CHAPTER THREE

AIRCRAFT LANDING PROBLEMS (ALP)

3.4 Techniques to Improve the Solution and Reduce the Computations

In this section we demonstrate two types of methods which are contribute in improving the solution and speed the approach to the good solution. In addition, we will discuss some special cases of ALP.

3.4.1 Time Window Tightening (TWT)

Let Z_{UB} be any upper bound to the problem. Then, it is possible to limit the deviation from target for each plane. Specifically, for plane i, we can update E_{i} using:

$$
\begin{equation*}
\mathrm{E}_{\mathrm{i}}=\max \left\{\mathrm{E}_{\mathrm{i}}, \mathrm{~T}_{\mathrm{i}}-\mathrm{Z}_{\mathrm{UB}} / \mathrm{g}_{\mathrm{i}}\right\}, \mathrm{i} \in \mathrm{P}, \tag{3.10}
\end{equation*}
$$

Similarly we have

$$
\begin{equation*}
\mathrm{L}_{\mathrm{i}}=\min \left\{\mathrm{L}_{\mathrm{i}}, \mathrm{~T}_{\mathrm{i}}+\mathrm{Z}_{\mathrm{UB}} / \mathrm{h}_{\mathrm{i}}\right\}, \mathrm{i} \in \mathrm{P}, \tag{3.11}
\end{equation*}
$$

The benefit of tightening (closing) the time windows is that (potentially) the sets U and V can be reduced in size, thereby giving a smaller problem to solve.

Example (3.2): The time window tightening of example (3.1) using Eq.
(3.10) and (3.11). for instance, $\mathrm{Z}_{\mathrm{UB}}=1060$ we have:
$\mathrm{E}_{\mathrm{i}}=\max \left\{\mathrm{E}_{\mathrm{i}}, \mathrm{T}_{\mathrm{i}}-106\right\}$ where: $\mathrm{E}_{1}=\max \{129,155-106\}=129$,
$\mathrm{E}_{2}=\max \{195,258-106\}=195, \mathrm{E}_{3}=\max \{89,98-35\}=98$.
$\mathrm{L}_{\mathrm{i}}=\min \left\{\mathrm{L}_{\mathrm{i}}, \mathrm{T}_{\mathrm{i}}+106\right\}$ where: $\mathrm{L}_{1}=\min \{559,155+106\}=261$,
$\mathrm{L}_{2}=\min \{744,258+106\}=364, \mathrm{~L}_{3}=\min \{89,98+35\}=133$.
These results are shown in table (3.1).

Table (3.1): time window tightening of example (3.2) for $\mathrm{Z}_{\mathrm{UB}}=1060$.

	$\mathbf{P}_{\mathbf{1}}$	$\mathbf{P}_{\mathbf{2}}$	$\mathbf{P}_{\mathbf{3}}$
$\mathbf{E}_{\mathbf{i}}$	129	195	89
$\mathbf{T}_{\mathbf{i}}$	155	258	98
$\mathbf{L}_{\mathbf{i}}$	261	364	133
$\mathbf{g}_{\mathbf{i}}$	10	10	30
$\mathbf{h}_{\mathbf{i}}$	10	10	30

Exercise (3.1): calculate the TWT for:

1. from example (3.1), $\mathrm{Z}_{\mathrm{UB}}=900$.
2. from Appendix, for $\mathrm{N}=10$, for $1^{\text {st }} 5$ aircraft, $\mathrm{Z}_{\mathrm{UB}}=90$.
3. from Appendix, for $\mathrm{N}=15$, for $1^{\text {st }} 5$ aircraft, $\mathrm{Z}_{\mathrm{UB}}=90$.

3.4.2 Successive Rules (SR)

Reducing the current sequence is done by using several SR's. When, for each $i(i \in P)$, and with its cost given in the objective function (3.9), we can derive SR that restrict the search for an optimal solution. Such rules can be used in some optimization algorithms. These improvements lead to very large decrease in the number of solutions to obtain the optimal solution.

