of honey bees and is used

for a special group of propositional satisfiability problems. The main

processes in MBO are: the mating flight of the queen bee with drones, the

creation of new broods by the queen bee, the improvement of the broods'

fitness by workers, the adaptation of the workers' fitness, and the

replacement of the least fit queen with the fittest brood [12].

The challenge is to adapt the self -organization behavior of the colony

for solving the problems. The Bees Algorithm (BA) is an optimization

algorithm inspired by the natural foraging behavior of honey bees to find

the optimal solution. The pseudo code for the BA in its simplest form is as

follows [76].

The algorithm requires a number of parameters to be set, namely :

n : Number of scout bees.

ss : Number of sites selected out of n visited sites.

E : Number of best sites out of ss selected sites.

nep : Number of bees recruited for best e sites.

nsp : Number of bees recruited for the other (ss-e) selected sites.

ngh : Initial size of patches which includes site and its neighborhood

and stopping criterion.

Algorithm (4): Bees Algorithm (BA)

INPUT: n, ss, e, nep, nsp, Maximum of iterations.

Step1. Initialize population with random solutions.

Step2. Evaluate fitness of the population .

Step3. REPEAT

Step4. Select sites for neighborhood search.

Step5. Recruit bees for selected sites (more bees for best e sites) and

evaluate fitness’s.

Chapter One Machine Scheduling Problems

 6

Step6. Select the fittest bee from each patch.

Step7. Assign remaining bees to search randomly and evaluate their

fitness’s .

Step8. UNTIL stopping criterion is met.

OUTPUT: Optimal or near optimal solutions.

END.

The advantages of Bees algorithm [12]:

❖ BA is more efficient when finding and collecting food that is it takes less

number of steps.

❖ BA is more scalable, it requires less computation time to complete the

task.

