
Chapter One Machine Scheduling Problems

 1

Machine Scheduling Problem (MSP)

7. Dominance Rule
Reducing the current sequence may be done by using several

Dominance Rules (DR's). DR's usually specify some (all) parts of the path

to obtain good value for objective function so they can be useful to

determine whether a node in BAB method can be ignored before its lower

bound (LB) is calculated. Clearly, DR's are particularly useful when a node

can be ignored although it has a LB that is less than the optimum solution.

The DR's are also useful within the BAB method to cut all nodes that are

dominated by others. These improvements lead to very large decrease in

the number of nodes to obtain the optimal solution.

Definition [29]: If G is a graph that has n vertices, then the matrix

A(G)=[aij], whose 𝑖𝑡ℎand 𝑗𝑡ℎ element is 1 if there is at least one edge

between vertex 𝑉𝑖 and vertex 𝑉𝑗 and zero otherwise, is called the

𝑖 = 𝑗 or 𝑗 ↛ 𝑖
adjacency matrix of G, where:

𝑎𝑖𝑗 = {

1, if 𝑖 → 𝑗.
0, if 𝑖 = 𝑗 or 𝑗 ↛ 𝑖.
𝑎𝑖𝑗 and �̅�𝑖𝑗 , 𝑖 ⟷ 𝑗.

s.t. the adjacency matrix A(G) is as follows:

A(G)=

[

0 𝑎12 𝑎13

�̅�21 0 𝑎23

�̅�31

⋮
�̅�𝑛1

�̅�32

⋮
�̅�𝑛2

0
⋮

�̅�𝑛3

… 𝑎1𝑛

… 𝑎2𝑛
…
⋮
…

𝑎3𝑛

⋮
0]

Emmon's Theorem (1) [20]: For the 1/ /Ti problem, if pipj and didj

then there exists an optimal sequencing in which job i sequencing before

job j.

Al-Magraby's Lemma (1) [20]: For the 1/ /Ti problem, if dj
=

n

1i
i

p , then

there exists an optimal sequence in which job j sequencing last.

Remark (1) [7]: For 1//𝐸𝑚𝑎𝑥 problem if 𝑝𝑖 ≤ 𝑝𝑗 and 𝑠𝑖 ≤ 𝑠𝑗, then there

exists an efficient solution in which job i is sequenced before job j.

Chapter One Machine Scheduling Problems

 2

8. Applying of Solving Methods for Single objective Function

8.1 Applying of BAB Method

8.1.1 Applying of BAB Method without DR

Example (1):

Lets have the following MSP with n=4:

 1 2 3 4

pj 7 8 10 4

dj 20 14 22 9

We want to solve the problem 1/ /∑Tj.

Lets assume that the UB is depending on standard scheduling (j=1,2,3,4).

So that UB=24.

As we know that the LB=sequence part + unsequenced part.

For the unsequenced part we suggest using EDD rule, so we have:

1. For node 1: apply EDD rule for the unsequence part, we obtain 4-2-

3, so the LB1=14; since LB1=14≤UB=24, then we branch from node

1.

1.1 Now we branch from nodes 2 or 3 or 4; form node 2 we have seq.

part 1-2 and usequenced part 4-3 (after applying EDD), so the

LB12=18; since LB12=18≤UB=24, then we branch from node 2.

1.1.1 Now we branch from nodes 3 or 4; from node 3 we have seq. part

1-2-3 and unsequence part 4; so the LB123=24.

1.1.2 Now we branch from node 3, so we have the seq. part 1-2-4 and

unsequence part 3, so the LB124=18. Since we arrived at the root

of the tree and LB124=18≤UB=24, then we change the UB to

obtain new UB=18; then we apply the backtracking part of BAB

for one level.

1.2 Now we branch from node 3; so the seq part is 1-3 and unsequence

part is 4-2 (applying EDD), then then LB13=27≥UB=18, so we

ignore this node.

1.3 Now we branch from node 4; so the seq part is 1-4 and unsequence

part is 2-3 (applying EDD), then then LB14=14≤UB=18, so we

branch from this node.

1.3.1 Now we branch from nodes 2 or 3; from node 2 we have seq. part

1-4-2 and unsequence part 3; so the LB142=14, since we get the

root then the new UB=14;

Chapter One Machine Scheduling Problems

 3

1.3.2 Now we branch from node 3, so we have the seq. part 1-4-3 and

unsequence part 2, so the LB143=17≥UB=14, so we ignore this

node. Now we will back track to level 1 (why?).

