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CHAPTER Three 

Aircraft Landing Problems (ALP) 

 

3.1 Introduction 

Aircraft Landing Problem (ALP): Given a set of planes in the radar 

horizon of an air-traffic controller (ATC), the problem is one of 

determining a landing time at a busy airport for each plane such that each 

plane in this ATC horizon lands within a prespecified landing time window 

and such that landing separation criteria specified for each pair of planes 

in this horizon are adhered to. 

In this chapter, we study the aircraft landing problem (ALP), which 

considered as one of a COPs, in a single runway case. We present in the 

first part, a mathematical formulation of the problem with a linear objective 

function. In the second part, we consider the static case of the problem 

where all data are known in advance. We present a new heuristic for 

scheduling static case of aircraft landing to solve the ALP. 

 

3.2 Aircraft Landing Problem (ALP) 

3.2.1 ALP Motivation 

When the number of approaching flights exceeds the airport capacity, 

some of these aircraft can't be landed on its ′perfect′ landing time. 

However, some costs are being considered: 

• There is a cost mainly on the waste of fuel for each plane flying faster 

than its most economical speed. 

• Airlines also experience different costs for delays of different flights. 

• Depending on the amount of delay, there might be a number of transfer 

passengers that miss their connecting flight. 
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• The crew or aircraft might also be needed to perform a next flight, 

which now has to be rescheduled. 

• This might propagate delays to departing flights. 

 

3.2.2 Description and Notations of the ALP 

Assumptions of ALP are as follows: 

• The set of aircrafts which are waiting to be landed is known, a static 

model. 

• There are several runways in the airport. 

• The sets of aircrafts including the target time and time window are 

waiting to be landed on the runway. 

• The cost is considered for each unit of tardiness or earliness for the 

target time of every aircraft. 

• Each aircraft is supposed to land on a determined runway, when the 

limitation of separation time (the time between this aircraft and 

previous ones which land on this runway or others) is satisfied. 

• All aircrafts are not equal and similar to each other and there are 

different aircrafts. 

The objective function of the problems is to minimize the deviation 

of target time for each aircraft. As when an aircraft lands sooner than the 

target time, it causes problems for other aircrafts flight schedules. Now, we 

shall assume that we are minimizing total cost, where the cost for any plane 

is linearly related to deviation from its target time. Figure (3.1) illustrates 

the variation in cost within the time window of a particular plane.  
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Figure (3.1): Variation in cost for a plane within its time window. 

The aircraft generally partitioned into three weight classes: Small, 

Large and Heavy. The time separation requirements are then a function of 

the plane speed and the length of the final approach path. 

We first observe that the ALP involves two decision problems: (1)  

a sequencing problem (which determines the sequence of plane landings) 

and (2) a scheduling decision problem (which determines the precise 

landing times for each plane in the sequence, subject to the separation 

constraints). 

The ALP has the following notations: 

N : the number of planes. 

P : Set of N planes, P={1,2,…,N}. 

R :  the number of landing runways (here we take R=1). 

Ei : the earliest landing time for plane iP. 

Li : the latest landing time for plane iP. 

Ti : the target (preferred) landing time for plane iP. 

Sij : the required separation time (0) between plane i landing and 

plane j landing (where plane i lands before plane j), i,jP, ij. 

gi : the penalty cost (0) per unit of time for landing before the target 

time Ti for plane iP. 

hi : the penalty cost (0) per unit of time for landing after the target 

time Ti for plane iP. 

The variables are: 

ti : the actual landing time for plane iP. 
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i : how soon plane iP lands before Ti, mathematically, the earliness 

i=max{0,Ti − ti}. 

i : how soon plane iP lands after Ti, mathematically, the tardiness  

i=max{0 , ti − Ti}. 

    1 if plane i lands before plane j i,jP, ij. 

ij =  

    0 otherwise. 

Without significant loss of generality, we shall henceforth assume that 

the times Ei, Li, and Sij are integers. 

 

3.3 Single Runway Formulation of ALP 

In this section, we present an initial mixed-integer zero–one 

formulation of the static single runway ALP. 

 

3.3.1 ALP Constraints 

The first set of constraints are 

Ei  ti Li, iP,        …(3.1) 

which ensure that each plane lands within its time window. Now, 

considering pairs (i,j) of planes we have that 

ij+ji=1, i,jP, i<j,      …(3.2) 

We need to define three sets: 

U : the set of pairs (i,j) of planes for which we are uncertain 

whether plane i lands before plane j. 

V : the set of pairs (i,j) of planes for which i definitely lands before 

j (but for which the separation constraint is not automatically 

satisfied). 

