CHAPTER THREE

AIRCRAFT LANDING PROBLEMS (ALP)

3.5 Solving ALP using Heuristic and CE Methods

We observe that if we are given the sequence in which planes land, then we can develop an algorithm for resolving the scheduling decisions.

3.5.1 Parallel Improving Technqiue

The order between aircraft (**sequencing the aircraft**) is setup according to priority rules which are based on the variables:

- **E**_i: The priority is given to the aircraft which has the sooner earliest landing time.
- T_i : The priority is given to the aircraft which has the earliest target landing time.
- L_i : The priority is given to the aircraft which has the earliest latest landing time.
- **E**_i/**g**_i : The priority is given to the aircraft which has the soonest earliest time.
- L_i/h_i: The priority is given to the aircraft which has the soonest latest time.
- **Ti** /(**g**_i+**h**_i): The priority is given to the aircraft which has the soonest target.
- 1/(g_i+h_i): The priority is given to the aircraft which causes the most important advance and lateness penalty.

Example (3.5):

Call example (3.1) we have the following priority rules:

- 1. E_i : we have the sequence 3,1,2.
- 2. T_i : we have the sequence 3,1,2.

- 3. L_i : we have the sequence 3,1,2.
- 4. $E_i/g_i = (12.9, 19, 5, 2.97)$, we have the sequence 3,1,2.
- 5. $L_i/h_i = (55.9, 74.9, 17)$, we have the sequence 3,1,2.
- 6. $T_i/(g_i+h_i)=(7.75,12.9,1.63)$, we have the sequence 3,1,2.
- 7. $1/(g_i+h_i)=(0.05, 0.05, 0.03)$, we have the sequence 3,1,2 or 3,2,1.

Exercise (3.3): Find the priority rules for Exercise (3.2).

The adjusting landing time (scheduling aircraft) is the most important step in the improvement algorithm; the aim is to reduce the total cost of penalty caused by all aircraft. If we increase (reduce) the aircraft landing time, we check the interval of improving the landing aircraft time during the initialization: in this algorithm (Parallel Improving Algorithm (PIA)), we adjust the landing time of each aircraft during its time assignment.

Algorithm (3.1): Parallel Improving Algorithm (PIA)

Let P be the list of aircraft set up according to a priority rule and O={}.

- 1. $t_{P1} \leftarrow T_{P1}; P_1 \in O.$
- 2. **FOR** i = 2 : N

 $t_{Pi} \leftarrow \max(T_{Pi}, \max_{p_i \neq 0} (t_{p_j} + S_{p_i, p_j}))$

END {FOR i}

3. REPEAT

Calculate penalty Cost Z

 $\mathbf{IF} (t_{Pi} > T_{Pi})$

Reduce the landing time by 1 unit of time

 $\textbf{ELSE} ~\{~ t_{Pi} \leq T_{Pi} \}$

Increase the landing time by 1 unit of time

END {IF}

IF (the solution is unfeasible)

Reject the change and keep the last feasible solution.

BREAK.

END {IF}

UNTIL (there is increase of penalty cost)

Example (3.6): For N=10 which is shown in the Appendix, we have two tables (I, II), using PIA for the 1^{st} (7) planes.

 The 1st step is to set up an order between aircraft according to a priority rule. Suppose that the priority rule is the earliest target time. The order is as follows:

2. The 2^{nd} step is to assign landing time to the 1^{st} aircraft in the list (P₁=3)

by one of the assignment heuristic, i.e.: $t_3 = T_3=98$, $O=\{3\}$, then:

Pi	3	4	5	6	7	1	2	Z
ti	98							0

3. For the 2^{nd} aircraft in the list (P₂=4), then

 $t_4 \leftarrow \max(T_4, \max_{P_{j\in O}}(t_3 + S_{3,4})) = \max(106, \max(98+8)) = 106, O = \{3, 4\}.$

Pi	3	4	5	6	7	1	2	Ζ
ti	98	106						0

4. For the 3^{rd} aircraft in the list (P₃=5), then

 $t_5 \leftarrow \max(T_5, \max(t_3+S_{3,5},t_4+S_{4,5})) = \max(123,\max(98+8,106+8)) = 123, O = \{3,4,5\}.$

Pi	3	4	5	6	7	1	2	Ζ
ti	98	106	123					0

5. For the 4^{th} aircraft in the list (P₄=6), then

 $t_6 = max(135, max(98+8, 106+8, 123+8)) = 135,$

t _i 98 106 123 135 0	P_i	3	4	5	6	7	1	2	Ζ
	ti	98	106	123	135				0

O={3,4,5,6}, Z=0.