Definition (3.1): Let $W_{i}=\left[\mathrm{E}_{\mathrm{i}}, \mathrm{L}_{\mathrm{i}}\right]$ be the time window interval of plane $\mathrm{i} \in \mathrm{P}$, if $\mathrm{W}_{\mathrm{i}} \cap \mathrm{W}_{\mathrm{j}}=\phi$ (time windows are disjoint) and $\mathrm{L}_{\mathrm{i}}<\mathrm{E}_{\mathrm{j}}$ we denote for the interval W_{i} precedes the interval W_{j} in line number by $W_{i} 3 W_{j}$.

Definition (3.2): We say that plane i precedes the plane j (we write $\mathrm{i} \rightarrow \mathrm{j}$ or $(\mathrm{i}, \mathrm{j}) \in \mathrm{W})$ or j precedes the plane i if $\mathrm{W}_{\mathrm{i}} \cap \mathrm{W}_{\mathrm{j}}=\phi$, for $\mathrm{i} \neq \mathrm{j}$.

Remark (3.1):

1. $\mathrm{t}_{\mathrm{i}}<\mathrm{t}_{\mathrm{j}}$ and $\mathrm{t}_{\mathrm{j}} \geq \mathrm{t}_{\mathrm{i}}+\mathrm{S}_{\mathrm{ij}}$ if and only if $\mathrm{i} \rightarrow \mathrm{j}, \forall \mathrm{i}, \mathrm{j} \in \mathrm{P}, \mathrm{i} \neq \mathrm{j}$.
2. if $\mathrm{E}_{\mathrm{i}} \leq \mathrm{E}_{\mathrm{j}} \leq \mathrm{L}_{\mathrm{i}}$ or $\mathrm{E}_{\mathrm{i}} \leq \mathrm{L}_{\mathrm{j}} \leq \mathrm{L}_{\mathrm{i}}$, then $\mathrm{W}_{\mathrm{i}} \cap \mathrm{W}_{\mathrm{j}} \neq \phi$ for $\mathrm{i} \neq \mathrm{j}$, we say that W_{i} and W_{j} are overlapped.

Proposition (3.1): if $\mathrm{W}_{\mathrm{i}} \mathrm{W}_{\mathrm{j}}$, then $\mathrm{t}_{\mathrm{i}} \in \mathrm{W}_{\mathrm{i}}<\mathrm{t}_{\mathrm{j}} \in \mathrm{W}_{\mathrm{j}}, \forall \mathrm{i}, \mathrm{j} \in \mathrm{P}, \mathrm{i} \neq \mathrm{j}$.
Proof: since $W_{i} 3 W_{j}$, then $t_{i} \notin W_{j}$ and $t_{j} \notin W_{i}$. Suppose $t_{i} \geq t_{j}$, for $t_{i}=t_{j}$, $\mathrm{t}_{\mathrm{j}}=\mathrm{t}_{\mathrm{i}} \in \mathrm{W}_{\mathrm{i}}, \mathrm{C}$!. For $\mathrm{t}_{\mathrm{i}}>\mathrm{t}_{\mathrm{j}}$, if $\mathrm{t}_{\mathrm{j}} \in \mathrm{W}_{\mathrm{i}} \mathrm{C}$!. Take $\mathrm{t}_{\mathrm{j}} \notin \mathrm{W}_{\mathrm{i}}$. Then $\mathrm{t}_{\mathrm{j}} \in$ another interval say W_{k}, s.t. $W_{k} 3 W_{j}$, but $t_{j} \in W_{j}$ and that is a contradiction since there is no integer belong to two disjoint intervals in the same time. Then $\mathrm{t}_{\mathrm{i}}<\mathrm{t}_{\mathrm{j}}$
Remark (3.2): if $\mathrm{W}_{\mathrm{i}} \cap \mathrm{W}_{\mathrm{j}}=\phi$, then $\mathrm{L}_{\mathrm{i}}<\mathrm{E}_{\mathrm{j}}$ or $\mathrm{L}_{\mathrm{j}}<\mathrm{E}_{\mathrm{i}}, \forall \mathrm{i}, \mathrm{j} \in \mathrm{P}, \mathrm{i} \neq \mathrm{j}$.
Definition (3.3): the $\mathrm{i} \rightarrow \mathrm{j}$ if one of the following conditions is satisfied:

1. $\mathrm{L}_{\mathrm{i}}<\mathrm{E}_{\mathrm{j}}$ for $\mathrm{i} \neq \mathrm{j}$.
2. For $L_{i} \geq E_{j}$, if $L_{i}<E_{j}+S_{i j}$ for $\mathrm{i} \neq \mathrm{j}$.