W : the set of pairs (i,j) of planes for which i definitely lands before 

j (and for which the separation constraint is automatically 

satisfied). 

Then, we can define the set W by 
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W ={(i,j) | Li<Ej and Li +SijEj, i,jP, ij]}  …(3.3) 

In words, i must land before j (Li<Ej) and the separation constraint is 

automatically satisfied (Li+SijEj). 

We can define the set V by 

V ={(i,j) | Li<Ej and Li+Sij>Ej, i,jP, ij}   …(3.4) 

In words, i must land before j (Li<Ej) but the separation constraint is 

not automatically satisfied (Li+Sij>Ej). 

Some plane lands first may have overlapping time windows. Hence, 

we can define the set U as: 

U={(i,j)|i,j=1,…,N,ij;EjEiLj or EjLiLj, EiEjLi or EiLjLi}…(3.5) 

We need a separation constraint for pairs of planes in V, and this is 

tjti+Sij (i,j)V          …(3.6) 

which ensures that a time Sij must elapse after the landing of plane i 

at ti before plane j can land at tj. 

Finally, we need constraints to relate the i, i, and ti variables to each 

other. 

Ti – ti i  Ti – Ei,   iP,      …(3.7) 

ti – Ti i  Li – Ti,   iP,     …(3.8) 

 

3.3.2 Objective Function 

First, we have the following objective function: 

minimize 𝑍1 = ∑ 𝑡𝑖
𝑁
𝑖=1      …(3.9) 

which mean the sum of all actual times of all aircrafts. 

We now need only to setup the objective function, minimize the 

deviation from the target times (Ti), and this is 

minimize 𝑍2 = ∑ (𝑔𝑖𝛼𝑖 + ℎ𝑖𝛽𝑖)
𝑁
𝑖=1    …(3.10) 

Lastly we have the following multi-Criteria Objective function 

(MCOF):    
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minimize 𝑍3 = (𝑍1, 𝑍2)     …(3.11) 

 

The complete formulation (model) of the single runway problem is 

therefore to satisfy function (3.9), (3.10) and (3.11) subject to relations 

(3.1), (3.2), and (3.6)-(3.8). 

 

Example (3.1): For N=3, lets have the following ALP information. 

 P1 P2 P3 

 
 

Sij 

Ei 129 195 89 1 2 3 

Ti 155 258 98 1 0 3 15 

Li 559 744 510 

 

2 3 0 15 

gi 10 10 30 3 15 15 0 

hi 10 10 30  

Formulate this ALP: 

𝑍1 = ∑ 𝑡𝑖
𝑁
𝑖=1   

𝑍2 = ∑ (𝑔𝑖𝛼𝑖 + ℎ𝑖𝛽𝑖)
3
𝑖=1   

Z1=(10*max{0,155-t1}+10*max{0,t1-155})+(10*max{0,258-t2}+ 

10*max{0,t2-258})+(30*max{0,98-t3}+10*max{0,t3-98}) 

s.t. 

129  t1 559, 195  t2 744, 89  t3 510, 

ij+ji=1, i,jP, i<j, 

tjti+Sij (i,j)V, 

155–t1max{0,155-t1}26, 258–t2max{0,258-t2}63, 98–t3max{0,98-t1}9, 

t1-155max{0,t1-155}404,t2-258max{0,t2-258}486,t3-98max{0,t3-98}412. 

 

Calculate the objective functions Z1 and Z2 if ti=150, 250, 100: 

Z1=500, while for Z2 we have: 

 i=max{0,Ti-ti}, i=1,2,3, then:  

i=max{0,155-150}=5,  max{0,258-250}=8, max{0,98-100}=0. 

And i=max{0, ti-Ti}, i=1,2,3, then:  
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i=max{0,150-155}=0,  max{0,250-258}=0, max{0,100-98}=2. 

Z=(g11+h11)+(g22+h22)+(g33+h33)=105+108+302=190. 

Lastly for Z3, we have Z3=(Z1,Z2)=(500,190). 

 

3.4 Techniques to Improve the Solution and Reduce the Computations 

In this section we demonstrate two types of methods which are 

contribute in improving the solution and speed the approach to the good 

solution. In addition, we will discuss some special cases of ALP. 

3.4.1 Time Window Tightening (TWT) 

Let ZUB (for any three objective functions) be any upper bound to the 

problem. Then, it is possible to limit the deviation from target for each 

plane. Specifically, for plane i, we can update Ei using: 

Ei =max {Ei ,Ti−ZUB/gi},  iP,      …(3.12) 

Similarly we have 

Li =min {Li , Ti+ZUB/hi},  iP,      …(3.13) 

The benefit of tightening (closing) the time windows is that 

(potentially) the sets U and V can be reduced in size, thereby giving a 

smaller problem to solve. 