6. For the 5^{th} aircraft in the list (P₅=7), then

 $t_7 = max(138, max(98+8, 106+8, 123+8, 135+8)) = 143 \neq 138, O = \{3, 4, 5, 6, 7\},$

Pi	3	4	5	6	7	1	2	Ζ
t _i	98	106	123	135	143			150
1	44 4				4.40	1	1.0	

here we need adjusting the landing time $t_7=142$, then $t_6=134$:

Pi	3	4	5	6	7	1	2	Ζ	
ti	98	106	123	134	142			150	

And continue in decreasing until we obtain:

Pi	3	4	5	6	7	1	2	Ζ
ti	98	106	123	131	139			150

If we continue another step we obtain:

Pi	3	4	5	6	7	1	2	Ζ
ti	98	106	122	130	138			180

Since Z=180, we ignore this step and back to the last step when Z=150.

7. For the 6^{th} aircraft in the list (P₆=1), then

5,6,7,1, now we need no adjusting the landing time so we obtain, Z=700

Pi	3	4	5	6	7	1	2	Ζ
ti	98	106	123	131	139	155		150

8. For the 7th aircraft in the list ($P_7=2$), then

 $T_2 = max(258, max(98+15, 106+15, 123+15, 131+15, 139+15, 155+15)) = 258,$

 $O=\{3,4,5,6,7,1,2\}$, now we need no adjusting the landing time so we obtain, Z=150:

Pi	3	4	5	6	7	1	2	Ζ
ti	98	106	123	131	139	155	258	150

Table (3.2) shows the implementation of PIA for this example.

Table (3.2): the results obtained from PIA for example (3.6).

Stage	3	4	5	6	7	1	2	Cost Z
1	98							0
2	98	106						0
3	98	106	123					0
4	98	106	123	135				0
5	98	106	123	131	139			150
6	98	106	118	131	139	155		150
7	98	106	118	131	139	155	258	150

Exercise (3.4): Apply PIA using T_i priority:

- 1. Using example (3.6) for N=8, 9, 10.
- 2. N=5;

_	P ₁	P ₂	P ₃	P ₄	P ₅
Ei	129	190	84	89	100
T _i	155	250	93	98	111
L	305	400	143	148	161
gi	10	30	30	30	30
hi	10	30	30	30	30

S _{ij}	1	2	3	4	5	
1	0	3	15	15	15	
2	3	0	15	15	15	
3	15	15	0	8	8	
4	15	15	8	0	8	
5	15	15	8	8	0	

3. N=5;

_	P ₁	P ₂	P ₃	P ₄	P ₅	\mathbf{S}_{ij}	1	2	3	4	5
Ei	146	249	95	103	120	1	0	3	15	15	15
T _i	155	258	98	106	123	2	3	0	15	15	15
L	164	267	101	109	126	3	15	15	0	8	8
gi	10	30	30	30	30	4	15	15	8	0	8
hi	10	30	30	30	30	5	15	15	8	8	0

In table (3.3), we demonstrate the total penalty cost (Z) results of

PIA for sequencing using different priorities.

Table (3.3): Results of PIA for different N.

N	Penalty cost according to the priority rule's							Best	Ont	
	Ei	Ti	$\mathbf{L}_{\mathbf{i}}$	$1/(g_i\!\!+\!\!h_i)$	$T_i/(g_i+h_i)$	E_i/g_i	L_i/h_i	Ζ	Opt.	
10	1280	700	2360	880	880	880	1090	700	700	
15	1790	1500	2210	2210	1480	1480	1770	1480	1480	
20	1790	1730	5890	5000	820	880	2140	820	820	
20	4890	2520	6100	4210	2520	2650	3260	2520	2520	
20	6470	5420	7060	4060	3100	3250	3220	3100	3100	
30	24442	24442	24442	89766	31194	31194	37956	24442	24442	
44	1550	1550	1550	73536	40330	33820	43443	1550	1550	
50	18790	2530	61215	215025	152270	168505	141570	2530	1950	

The best results are the shaded cells. From table (3.3), the best priorities is T_i and $T_i/(g_i+h_i)$ for PIA.