Combinatorial Optimization Problems

4th grade – S & OP Branch/ 2019-2020 Introduced By Dr. Faez Hassan Ali

Chapter Three - 2 Aircraft Landing Problems

Time Window Tightening (TWT)

Let Z_{UB} be any upper bound to the problem. Then, it is possible to limit the deviation from target for each plane. Specifically, for plane i, we can update E_i using:

$$E_{i} = \max \{E_{i}, T_{i} - Z_{UB}/g_{i}\}, i \in P,$$
Circularly use have

Similarly we have

$$L_i = min \{L_i, T_i + Z_{UB}/h_i\}, i \in P_i$$

The benefit of tightening (closing) the time windows is that reduced in size, thereby giving a smaller problem to solve.

Example (2): The time window tightening of example (1) using Eq. (7) and (8). using Z_{UB} =1060 we have:

 $E_i = max{E_i, T_i-106}$ where: $E_1 = max{129, 155-106}=129$,

E₂=max{195,258-106}=195, E₃=max{89,98-35}=98.

 $L_i = min\{L_i, T_i + 106\}$ where: $L_1 = min\{559, 155 + 106\} = 261$,

 $L_2 = min\{744, 258+106\} = 364, L_3 = min\{89, 98+35\} = 133.$

	P ₁	P ₂	P ₃
E _i	129	195	89
T _i	155	258	98
L	261	364	133
g i	10	10	30
h _i	10	10	30

...(8)

Successive Rules (SR)

Definition: Let $W_i = [E_i, L_i]$ be the time window interval of plane $i \in P$, if $W_i \cap W_j = \phi$ (time windows are disjoint) and $L_i < E_j$ we denote for the interval W_i precedes the interval W_j in line number by $W_i \Longrightarrow W_j$. **Definition**: We say that plane i precedes the plane j (we write $i \rightarrow j$ or $(i,j) \in W$) or j precedes the plane i if $W_i \cap W_j = \phi$, for $i \neq j$.

Remark:

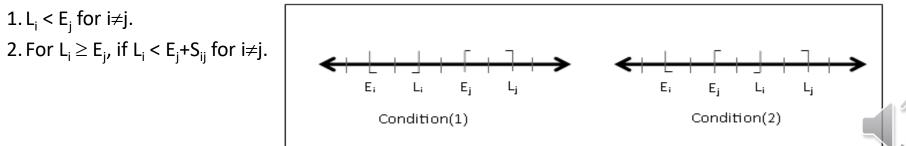
- $t_i < t_j$ and $t_j \ge t_i + S_{ij}$ if and only if $i \rightarrow j$, $\forall i, j \in P$, $i \neq j$.
- if $E_i \leq E_j \leq L_i$ or $E_i \leq L_j \leq L_i$, then $W_i \cap W_j \neq \phi$ for $i \neq j$, we say that W_i and W_j are overlapped.

Proposition : if $W_i \Longrightarrow W_j$, then $t_i \in W_i < t_j \in W_j$, $\forall i, j \in P, i \neq j$.

Proof: since $W_i \Longrightarrow W_j$, then $t_i \notin W_j$ and $t_j \notin W_i$. Suppose $t_i \ge t_j$, for $t_i = t_j$, $t_j = t_i \in W_i$, C!. For $t_i > t_j$, if $t_j \in W_i$ C!. Take $t_j \notin W_i$. Then $t_j \in$ another interval say W_k , s.t. $W_k \Longrightarrow W_j$, but $t_j \in W_j$ and that is a contradiction since there is no integer belong to two disjoint intervals in the same time. Then $t_i < t_j$.

Remark: if $W_i \cap W_j = \phi$, then $L_i < E_j$ or $L_j < E_i$, $\forall i, j \in P$, $i \neq j$.

Definition: the planes $i \rightarrow j$ if one of the following conditions is satisfied:



Example: For N=5:

From definition

condition (1)

we obtain the following SR's:

$$2 \rightarrow 1, 2 \rightarrow 4, 2 \rightarrow 5, 3 \rightarrow 1, 3 \rightarrow 5.$$

From condition (2),

we have

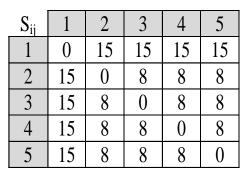
 $3 \rightarrow 4$ because of

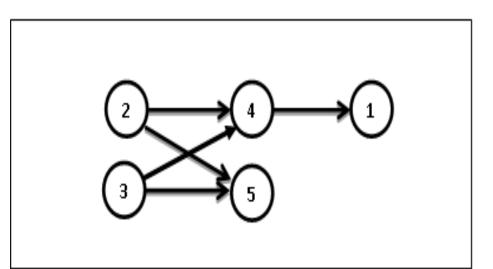
$$E_4 + S_{34} = 111 + 8 = 119 > L_3 = 118$$
,

and $4 \rightarrow 1$ because of

 $E_1 + S_{41} = 129 + 15 = 144 > L_4 = 135.$

	P ₁	P ₂	P ₃	P ₄	P ₅
Ei	129	89	96	111	123
T _i	155	98	106	123	135
L	191	110	118	135	147
gi	10	30	30	30	30
h_i	10	30	30	30	30





The adjacency matrix A of the graph shown above is:

 $\delta_{15} + \delta_{51} = 1, \ \delta_{23} + \delta_{32} = 1, \ \delta_{45} + \delta_{54} = 1$

the sequencing problem of this ALP can solved by 2³=8 possible and no need to try 5!=120 possible.