 

Example (3.2): The time window tightening of example (3.1) using Eq. 

(3.12) and (3.13). for instance, ZUB=1060 (using Z2) we have: 

Ei=max{Ei,Ti-106} where: E1=max{129,155-106}=129, 

E2=max{195,258-106}=195, E3=max{89,98-35}=98.  

Li=min{Li,Ti+106} where: L1=min{559,155+106}=261, 

L2=min{744,258+106}=364, L3=min{89,98+35}=133.  

These results are shown in table (3.1). 
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Table (3.1): time window tightening of example (3.2) for ZUB=1060. 

 P1 P2 P3 

Ei 129 195 89 

Ti 155 258 98 

Li 261 364 133 

gi 10 10 30 

hi 10 10 30 

 

Exercise (3.1): calculate the TWT for: 

1. from example (3.1), ZUB=900. 

2. from Appendix, for N=10, for 1st 5 aircraft, ZUB=90. 

3. from Appendix, for N=15, for 1st 5 aircraft, ZUB=90. 

 

3.4.2 Successive Rules (SR) 

Reducing the current sequence is done by using several SR's. When, 

for each i (iP), and with its cost given in the objective function (3.9), we 

can derive SR that restrict the search for an optimal solution. Such rules 

can be used in some optimization algorithms. These improvements lead to 

very large decrease in the number of solutions to obtain the optimal 

solution. 

Definition (3.1): Let Wi=[Ei,Li] be the time window interval of plane iP, 

if Wi Wj= (time windows are disjoint) and Li<Ej we denote for the 

interval Wi precedes the interval Wj in line number by Wi3Wj. 

Definition (3.2): We say that plane i precedes the plane j (we write i→j or 

(i,j)W) or j precedes the plane i if Wi Wj=, for ij. 

Remark (3.1): 

1. ti < tj and tjti+Sij if and only if i→j, i,jP, ij. 

2. if EiEjLi or EiLjLi, then WiWj for ij, we say that Wi and Wj 

are overlapped. 
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Proposition (3.1): if Wi3Wj, then tiWi<tjWj,  i,jP, ij. 

Proof: since Wi3Wj, then tiWj and tjWi. Suppose titj, for ti=tj, tj=tiWi, 

C!. For ti>tj, if tjWi C!. Take tjWi. Then tj another interval say Wk, s.t. 

Wk3Wj, but tjWj and that is a contradiction since there is no integer 

belong to two disjoint intervals in the same time. Then ti<tj    

Remark (3.2): if Wi Wj=, then Li < Ej or Lj < Ei, i,jP, ij. 

Definition (3.3): the i→j if one of the following conditions is satisfied: 

1. Li < Ej for ij. 

2. For Li  Ej, if Li < Ej+Sij for ij. 

Conditions of SR are shown in figure (5.2). 

 

Figure (3.2): Conditions of dominiance rules. 

Example (3.3): For N=5 let's have the following ALP information: 

 P1 P2 P3 P4 P5  Sij 1 2 3 4 5 

Ei 129 89 96 111 123 1 0 15 15 15 15 

Ti 155 98 106 123 135 2 15 0 8 8 8 

Li 191 110 118 135 147 3 15 8 0 8 8 

gi 10 30 30 30 30 4 15 8 8 0 8 

hi 10 30 30 30 30 5 15 8 8 8 0 

From definition (3.3), condition (1) we obtain the following SR's: 

2→1, 2→4, 2→5, 3→1, 3→5. 

From condition (2), we have 3→4 because of E4+S34=111+8=119 > 

L3=118, and 4→1 because of E1+S41=129+15=144 > L4=135. Figure (3.3) 

shows the SR's of example (3.3). 

 

Ei Li Ej Lj Ei Li Ej Lj 

Condition(1) Condition(2) 

Li<Ej LiEj 
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Figure (3.3): Graph of SR of example (3.3). 

The adjacency matrix A of the graph shown above is: 

𝐴 =

1
2
3
4
5 [

 
 
 
 

0 0 0 0 𝛿15

1 0 𝛿23 1 1
1 𝛿32 0 1 1
1 0 0 0 𝛿45

𝛿51 0 0 𝛿54 0 ]
 
 
 
 

 

Note:  

• 15+51=1, 23+32=1, 45+54=1  

• the sequencing problem of this ALP can solved by 23=8 possible and 

no need to try 5!=120 possible.  

