
Combinatorial Optimization Problem Lecturer: Dr. Faez H. Ali

1

Chapter Two

Traveling Salesman Problem (TSP)

2.5.6 Using BABT to Solve TSP

BABT is one of the most important methods of the exact solution

for combinatorial optimization problem. This method can act with

different upper and lower bound to get very good results within a good

time. The choosing process of upper bound (UB) and lower bound (LB)

is figured as (UB-LB) this symbol of UB and LB we called it a model for

BABT with notation BABT: (UB-LB).

Derivation of Different Lower Bounds for TSP

The LB is one of the most important parts of this method. The LB

consists of two main parts such that LB= Sequenced nodes plus the

unsequenced nodes, the sequence nodes: is the basic rout until the currant

node. While the unsequenced nodes: it’s the subsequence obtained from

all the cities after eliminate the sequence nodes which are obtained from

applying deterministic method. To calculate the UB and LB, we use

GRM. The BABT algorithm is as follows:

BABT Algorithm

Step 1: Read number of cities (n); Read Distance table.

Step 2: Calculate UB=Cost (N) using GRM where N= {1,2,…,n}; i=0.

Step 3: For each node in the search tree compute the LB=cost of

sequencing nodes + Cost of unsequenced nodes; where cost of

unsequenced nodes is obtained by GRM, i=i+1.

Step 4: Branch each node with LB ≤ UB for level i.

Step 5: If i n then goto step 3.

Step 6: If the last level (i=n-2) of BABT we obtain the optimal solution.

Step 7: Stop.

Combinatorial Optimization Problem Lecturer: Dr. Faez H. Ali

2

Example 1: Let’s have the following TSP:

 A B C D

A − 5 5 9

B 6 − 9 9

C 4 9 − 0

D 5 1 7 −

To calculate UB, we use GRM so UB=29, for unsequnced nodes we use

GRM.

Exercises

1. CEM=19.

 A B C D

A − 5 5 5

B 2 − 4 7

C 6 8 − 10

D 7 4 8 −

2. CEM=12

 A B C D

A − 10 2 1

B 1 − 6 7

C 8 6 − 6

D 8 3 8 −

Combinatorial Optimization Problem Lecturer: Dr. Faez H. Ali

3

2.5.5 Solving TSP as a Linear Programming Problem (LPP)

There are a number of different strategies for finding good lower

bounds for the TSP. In Concorde and other modern TSP solvers, the

bounding technique of choice goes back to G. Dantzig, R. Fulkerson, and

S. Johnson and is based on the solvability of mathematical models known

as LPP. We will introduce the Dantzig-Fulkerson-Johnson idea by using

a geometric interpretation that was described by M. Juenger and W. R.

Pulleyblank in the 1980s.

Let us suppose our TSP consists of a set of points in the plane and

that the cost to travel between two cities is the (Euclidean) distance

between the corresponding points. To begin, we draw a disk of radius r

centered at city 1 in such a way that the disk does not touch any of the

other cities. Juenger and Pulleyblank call such a disk a control zone.

Now the salesman must at some point in his/her tour visit city 1

and to do so they will need to travel at least distance r to arrive at the city

and at least distance r to leave the city (since each other city is at least

distance r from city 1). We can conclude that every tour has length at

least 2r, that is, we can set B = 2r and have a lower bound for this TSP

instance. When judging a LB, bigger is better.

Since we have many cities, it is convenient to have a name for the

radius of each of the disks we are creating. There seems no way around

introducing a bit of standard mathematical notation, so for each city i let

us denote by ri the radius of its disk.

Combinatorial Optimization Problem Lecturer: Dr. Faez H. Ali

4

If we have five cities, as in the following figure, then by specifying

values for each of the five radii r1, r2, r3, r4, r5 we can obtain a lower

bound for the TSP.

Since we want the bound to be as large as possible, we would like

to choose the five radii so as to maximize twice their sum subject to the

condition that the disks do not overlap.

The non-overlapping condition can be expressed succinctly as

follows. For a pair of cities i and j, let dist(i,j) denote the distance from i

to j. To ensure that the disks for i and j do not overlap, we must choose

the radii so that

 ri + rj dist(i,j)

that is, the sum of the two radii can be at most the distance between the

cities. Putting everything together, the problem of getting the best TSP

upper bound (UB) from our collection of disks can be written as

follows.

Maximize 2r1 + 2r2 + 2r3 + 2r4 + 2r5

Subject To

r1 + r2 dist(1,2)

r1 + r3 dist(1,3)

r1 + r4 dist(1,4)

r1 + r5 dist(1,5)

r2 + r3 dist(2,3)

r2 + r4 dist(2,4)

r2 + r5 dist(2,5)

r3 + r4 dist(3,4)

r3 + r5 dist(3,5)

Combinatorial Optimization Problem Lecturer: Dr. Faez H. Ali

5

r4 + r5 dist(4,5)

rj 0, for j=1,…,5

This is an example of a LPP. The important features are that we

are maximizing a weighted sum of some unknown quantities (in our case

the radii of the disks), subject to constraints that can be expressed as

various weighted sums being at most or at least some specified values (in

our case the non-overlapping constraints and the condition that no disk

should not have a negative radius).

In general, for n-cities:

Maximize

n

1i
i

r2Z

Subject To

r1 + r2 dist(1,2)

r1 + r3 dist(1,3)

⁞

rn-1 + rn dist(n-1,n)

rj 0, for j=1,…,n

Note that the no. of constraints is:
2

)1n(n
Cn

2

 .

Example (2.5): Solve the following TSP using DP.

 A B C

A 0 7 6

B 7 0 8

C 6 8 0

Solution:

Maximize Z=2r1 + 2r2 + 2r3

Subject To

r1 + r2 7

r1 + r3 6

r2 + r3 8

rj 0, for j=1,…,3.

Adding slack variables:

r1 + r2 +S1= 7

Combinatorial Optimization Problem Lecturer: Dr. Faez H. Ali

6

r1 + r3 +S2= 6

r2 + r3 +S3=8

Z-2r1 - 2r2 - 2r3=0

Construct the initial table:

Combinatorial Optimization Problem Lecturer: Dr. Faez H. Ali

7

B.V. r1 r2 r3 S1 S2 S3 Sol.

S1 1 1 0 1 0 0 7

S2 1 0 1 0 1 0 6

S3 0 1 1 0 0 1 8

Z -2 -2 -2 0 0 0 0

S1 0 1 -1 1 -1 0 1

r1 1 0 1 0 1 0 6

S3 0 1 1 0 0 1 8

Z 0 -2 0 0 2 0 12

r2 0 1 -1 1 -1 0 1

r1 1 0 1 0 1 0 6

S3 0 0 2 -1 1 1 7

Z 0 0 -2 2 0 0 14

r2 0 1 0 1/2 -1 1/2 9/2

r1 1 0 0 1/2 1/2 -1/2 5/2

r3 0 0 1 -1/2 1/2 1/2 7/2

Z 0 0 0 2 -1 0 21

Optimal solution is: Z=21, at r1=5/2, r2=9/2, and r3=7/2.

Exercises (2.4):

1. A-B-C-A, Z=12.

 A B C

A -- 3 4

B 3 -- 5

C 4 5 --

2. A-B-C-D-A, Z=16.

 A B C D

A -- 3 6 2

B 3 -- 5 7

C 6 5 -- 6

D 2 7 6 --