2. For node 2: apply EDD rule for the unsequence part, we obtain 4-1-

3, so the LB2=10; since LB2=10≤UB=14, then we branch from node

2.

2.1 Now we branch from nodes 1 or 3 or 4; form node 1 we have seq.

part 2-1 and usequenced part 4-3 (after applying EDD), so the

LB21=17; since LB21=17≥UB=14, so we ignore this node.

2.2 form node 3 we have seq. part 2-3 and usequenced part 4-1 (after

applying EDD), so the LB23=22; since LB23=22≥UB=14, so we

ignore this node.

2.3 form node 4 we have seq. part 2-4 and usequenced part 1-3 (after

applying EDD), so the LB24=10; since LB24=10≤UB=14, so we

branch from this node.

2.3.1 Now we branch from nodes 1 or 3; from node 1 we have seq. part

2-4-1 and unsequence part 3; so the LB241=10, since we get the

root then the new UB=10;

2.3.2 Now we branch from node 3, so we have the seq. part 2-4-3 and

unsequence part 1, so the LB243=12≥UB=10, so we ignore this

node. Now we will back track to level 1 (why?).

3. For node 3: apply EDD rule for the unsequence part, we obtain 4-2-

1, so the LB2=22; since LB3=22≥UB=10, so we ignore this node.

4. For node 4: apply EDD rule for the unsequence part, we obtain 2-1-

3, so the LB4=7; since LB4=7≤UB=10, then we branch from node 4.

4.1 Now we branch from nodes 1 or 2 or 3; form node 1 we have seq.

part 4-1 and usequenced part 2-3 (after applying EDD), so the

LB41=12; since LB41=12≥UB=10, so we ignore this node.

4.2 form node 2 we have seq. part 4-2 and usequenced part 1-3 (after

applying EDD), so the LB42=7; since LB42=7≤UB=10, so we

branch from this node.

4.2.1 Now we branch from nodes 1 or 3; from node 1 we have seq. part

4-2-1 and unsequence part 3; so the LB421=7, since we get the

root then the new UB=7;

4.2.2 Now we branch from node 3, so we have the seq. part 4-2-3 and

unsequence part 1, so the LB423=9≥UB=7, so we ignore this

node. Now we will back track one level.

Chapter One Machine Scheduling Problems

 4

4.3 form node 3 we have seq. part 4-3 and usequenced part 2-1 (after

applying EDD), so the LB43=17; since LB43=17≥UB=7, so we

ignore this node. now stop since we finish all nodes.

Then the optimal solution is Z=7; for the sequence 4-2-1-3.

8.1.2 Applying of BAB Method with DR

Example (2): For the same data in example (1) and applying Emmon's

Theorem, we obtain the following DR:

Lets assume that the UB =24.

For the unsequenced part we suggest using EDD rule first we have to start

with node which exist in the beginning of the above diagram when using

DR, so we have to start as follows:

1. For node 4: apply EDD rule for the unsequence part, we obtain 2-1-

3, so the LB4=7; since LB4=7≤UB=10, then we branch from node 4.

4 1 3

2

Chapter One Machine Scheduling Problems

 5

1.1 Now we branch from nodes 1 or 2; form node 1 we have seq. part 4-

1 and usequenced part 2-3 (after applying EDD), so the LB41=12;

since LB41=12≤UB=24, branch from this node.

1.1.1 Now we branch from nodes 2; from node 2 we have seq. part 4-

1-2 and unsequence part 3; so the LB412=12, since we get the root

then the new UB=12. Now we will back tracking.

1.2 form node 2 we have seq. part 4-2 and usequenced part 1-3 (after

applying EDD), so the LB42=7; since LB42=7≤UB=12, so we

branch from this node.

1.2.1 Now we branch from nodes 1; from node 1 we have seq. part 4-

2-1 and unsequence part 3; so the LB421=7, since we get the root

then the new UB=7; now stop since we finish all nodes.

Then the optimal solution is Z=7; for the sequence 4-2-1-3.

8.2 Applying of Heuristic Methods

8.2.1 H1: The problem 1//∑𝑇𝑗 considered is NP-hard, so two heuristic or

approximate methods are proposed for solving this problem to obtain good

solutions. The first suggested heuristic method is using EDD rule for the

Sum of Tardiness (which we called it EDD-ST). The idea of this method

we start to arrange the jobs by EDD rules and calculate the objective

function, and then put the 2nd job in 1st position and then arrange the other

jobs by EDD rules and calculate the objective function, we continue this

process until obtain 𝑛 feasible sequences are obtained. The algorithm of

EDD-ST is as follows:

EDD_ST Heuristic Algorithm

Step(1): INPUT 𝑛, 𝑝𝑗 and 𝑑𝑗 , 𝑗 = 1,2,3, … , 𝑛.