Example (3.4): Find the possible sequences for example (3.3): 

From adjacency matrix A, we have (15,23,45), 15,23 and 45. 

So we have: 

i (15,23,45) Subsequence sequence Acceptance 

1. (0,0,0) 5→1,3→2,5→4 3→2→5→4→1  

2. (0,0,1) 5→1,3→2,4→5 3→2→4→5→1  
3. (0,1,0) 5→1,2→3,5→4 2→3→5→4→1  
4. (0,1,1) 5→1,2→3,4→5 2→3→4→5→1  
5. (1,0,0) 1→5,3→2,5→4 3→2→1→5→4  

6. (1,0,1) 1→5,3→2,4→5 3→2→4→1→5  

7. (1,1,0) 1→5,2→3,5→4 2→3→1→5→4  

8. (1,1,1) 1→5,2→3,4→5 2→3→4→1→5  

 

1 2 4 

3 5 
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3.4.3 Special Cases 

Definition (3.4): Let S=max{Sij}, i,jP,ij, then Wi is called logical time 

window if the length li of Wi, for iP is li=Li−Ei+12S and Ti=(Ei+Li)/2. 

Example (3.3): let W1=[10,20] and W2=[25,50], S12=10, S=10. Note that l1=11 

and l2=26, W2 is logical time window but W1 is not. While if W1=[10,15] and 

W2=[16,24], S12=15, S=15. Note that both W1 and W2 are not logical time 

windows, since if t1=E1=10, then t2<t1+S12=10+15 =25>L2=24, that mean W2 is 

not logical time definitely, not satisfies the separation constraint. 

Case (1): Let Wi1,Wi2,…,WiN are all disjoint logical time windows in this 

sequence s.t. =
jk ii WW  ,ik,ijP, ikij, then the optimal solution with 

cost Z=0 at 
NN2211 iiiiii TtTtTt ===  and i1→i2→…→iN. 

Proof: Without loosing the generality, let N=3 to show Z=0 and 1→2→3. 

Since W1,W2 and ,W3 are logical time windows this mean S=max{Sij}, 

i,jP. Let t1=T1, T1+S  L1 < E2 < T2, then take: 

 t2 = T2 > T1+S=t1+S      …(a) 

 t1=T1 and t2=T2 satisfy the window and separation conditions (WSC's). By 

applying relation (a) again for t2 and t3 we obtain that: t2=T2 and t3=T3 satisfy 

the WSCs. 

The optimal solution with cost Z=0 for N=3 and 1→2→3. 

Consequently, this case can be applied for N aircraft and for any sequence . 

Case (2): Let W=W1=W2=…=WN be the same large time window, then the 

optimal solution Z=0 at 
kk ii Tt = if 

ki
T  satisfies the separation constraint 

ikP and i1→i2→…→iN.  

Proof: let's take any arbitrary sequence . Since
ki

T satisfy the separation 

constraints, this means: T1T2−S12, T2T3−S23,…, TN-1TN−SN-1,N. If we 

take
kk ii Tt = , then the landing times

ki
t satisfy the separation constraint 

ikP. 
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The optimal solution with cost Z=0 and 1→2→…→N.    

Of course, this case can be applied for any sequence .  

Exercise (3.2): Find the SR for: 

1. For N=5 let's have the following ALP information: 

 P1 P2 P3 P4 P5  Sij 1 2 3 4 5 

Ei 129 111 123 89 96 1 0 15 15 15 15 

Ti 155 123 135 98 106 2 15 0 8 8 8 

Li 191 135 147 110 118 3 15 8 0 8 8 

gi 10 30 30 30 30 4 15 8 8 0 8 

hi 10 30 30 30 30 5 15 8 8 8 0 

2. For N=5 let's have the following ALP information: 

 P1 P2 P3 P4 P5 

 

Sij 1 2 3 4 5 

Ei 146 241 90 95 108 1 0 3 15 15 15 

Ti 155 250 93 98 111 2 3 0 15 15 15 

Li 164 259 96 101 114 3 15 15 0 8 8 

gi 10 10 30 30 30 4 15 15 8 0 8 

hi 10 10 30 30 30 5 15 15 8 8 0 
 

3. For N=5 let's have the following ALP information: 

 P1 P2 P3 P4 P5 

 

Sij 1 2 3 4 5 

Ei 241 146 108 90 95 1 0 3 15 15 15 

Ti 250 155 111 93 98 2 3 0 15 15 15 

Li 259 164 114 96 101 3 15 15 0 8 8 

gi 10 10 30 30 30 4 15 15 8 0 8 

hi 10 10 30 30 30 5 15 15 8 8 0 
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