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Machine Scheduling Problem (MSP) 

 

6. Local Search Methods (LSM) 

Local search methods (LSM) form a very general class of heuristic to 

treat discrete optimization problems (DOP). Such problems are given by a 

finite set S of feasible solutions and an objective function f:S→R. the goal 

is to find a solution with minimal objective value, i.e., we look for a 

solution s*S with 

f (s*) = )}s(f{Min
Ss

 

Generally speaking, LSM move iteratively through the solution set S 

of a DOP. Based on the current and may be on the previous visited 

solutions, a new solution is chosen. 

Basic structure of local search algorithm 

Choose an initial solution; 

REPEAT 

Choose a solution from the neighborhood of the current solution and 

move to this solution; 

UNTIL stopping criteria is met. 

Evolutionary Algorithms (EAs) or Local Search Methods have 

been shown to be successful for a wide range of optimization problems. 

While these algorithms work well for many optimization problems in 

practice, a satisfying and rigorous mathematical understanding of their 

performance is an important challenge in the area of evolutionary 

computing [32]. 

 

6.1 Simulated Annealing (SA) 

Simulated annealing (SA) is an algorithmic method that is able to 

escape from local minima. It is a randomized LSM for two reasons: First, 

from the neighborhood of a solution a neighbor is randomly selected. 

Second, in addition to better-cost neighbors, which are always accepted if 

they are selected, worse-cost neighbors are also accepted, although with a 

probability that is gradually decreased in the course of the algorithm’s 

execution. The randomized nature enables asymptotic convergence to 

optimum solutions under certain mild conditions. Nevertheless, the energy 

landscape, which is determined by the objective function and the 

neighborhood structure, may admit many and/or “deep” local minimum. 

Therefore, avoiding local minima is a crucial part of the performance of 

the algorithm [46]. 
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SA algorithm starts to work by generating random initial solution (s), 

then the difference ∆ = F(s')−F(s) and neighbor (s') in the objective 

function is calculated. If ∆<0, the neighbor (s') will be accepted to be the 

new solution in the next iteration since it has a better function value. If the 

objective function value does not decrease (i.e.∆ ≥ 0), the generated 

neighbor may also be accepted with a probability exp(−∆/T), where T is a 

control parameter called temperature. This temperature is always reduced 

by a cooling technique in every iteration. As a stopping criteria, one may 

use e.g. a given number of iteration, a time limit or a given number of 

iterations without an improvement of the best objective function value. In 

the first two cases, one must adjust the cooling scheme in such a way that 

SA stops with a small temperature. Let p(Δ,T) = 𝑒xp(-Δ𝐶𝑜𝑠𝑡/T) is the 

probability depends on exponential function and FT be the final 

temperature [34]. 

Algorithm (1): Simulated Annealing (SA) Algorithm  

Step 1: Input: T, FT, cooling rate, s;  

Step 2: s' = s; Cost = Evaluate (s');  

Step 3: while (T > FT) do  

s1 = Mutate (s');  

NewCost = Evaluate (s1);  

ΔCost = NewCost −Cost;  

if (ΔCost ≤ 0) OR (p (Δ,T) > Rand) then  

Cost = NewCost;  

s' = s1;  

   end  

T = cooling rate × T;  

end  

Step 4: Output: the best s'; 

6.2 Genetic Algorithm (GA) 

Genetic Algorithms (GA’s) are search algorithms based on the 

mechanics of natural selection and natural genetics. GA is an iterative 

procedure, which maintains a constant size population of candidate 

solutions. During each iteration step (Generation) the structures in the 

current population are evaluated, and, on the basic of those evaluations,  

a new population of candidate solutions formed. The basic GA cycle shown 

in figure (2) [10]. 
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Algorithm (2):  Genetic Algorithm (GA) 

Generation=0; 

Initialize G(Pop); {G=Generation ; Pop=Population} 

Evaluate G(Pop); 

While (GA has not converged or terminated) 

Generation = Generation + 1; 

Select G(Pop) from G(Pop-1); 

Crossover G(Pop); 

Mutate G(Pop); 

Evaluate G(Pop); 

End (While) 
 

6.3 Particle Swarm Optimization (PSO) 

Particle Swarm Optimization (PSO) has found applications in  

a lot of areas. In general, all the application areas that the other evolutionary 

techniques are good at are good application areas for PSO [83]. 

PSO was originally developed by a social-psychologist J. Kennedy 

and an electrical engineer R. Eberhart in 1995 [58] and emerged from 

earlier experiments with algorithms that modeled the “flocking behavior” 

seen in many species of birds. It is yet another optimization algorithm that 

falls under the soft computing umbrella that covers genetic and 

evolutionary computing algorithms as well. 

PSO is an extremely simple concept, and can be implemented without 

complex data structure. No complex or costly mathematical functions are 

used, and it doesn’t require a great amount of memory [79]. The facts of 

PSO has fast convergence, only a small number of control parameters, very 

simple computations, good performance, and the lack of derivative 

computations made it an attractive option for solving the problems. 

