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Chapter Two 

Traveling Salesman Problem (TSP) 

 

2.5.6 Using BABT to Solve TSP 

BABT is one of the most important methods of the exact solution 

for combinatorial optimization problem. This method can act with 

different upper and lower bound to get very good results within a good 

time. The choosing process of upper bound (UB) and lower bound (LB) 

is figured as (UB-LB) this symbol of UB and LB we called it a model for 

BABT with notation BABT: (UB-LB). 

 

Derivation of Different Lower Bounds for TSP 

The LB is one of the most important parts of this method. The LB 

consists of two main parts such that LB= Sequenced nodes plus the 

unsequenced nodes, the sequence nodes: is the basic rout until the currant 

node. While the unsequenced nodes: it’s the subsequence obtained from 

all the cities after eliminate the sequence nodes which are obtained from 

applying deterministic method. To calculate the UB and LB, we use 

GRM. The BABT algorithm is as follows:  

 

BABT Algorithm 

Step 1: Read number of cities (n); Read Distance table. 

Step 2: Calculate UB=Cost (N) using GRM where N= {1,2,…,n}; i=0. 

Step 3: For each node in the search tree compute the LB=cost of 

sequencing nodes + Cost of unsequenced nodes; where cost of 

unsequenced nodes is obtained by GRM, i=i+1. 

Step 4: Branch each node with LB ≤ UB for level i. 

Step 5: If i  n then goto step 3. 

Step 6: If the last level (i=n-2) of BABT we obtain the optimal solution. 

Step 7: Stop. 
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Example 1: Let’s have the following TSP: 

 A B C D 

A − 5 5 9 

B 6 − 9 9 

C 4 9 − 0 

D 5 1 7 − 

To calculate UB, we use GRM so UB=29, for unsequnced nodes we use 

GRM. 

 

 

Exercises 

1. CEM=19. 

 A B C D 

A − 5 5 5 

B 2 − 4 7 

C 6 8 − 10 

D 7 4 8 − 

2. CEM=12 

 A B C D 

A − 10 2 1 

B 1 − 6 7 

C 8 6 − 6 

D 8 3 8 − 
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2.5.5 Solving TSP as a Linear Programming Problem (LPP) 

There are a number of different strategies for finding good lower 

bounds for the TSP.  In Concorde and other modern TSP solvers, the 

bounding technique of choice goes back to G. Dantzig, R. Fulkerson, and 

S. Johnson and is based on the solvability of mathematical models known 

as LPP. We will introduce the Dantzig-Fulkerson-Johnson idea by using 

a geometric interpretation that was described by M. Juenger and W. R. 

Pulleyblank in the 1980s. 

Let us suppose our TSP consists of a set of points in the plane and 

that the cost to travel between two cities is the (Euclidean) distance 

between the corresponding points. To begin, we draw a disk of radius r 

centered at city 1 in such a way that the disk does not touch any of the 

other cities.  Juenger and Pulleyblank call such a disk a control zone. 

 

Now the salesman must at some point in his/her tour visit city 1 

and to do so they will need to travel at least distance r to arrive at the city 

and at least distance r to leave the city (since each other city is at least 

distance r from city 1). We can conclude that every tour has length at 

least 2r, that is, we can set B = 2r and have a lower bound for this TSP 

instance. When judging a LB, bigger is better.   

Since we have many cities, it is convenient to have a name for the 

radius of each of the disks we are creating. There seems no way around 

introducing a bit of standard mathematical notation, so for each city i let 

us denote by ri the radius of its disk. 
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If we have five cities, as in the following figure, then by specifying 

values for each of the five radii r1, r2, r3, r4, r5 we can obtain a lower 

bound for the TSP. 

 

Since we want the bound to be as large as possible, we would like 

to choose the five radii so as to maximize twice their sum subject to the 

condition that the disks do not overlap. 

The non-overlapping condition can be expressed succinctly as 

follows.  For a pair of cities i and j, let dist(i,j) denote the distance from i 

to j. To ensure that the disks for i and j do not overlap, we must choose 

the radii so that 

  ri + rj  dist(i,j) 

that is, the sum of the two radii can be at most the distance between the 

cities. Putting everything together, the problem of getting the best TSP 

upper bound (UB) from our collection of disks can be written as 

follows. 

Maximize   2r1 + 2r2 + 2r3 + 2r4 + 2r5 

Subject To 

r1 + r2  dist(1,2) 

r1 + r3  dist(1,3) 

r1 + r4  dist(1,4) 

r1 + r5  dist(1,5) 

r2 + r3  dist(2,3) 

r2 + r4  dist(2,4) 

r2 + r5  dist(2,5) 

r3 + r4  dist(3,4) 

r3 + r5  dist(3,5) 
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r4 + r5  dist(4,5) 

rj  0,  for j=1,…,5 

This is an example of a LPP.  The important features are that we 

are maximizing a weighted sum of some unknown quantities (in our case 

the radii of the disks), subject to constraints that can be expressed as 

various weighted sums being at most or at least some specified values (in 

our case the non-overlapping constraints and the condition that no disk 

should not have a negative radius). 

In general, for n-cities: 

Maximize   



n

1i
i

r2Z  

Subject To 

r1 + r2  dist(1,2) 

r1 + r3  dist(1,3) 

⁞ 

rn-1 + rn  dist(n-1,n) 

rj  0,  for j=1,…,n 

Note that the no. of constraints is: 
2

)1n(n
Cn

2


 . 

Example (2.5): Solve the following TSP using DP. 

 A B C 

A 0 7 6 

B 7 0 8 

C 6 8 0 

Solution: 

Maximize   Z=2r1 + 2r2 + 2r3 

Subject To 

r1 + r2  7 

r1 + r3  6 

r2 + r3  8 

rj  0,  for j=1,…,3. 

Adding slack variables: 

r1 + r2 +S1= 7 
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r1 + r3 +S2= 6 

r2 + r3 +S3=8 

Z-2r1 - 2r2 - 2r3=0 

Construct the initial table: 
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B.V. r1 r2 r3 S1 S2 S3 Sol. 

S1 1 1 0 1 0 0 7 

S2 1 0 1 0 1 0 6 

S3 0 1 1 0 0 1 8 

Z -2 -2 -2 0 0 0 0 
 

S1 0 1 -1 1 -1 0 1 

r1 1 0 1 0 1 0 6 

S3 0 1 1 0 0 1 8 

Z 0 -2 0 0 2 0 12 
 

r2 0 1 -1 1 -1 0 1 

r1 1 0 1 0 1 0 6 

S3 0 0 2 -1 1 1 7 

Z 0 0 -2 2 0 0 14 
 

r2 0 1 0 1/2 -1 1/2 9/2 

r1 1 0 0 1/2 1/2 -1/2 5/2 

r3 0 0 1 -1/2 1/2 1/2 7/2 

Z 0 0 0 2 -1 0 21 

 

Optimal solution is: Z=21, at r1=5/2, r2=9/2, and r3=7/2. 

Exercises (2.4): 

1. A-B-C-A, Z=12. 

 A B C 

A -- 3 4 

B 3 -- 5 

C 4 5 -- 

 

2. A-B-C-D-A, Z=16. 

 A B C D 

A -- 3 6 2 

B 3 -- 5 7 

C 6 5 -- 6 

D 2 7 6 -- 

 