Chapter One Machine Scheduling Problems

 6

Step(2): Arrange jobs in EDD rule (𝛾1), and calculate 𝐹1(𝛾1) = ∑𝑇𝑗(𝛾1),

let 𝛾 = 𝛾𝑖

Step(3): FOR 𝑖 = 2,… , 𝑛, job 𝑖 in the first position of 𝛾𝑖−1to obtain 𝛾𝑖,

then calculate 𝐹𝑖(𝛾𝑖).

Step(4): IF 𝐹𝑖(𝛾𝑖) ≤ 𝐹(𝛾) THEN 𝛾 = 𝛾𝑖.

ELSE GOTO Step(3).

ENDIF.

Step(5): OUTPUT: The optioned of sequence 𝛾 with 𝐹(𝛾) value.

Step(6): END.

The second method depends using DR of Sum Tardiness (DR-ST).

Example (3): Use EDD-ST algorithm for Example (1): we obtain

1. 4 , 2 , 1 , 3 → 7

2. 2 , 4 , 1 , 3 → 10

3. 1 , 4 , 2 , 3 → 14

4. 3 , 4 , 2 , 1 → 22

Best Seq is ∑Tj = 4 , 2 , 1 , 3 → 7 .

8.2.2 H2: The DR-ST (DR of (1//∑𝑇𝑗)) method is summarized by finding

a sequence arranged with minimum 𝑝𝑗 and 𝑑𝑗 and which it's not

contradicted with DR of the problem and then calculate the objective

function. The algorithm of DR-ST is stated as follows:

DR_ST Heuristic Algorithm

Step(1): INPUT: 𝑛, 𝑝𝑗 and 𝑑𝑗 , 𝑗 = 1,2,… , 𝑛.

Step(2): Apply Theorem (1) to find adjacency matrix 𝐴 of DR, 𝑁 =

{1,2,… , 𝑛}.

Step(3): FOR 𝑖 = 1,2,… , 𝑛, find a sequence 𝜎 with minimum 𝑑𝑗 which is

not contradiction with matrix 𝐴, if ∃ more than one job with same

𝑝𝑗 or 𝑑𝑗 (or both) then break tie arbitrary.

Step(4): IF 𝐹𝑖(𝜎𝑖) ≤ 𝐹(𝜎), THEN 𝜎 = 𝜎𝑖

ELSE GOTO Step(3)

ENDIF.

Step(5): OUTPUT: The obtained sequence 𝜎 with 𝐹(𝜎) value.

Step(6): END.

Example (4): Use DR-ST algorithm for Example (1): we obtain:

1. Node 4: has the min. dj=9 and not contradiction with A.

Chapter One Machine Scheduling Problems

 7

2. Node 1 and node 2 are not contradiction with A but node 2 has min.

dj=14.

3. The last node is node 3.

Then the best seq is ∑Tj = 4 , 2 , 1 , 3 → 7 .

8.3 Applying of LSM

8.3.1 Applying of SA Method

Example (5): Now we will use SA to solve example (1).

 Let T=100; α=0.95; r=2,3,3,1,2,1,3,2,2,1,2;

Lets start with s=[3 2 1 4]; Cost=29;

1. r=2; s1 = Mutate (s)=[3 1 2 4]; NewCost = Evaluate (s1)=31;

ΔCost = NewCost −Cost= 31 - 29 = - 2;

p (Δ,T) = 0.9802; Rand=0.2;

if (ΔCost ≤ 0) OR (p (Δ,T) > Rand)

Cost = NewCost=31;

s = s1; T=T* α = 95;

2. r=3; s1 = Mutate (s)=[3 1 4 2]; NewCost = Evaluate (s1)=27;

ΔCost = NewCost −Cost= 27 - 31 = - 4;

p (Δ,T)= 𝑒xp(-Δ𝐶𝑜𝑠𝑡/T) = 1.043; Rand=0.2;

if (ΔCost ≤ 0) OR (p (Δ,T) > Rand)

Cost = NewCost=27;

s = s1; T=T* α = 90.25;

3. r=3; s1 = Mutate (s)=[3 1 2 4]; NewCost = Evaluate (s1)=31;

