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Chapter Four 

Cryptanalysis of Transposition 

Cipher Problems Using Combinatorial 

Optimization Problems Techniques 

 

4.4 Solving TCP using Exact Methods 

In this section, for TCP, we will apply the exact methods which represented by 

complete enumeration and branch and bound methods. These methods are chosen to 

solve the TCP using the proposed cryptanalysis tools. 

4.4.1 Solving TCP using Complete Enumeration Method (CEM) 

We use the Complete Enumeration Method (CEM) with n! states. The CEM 

results for n=3 (6 states) with L=3000 letters viewed in table (4.6) for the TOF and 

SOF (3,). 

Table (4.6): L=999, CT='etheu stins hibpu cliia toonr ft…'; 

 DK Dd Dt Dq SMHF CDF SOF Text 

1 3,2,1 654 151 169 0.9764 0.6284 1.3480 HTESUENITIHSUPBILCTA 

2 3,1,2 642 102 116 0.8621 0.5288 1.3332 HETSEUNTIISHUBPICLTI 

3 2,3,1 727 321 323 1.3747 0.3516 2.0232 THEUSEINTHISPUBLICAT 

4 2,1,3 634 140 154 0.9303 0.6228 1.3076 TEHUESITNHSIPBULCIAI 

5 1.3.2 647 154 112 0.9152 0.6008 1.3144 EHTESUTNISIHBUPCILIT 

6 1,2,3 647 113 120 0.8821 0.4894 1.3927 ETHEUSTINSHIBPUCLIIA 

The =ADK has different closed values s.t. 1.6886SOF(n,) 2.0232. So we 

can consider that =ADK if SOF(n,)  1.68 while if SOF(n,)1.32 then ADK. 

4.4.2 Solving TCP using New Branch and Bound (BAB) Method 

Branch and Bound (BAB) considered as the most common method to solve 

problems classified as COP, especially when CEM will be no more efficient in 

finding optimal solutions for large n. 
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In this chapter, we will see how the BAB method is efficient in solving the 

TCP? First, since we want to maximize SOF(n,) for TCP so we have to find a 

suitable lower bound (LB), first set LB=SOF(n,). In order to obtain a suitable LB we 

suggest to make this LB as a dynamic LB, in another words, the proposed LB changes 

its value in each level of BAB method.  

The BAB procedure is usually described by means of search tree with nodes 

that corresponding to subsets of feasible solutions. To maximize an objective function 

(SOF) for a particular TCP, the BAB method successively partitions subsets using a 

branching procedure and computes an upper bound (UB) using upper bounding 

procedure and by these procedures excludes the nodes which are found not to include 

any optimal solution and this eventually leads to at least one optimal solution. 

For each of the subsets (nodes) of solutions one computes UB to the maximum 

value of the objective function (SOF) attained by solutions belong to the subsets. If 

the UB calculated for a particular node is less than or equal to the LB (this LB is 

defined as the maximum of the values of all feasible solutions currently found), this 

node is ignored since any node with value greater than LB can only exist in the 

remaining nodes. One of these nodes with maximum UB is chosen, from which to 

branch. When the branching ends at a complete sequence of n letters, this sequence is 

evaluated and if its value greater than the current LB, this LB is reset to take that 

value. The procedure is repeated until all node have been considered (i.e., upper 

bounds of all nodes in the scheduling tree are less than or equal to the LB), a feasible 

solution with this LB is an optimal solution. 

Now we suggest a new BAB method with new technique for TCP. The new 

technique depends first on assign LB to 1.0 after that calculate the UB for each node 

in each level, then searching for the best UB which is corresponding to the best 

sequence . To improve the value of LB in each level, we make it equal to the mean 

of the set of good UB's (UB'sLB) in that level. The best UB (1.7) is the fitness of 

ADK to solve TCP. The new BAB is called modified BAB (MBAB) method, which 

is shown in the next page. 
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4.5 Successive Rules of DK for TCP 

4.5.1 Successive Rule (SR) Concept 

Let P(i,j) be the probability of digit i precedes digit j in the key DKr 

(denoted by ij) (or we say column i precedes column  j  in the text Mr 

using key DKr), where 1rn!, and a threshold (T1) for the acceptance of 

P(i,j) s.t. 