Find the possible sequences. From matrix A, we have $(\delta_{15}, \delta_{23}, \delta_{45}), 1 \leftrightarrow 5, 2 \leftrightarrow 3$ and $4 \leftrightarrow 5$.

So we have:

			3		5
1	0	0	0	0	δ ₁₅]
2	1	0	δ_{23}	1	1
A = 3	1	$\delta_{\scriptscriptstyle 32}$	0	1	1
4	1	0	0	0	δ45
1 2 A = 3 4 5	δ 31	0	0	$\delta_{_{54}}$	0

	i	$(\delta_{15}, \delta_{23}, \delta_{45})$	Subsequence	sequence	Acceptance
	1.	(0,0,0)	5→1,3→2,5→4	3→2→5→4→1	\checkmark
Γ	2.	(0,0,1)	5→1,3→2,4→5	$3 \rightarrow 2 \rightarrow 4 \rightarrow 5 \rightarrow 1$	\checkmark
	3.	(0,1,0)	5→1,2→3,5→4	$2 \rightarrow 3 \rightarrow 5 \rightarrow 4 \rightarrow 1$	\checkmark
	4.	(0,1,1)	5→1,2→3,4→5	$2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 1$	\checkmark
	5.	(1,0,0)	1→5,3→2,5→4	$3 \rightarrow 2 \rightarrow 1 \rightarrow 5 \rightarrow 4$	x
	6.	(1,0,1)	1→5,3→2,4→5	3→2→4→1→5	\checkmark
Γ	7.	(1,1,0)	1→5,2→3,5→4	$2 \rightarrow 3 \rightarrow 1 \rightarrow 5 \rightarrow 4$	x
	8.	(1,1,1)	1→5,2→3,4→5	$2 \rightarrow 3 \rightarrow 4 \rightarrow 1 \rightarrow 5$	

Special Cases of ALP

Definition: Let S=max{S_{ij}}, $\forall i, j \in P, i \neq j$, then W_i is called **logical time window (LTW)** if the length I_i of W_i, for $i \in P$ is $I_i = L_i - E_i + 1 \ge 2S$ and $T_i = (E_i + L_i)/2$.

Example: let W_1 =[10,20] and W_2 =[25,50], S_{12} =10, S=10. Note that I_1 =11 and I_2 =26, W_2 is LTW but W_1 is not. While if W_1 =[10,15] and W_2 =[16,24], S_{12} =15, S=15. Note that both W_1 and W_2 are not LTWs, since if t_1 =E₁=10, then $t_2 < t_1 + S_{12} = 10 + 15 = 25 > L_2 = 24$, that mean W_2 is not LTW definitely, not satisfies the separation constraint.

Case (1): Let $W_{i_1}, W_{i_2}, ..., W_{i_N}$ are all disjoint LTWs in this sequence s.t. $W_{i_k} \cap W_{i_j} = \phi$, $\forall i_k, i_j \in P$, $i_k \neq i_j$, then the optimal solution with cost Z=0 at and $i_1 \rightarrow i_2 \rightarrow ... \rightarrow i_N$.

Proof: Without loosing the generality, let N=3 to show Z=0 and $1 \rightarrow 2 \rightarrow 3$.

Since W_1, W_2 and W_3 are LTWs this mean S=max $\{S_{ij}\}$, $\forall i, j \in P$. Let $t_1 = T_1$, $T_1 + S \le L_1 < E_2 < T_2$, then take: $t_2 = T_2 > T_1 + S = t_1 + S$...(a)

 \therefore t₁=T₁ and t₂=T₂ satisfy the window and separation conditions (WSC's). By applying relation (a) again for t₂ and t₃ we obtain that: t₂=T₂ and t₃=T₃ satisfy the WSCs.

 \therefore The optimal solution with cost Z=0 for N=3 and 1 \rightarrow 2 \rightarrow 3.

Consequently, this case can be applied for N aircraft and for any sequence π .

Case (2): Let $W=W_1=W_2=...=W_N$ be the same large time window, then the optimal solution Z=0 at $t_{i_k} = T_{i_k}$

if T_{i_k} satisfies the separation constraint $\forall i_k \in P \text{ and } i_1 \rightarrow i_2 \rightarrow ... \rightarrow i_N$.

Proof: let's take any arbitrary sequence π . Since satisfy the separation constraints, this means: $T_1 \leq T_2 - S_{12}$, $T_2 \leq T_3 - S_{23}$,..., $T_{N-1} \leq T_N - S_{N-1,N}$. If we take $t_{i_k} = T_i$, then the landing times satisfy the separation constraint $\forall i_k \in P$.

 \therefore The optimal solution with cost Z=0 and 1 \rightarrow 2 \rightarrow ... \rightarrow N.

Special Cases of ALP

Example:

Case (1) Let N=3, Notice that Wi \cap Wj= ϕ , \forall i,j ti=Ti, \forall i \therefore Z=0 and 3 \rightarrow 2 \rightarrow 1.

	P ₁	P ₂	P ₃
Ei	130	124	96
T _i	132	126	98
L	134	128	100
gi	10	10	30
h _i	10	10	30

	S_{ij}		
	1	2	3
1	0	2	2
2	2	0	2
3	2	2	0

Case (2)

Let N=3, Notice that W1=W2 =W3 ti=Ti, $\forall i$ \therefore Z=0 and 3 \rightarrow 2 \rightarrow 1.

	P ₁	P ₂	P ₃
Ei	96	96	96
T _i	131	128	97
L	132	132	132
gi	10	10	30
h _i	10	10	30

	S _{ij}		
	1	2	3
1	0	2	2
2	2	0	2
3	2	2	0