ΔCost = NewCost −Cost= 31 - 27 = 4;

p (Δ,T) = 0.9566; Rand=0.2;

if (ΔCost ≤ 0) OR (p (Δ,T) > Rand)

Cost = NewCost=31;

s = s1; T=T* α = 85.7375;

4. r=1; s1 = Mutate (s)=[1 3 2 4]; NewCost = Evaluate (s1)=31;

ΔCost = NewCost −Cost= 31 - 31 = 0;

p (Δ,T) = 1; Rand=0.2;

if (ΔCost ≤ 0) OR (p (Δ,T) > Rand)

Cost = NewCost=31;

s = s1; T=T* α = 81.4506;

5. r=2; s1 = Mutate (s)=[1 2 3 4]; NewCost = Evaluate (s1)=24;

ΔCost = NewCost −Cost= 24 - 31 = -7;

p (Δ,T) = 1.0897; Rand=0.2;

if (ΔCost ≤ 0) OR (p (Δ,T) > Rand)

Cost = NewCost=24;

s = s1; T=T* α = 77.3781;

6. r=1; s1 = Mutate (s)=[2 1 3 4]; NewCost = Evaluate (s1)=23;

ΔCost = NewCost −Cost= 23 - 24 = -1;

p (Δ,T) = 1.013; Rand=0.2;

Chapter One Machine Scheduling Problems

 8

if (ΔCost ≤ 0) OR (p (Δ,T) > Rand)

Cost = NewCost=23;

s = s1; T=T* α = 73.5092;

and so on… after 100 iterations we obtain s1=[4 1 2 3], with best solution

Cost=7.

8.3.2 Applying of PSO Method

Example (6): Now we will use PSO using example (6).

n=4, MI=100 {max. iteration}, PS=4 {pop. Size}, 𝑐1 = 𝑐2 = 2,

𝑉[𝑉𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥] = [−4,4], {max velocity}. 𝑋 [𝑎, 𝑏] = [−1,1]; {max

position}

𝜔 = [0.4,0.9] = 0.4 +
0.5(𝑀𝐼−𝑖)

𝑀𝐼
, G=1;

Initialization:

𝑋 = [

0.6
−0.7
0.1
0.3

0.8
0.8

−0.8
0.5

−0.7
0.7
0.6
0.4

0.9
0.9
0.9

−0.2

] ∈ [−1,1], 𝑉 = [

1.1
3.6
1.2
1.2

−3.2
0.1

−3.7
−2.6

−1.8
2.4
2.8
1.6

0.4
−2.8
3.5

−3.7

] ∈ [−4,4]

For i=1 : MI {=4}

1. i=1, 𝜔 = 0.4+ 0.5(100−1)

100
= 0.895.

Fitness: For j=1:PS {=4}

𝑋1 = [0.6,0.8,−0.7,0.9], 𝑝1 = [3,1,2,4], 𝐹1 = 31,𝐵𝑝1 = 𝑝1, 𝑋𝑝1 = 𝑋1.

𝑝2 = [1,3,2,4], 𝐹2 = 31, 𝐵𝑝2 = 𝑝2, 𝑋𝑝2 = 𝑋2.

𝑝3 = [2,1,3,4], 𝐹3 = 23, 𝐵𝑝3 = 𝑝3, 𝑋𝑝3 = 𝑋3.

𝑝4 = [4,1,2,3], 𝐹4 = 15, 𝐵𝑝4 = 𝑝4, 𝑋𝑝4 = 𝑋4.

𝑩𝒆𝒔𝒕𝒑 = [𝟒, 𝟏, 𝟐, 𝟑], 𝑩𝒆𝒔𝒕𝑭 = 𝟏𝟓, 𝑮 = 𝟒.

Evolution: 𝑟1 = [0.2,0.4,0.6,0.8]; 𝑟2 = [0.3,0.5,0.7,0.9];

𝑉𝑗 = 𝑤 ∗ 𝑉𝑗 + 𝑐1 ∗ 𝑟1 ∗ (𝑋𝑝𝑗 − 𝑋𝑗) + 𝑐2 ∗ 𝑟2 ∗ (𝑋𝑝𝐺 − 𝑋𝑗) …(1)

𝑋𝑗 = 𝑋𝑗 + 𝑉𝑗 …(2)

𝐅𝐨𝐫 𝒋 = 𝟏:𝑷𝑺 {= 𝟒}

𝑗 = 1;