P(i,j)  T1, where 0<T11,     …(4.11) 

In another word, if P(i,j) satisfies condition (4.11) then its called 

accepted probability AP(i,j). 

Definition (4.1): In TCP, if ij in the key DKr to decrypt the text Mr 

with good accepted probability AP(i,j) then we say that DKr (or Mr of 

TCP) is submitted to successive rule (SR). 

In other words, we can define the SR's by the rules which are 

enforcing the obtained sequence (DK) to be arranged in some specific 

order. 

We believe that the calculation of P(i,j) is relevant to some iterative 

solving methods of TCP which we can generate the DK in somehow. The 

BAB and local search methods can be considered as kinds of these 

iterative solving methods. In this thesis we are focus in generating DK 

which is submit to a good SR (SR with AP(i,j)) using BAB and LS (like 

BA).   

Let's suppose that some SR's are explored, now how we can exploit 

these SR's to increase the performance of solving techniques of TCP? 

Example (4.1): Let  be a 5-sequence digits with the following SR: 24 

and 31, s.t. the number of SR (NSR)=2, then  will have the following 

arrangements: (2,4,5,3,1), (2,4,3,1,5), (3,1,5,2,4),…,etc. While if  
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enforced by the following SR: 24, 45 (2-4-5) and 31 (3-1), s.t. 

NSR=3 then  will have the following arrangements: (2,4,5,3,1) and 

(3,1,2,4,5) only. 

4.5.2 Generating Subsequences from SR 

Let  be an n-sequence digits (DK), s.t. =(1,2,…,n), if  has NSR 

of SR's, if the digits ij and jl, then we can obtain a subsequence  

Sk=(i-j-l) with length 3. In general, we can generate mn number of 

strings (subsequences) Sk each with length SLk, s.t. 1km, then the 

initial m-sequence is =(S1,S2,…,Sm) obtained from  of n-sequence after 

applying SR. 

Example (4.2): Let =(1,2,3,4,5), NSR=3, S1=(2,4,5) and S2=(3,1) with 

SL1=3 and SL2=2 respectively, then m=2, s.t. =(S1,S2)=(2-4-5,3-1). In 

general, notice 



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


 . Table (4.15) shows the 

SR generates subsequences (Sk), with lengths (SLk) for n=11,...,20.  

Table (4.15): The SR generates subsequences (Sk), with lengths 

(SLk) for n=11,...,20. 

n NSR m SLk =(Sk), k=1,…,m 
11 8 3 3,7,1 (6-3-8),(2-11-7-9-4-1-10),(5) 

12 8 4 4,6,1,1 (3-8-4-11),(12-7-9-5-1-10),(6),(2) 

13 8 5 3,5,3,1,1 (7-10-5),(3-9-4-12-8),(1-11-6),(2),(13) 

14 8 6 4,3,2,3,1,1 (4-13-9-6),(2-14-8),(3-10),(11-5-1),(7),(12) 

15 8 7 3,2,5,2,1,1,1 (9-11-6),(8-4),(10-5-14-12-2),(1-13),(3),(15),(7) 

16 8 8 2,4,2,2,3,1,1,1 (12-6),(11-5-15-13),(3-16),(2-7),(14-8-4),(10),(1),(9) 

17 8 9 2,3,3,4,1,1,1,1,1 (17-9),(5-16-14),(8-4-11),(13-6-1-15),(2),(7),(3),(10),(12) 

18 8 10 2,2,2,3,2,3,1,1,1,1 
(4-13),(16-12),(5-1),(2-11-8),(3-14), 

(10-7-6),(9),(15),(18),(17) 

19 8 11 3,2,2,2,2,2,2,1,1,1,1 
(14-17-13),(6-1),(2-12),(9-4),(15-11),(8-7), 

(10-16),(19),(18),(3),(5) 

20 8 12 2,3,2,2,2,2,2,1,1,1,1,1 
(5-15),(18-14-6),(1-2),(13-9),(16-12),(8-7), 

(10-17),(20),(19),(3),(11),(4) 

 

 