The PSO algorithm depends in its implementation in the following 

two relations: 

vid = w* vid + c1 * r1* (pid -xid) + c2 * r2 * (pgd -xid)  …(1) 

Old Population New Population 
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Figure (2) Basic cycle of GA. 
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xid = xid + vid        …(2) 

where w is the inertia weight for convergence, c1 and c2 are positive 

constants, r1 and r2 are random functions in the range [0,1], 

xi=(xi1,xi2,…,xid) represents the ith particle; pai=(pi1,pi2,…,pid) represents 

the (pbest) best previous position (the position giving the best fitness value) 

of the ith particle; the symbol g represents the index of the best particle 

among all the particles in the population, vi=(vi1,vi2,…,vid) represents the 

rate of the position change (velocity) for particle i [83]. 

Algorithm (3): Particle Swarm Optimization (PSO) algorithm 

1. Initialize a population of particles with random positions and 

velocities on d-dimensions in the problem space. 

2. PSO operation includes: 

a. For each particle, evaluate the desired optimization fitness function 

in d variables. 

b. Compare particle's fitness evaluation with its pbest. If current value 

is better than pbest, then set pbest equal to the current value, and pai 

equals to the current location xi. 

c. Identify the particle in the neighborhood with the best success so 

far, and assign it index to the variable g. 

d. Change the velocity and position of the particle according to 

equations (1) and (2). 

3. Loop to step (2) until a criterion is met. 

Like the other evolutionary algorithms, a PSO algorithm is  

a population based on search algorithm with random initialization, and 

there is an interaction among population members. Unlike the other 

evolutionary algorithms, in PSO, each particle flies through the solution 

space, and has the ability to remember its previous best position, survives 

from generation to another. 

A number of factors will affect the performance of the PSO. These 

factors are called PSO parameters, these parameters are [58]: 

1. Number of particles in the swarm affects the run-time significantly, thus 

a balance between variety (more particles) and speed (less particles) 

must be sought. 

2. Maximum velocity (vmax) parameter. This parameter limits the 

maximum jump that a particle can make in one step.  

3. The role of the inertia weight w, in equation (2.1a), is considered critical 

for the PSO’s convergence behavior. The inertia weight is employed to 

control the impact of the previous history of velocities on the current 

one. 

4. The parameters c1 and c2, in equation (2.1a), are not critical for PSO’s 

convergence. However, proper fine-tuning may result in faster 
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convergence and alleviation of local minima, it better to choose  

a larger cognitive parameter c1 than a social parameter c2 but with  

c1 + c2 = 4.  

5. The parameters r1 and r2 are used to maintain the diversity of the 

population, and they are uniformly distributed in the range [0,1]. 

 

Flowchart of PSO algorithm is depicted in figure (3) [92]. 

 

6.4 Bee Algorithm (BA) 
Honey Bees Optimization (MBO) is a new development which is 

based on the haploid-diploid genetic breeding of honey bees and is used 

for a special group of propositional satisfiability problems.   The main 

processes in MBO are: the mating flight of the queen bee with drones, the 

creation of new broods by the queen bee, the improvement of the broods' 

fitness by workers, the adaptation of the workers' fitness, and the 

replacement of the least fit queen with the fittest brood [12]. 

The challenge is to adapt the self -organization behavior of the colony 

for solving the problems. The Bees Algorithm (BA) is an optimization 

algorithm inspired by the natural foraging behavior of honey bees to find 

the optimal solution. The pseudo code for the BA in its simplest form is as 

follows [76]. 

The algorithm requires a number of parameters to be set, namely : 

n : Number of scout bees. 

ss : Number of sites selected out of n visited sites. 

E : Number of best sites out of ss selected sites. 

nep : Number of bees recruited for best e sites. 

nsp : Number of bees recruited for the other (ss-e) selected sites. 

ngh : Initial size of patches which includes site and its neighborhood 

and stopping criterion. 

 

Algorithm (4): Bees Algorithm (BA) 

INPUT: n, ss, e, nep, nsp, Maximum of iterations. 

Step1. Initialize population with random solutions. 

Step2. Evaluate fitness of the population . 

Step3. REPEAT 

Step4. Select sites for neighborhood search. 

Step5. Recruit bees for selected sites (more bees for best e sites)  and 

evaluate fitness’s. 
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Step6. Select the fittest bee from each patch. 

Step7. Assign remaining bees to search randomly and evaluate their 

fitness’s . 

Step8. UNTIL stopping criterion is met. 

OUTPUT: Optimal or near optimal solutions. 

END. 

The advantages of Bees algorithm [12]: 

❖ BA is more efficient when finding and collecting food that is it takes less 

number of steps.  

❖ BA is more scalable, it requires less computation time to complete the 

task. 

 