𝐅𝐨𝐫 𝒌 = 𝟏: 𝒏 {= 𝟒}

 𝑘 = 1

𝑉11 = 0.895 ∗ 1.1 + 2 ∗ 0.2 ∗ (0.6 − 0.6) + 2 ∗ 0.3 ∗ (0.6 − 0.3) = 1.1645

If 𝑉11 > 𝑉𝑚𝑎𝑥 then 𝑉11 = 𝑉11 − 𝑉𝑚𝑎𝑥

If 𝑉11 < 𝑉𝑚𝑖𝑛 then 𝑉11 = 𝑉11 + 𝑉𝑚𝑎𝑥

𝑉11 = 1.1645

𝑋11 = 𝑋11 + 𝑉11 = 0.6 + 1.1645 = 1.7645

If 𝑋11 > 𝑏 then 𝑋11 = 𝑋11 − 𝑏

If 𝑋11 < 𝑎 then 𝑋11 = 𝑋11 + 𝑏

Chapter One Machine Scheduling Problems

 9

𝑋11 > 1, then 𝑋11 = 1.7645 − 1 = 0.7645.

𝑘 = 2; 𝑉12 = −3.164, 𝑋12 = −0.364

𝑘 = 3; 𝑉13 = −0.071, 𝑋13 = −0.771

𝑘 = 4; 𝑉14 = −1.622, 𝑋14 = −0.722

𝑿𝟏 = [𝟎. 𝟕𝟔𝟒𝟓,−𝟎. 𝟑𝟔𝟒,−𝟎. 𝟕𝟕𝟏,−𝟎. 𝟕𝟐𝟐]
𝑽𝟏 = [𝟏. 𝟏𝟔𝟒𝟓,−𝟑. 𝟏𝟔𝟒,−𝟎. 𝟎𝟕𝟏,−𝟏. 𝟔𝟐𝟐]

𝑗 = 2;

𝑿𝟐 = [𝟎. 𝟏𝟐𝟐, 𝟎. 𝟓𝟖𝟗𝟓, 𝟎. 𝟒𝟖𝟐, 𝟎. 𝟒𝟏𝟒]
𝑽𝟐 = [𝟑. 𝟖𝟐𝟐,−𝟑. 𝟐𝟏𝟎𝟓, 𝟏. 𝟕𝟖𝟐,−𝟎. 𝟒𝟖𝟔]

𝑗 = 3;

𝑿𝟑 = [𝟎. 𝟐𝟗𝟒,−𝟎. 𝟖𝟏𝟏𝟓, 𝟎. 𝟖𝟐𝟔, 𝟎. 𝟎𝟓𝟐𝟓]
𝑽𝟑 = [𝟏. 𝟏𝟗𝟒,−𝟐. 𝟎𝟏𝟏𝟓, 𝟐. 𝟐𝟐𝟔, 𝟏. 𝟏𝟓𝟐𝟓]

𝑗 = 4;

𝑿𝟒 = [𝟎. 𝟑𝟕𝟒,−𝟎. 𝟖𝟐𝟕, 𝟎. 𝟖𝟑𝟐,−𝟎. 𝟓𝟏𝟏𝟓]
𝑽𝟒 = [𝟏. 𝟎𝟕𝟒,−𝟐. 𝟑𝟐𝟕, 𝟏. 𝟒𝟑𝟐,−𝟑. 𝟑𝟏𝟏𝟓]

2. i=2, 𝜔 = 0.4+ 0.5(100−2)

100
= 0.89.

Fitness: For j=1:PS {=4}

𝑝1 = [3,4,2,1], 𝐹1 = 22, 𝑋𝑝1 = 𝑋1.

𝑝2 = [1,4,3,2], 𝐹2 = 17, 𝑋𝑝2 = 𝑋2.

𝑝3 = [2,4,1,3], 𝐹3 = 10, 𝑋𝑝3 = 𝑋3.

𝑝4 = [2,4,1,3], 𝐹4 = 10, 𝑋𝑝4 = 𝑋4

𝑩𝒆𝒔𝒕𝒑 = [𝟐, 𝟒, 𝟏, 𝟑], 𝑩𝒆𝒔𝒕𝑭 = 𝟏𝟎, 𝑮 = 𝟒.

Evolution: and so on….

The best solution after 2 iterations is 𝒁 = 𝟏𝟎, for schedule [𝟐, 𝟒, 𝟏, 𝟑].
and so on… after 100 iterations we obtain the schedule [4 1 2 3], with

best solution Cost=Z=7.