Conditions of SR are shown in figure (5.2).

Figure (3.2): Conditions of dominiance rules.
Example (3.3): For N=5 let's have the following ALP information:

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}
E_{i}	129	89	96	111	123
$\mathrm{~T}_{\mathrm{i}}$	155	98	106	123	135
$\mathrm{~L}_{\mathrm{i}}$	191	110	118	135	147
$\mathrm{~g}_{\mathrm{i}}$	10	30	30	30	30
$\mathrm{~h}_{\mathrm{i}}$	10	30	30	30	30

S_{ij}	1	2	3	4	5
1	0	15	15	15	15
2	15	0	8	8	8
3	15	8	0	8	8
4	15	8	8	0	8
5	15	8	8	8	0

From definition (3.3), condition (1) we obtain the following SR's: $2 \rightarrow 1,2 \rightarrow 4,2 \rightarrow 5,3 \rightarrow 1,3 \rightarrow 5$.

From condition (2), we have $3 \rightarrow 4$ because of $\mathrm{E}_{4}+\mathrm{S}_{34}=111+8=119$ > $\mathrm{L}_{3}=118$, and $4 \rightarrow 1$ because of $\mathrm{E}_{1}+\mathrm{S}_{41}=129+15=144>\mathrm{L}_{4}=135$. Figure (3.3) shows the SR's of example (3.3).

Figure (3.3): Graph of SR of example (3.3).
The adjacency matrix A of the graph shown above is:
$\mathrm{A}=\begin{gathered}1 \\ 1 \\ 2 \\ 2 \\ 4 \\ 5\end{gathered}\left[\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ 0 & 0 & 0 & 0 & \delta_{15} \\ 1 & 0 & \delta_{23} & 1 & 1 \\ 1 & \delta_{32} & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & \delta_{45} \\ \delta_{51} & 0 & 0 & \delta_{54} & 0\end{array}\right]$
Note:

- $\delta_{15}+\delta_{51}=1, \delta_{23}+\delta_{32}=1, \delta_{45}+\delta_{54}=1$
- the sequencing problem of this ALP can solved by $2^{3}=8$ possible and no need to try $5!=120$ possible.

Example (3.4): Find the possible sequences for example (3.3):
From adjacency matrix A, we have $\left(\delta_{15}, \delta_{23}, \delta_{45}\right), 1 \leftrightarrow 5,2 \leftrightarrow 3$ and $4 \leftrightarrow 5$.
So we have:

i	$\left(\delta_{15}, \delta_{23}, \delta_{45}\right)$	Subsequence	sequence
1.	$(0,0,0)$	$5 \rightarrow 1,3 \rightarrow 2,5 \rightarrow 4$	$3 \rightarrow 2 \rightarrow 5 \rightarrow 4 \rightarrow 1$
2.	$(0,0,1)$	$5 \rightarrow 1,3 \rightarrow 2,4 \rightarrow 5$	$3 \rightarrow 2 \rightarrow 4 \rightarrow 5 \rightarrow 1$
3.	$(0,1,0)$	$5 \rightarrow 1,2 \rightarrow 3,5 \rightarrow 4$	$2 \rightarrow 3 \rightarrow 5 \rightarrow 4 \rightarrow 1$
4.	$(0,1,1)$	$5 \rightarrow 1,2 \rightarrow 3,4 \rightarrow 5$	$2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 1$
5.	$(1,0,0)$	$1 \rightarrow 5,3 \rightarrow 2,5 \rightarrow 4$	$3 \rightarrow 2 \rightarrow 1 \rightarrow 5 \rightarrow 4$
6.	$(1,0,1)$	$1 \rightarrow 5,3 \rightarrow 2,4 \rightarrow 5$	$3 \rightarrow 2 \rightarrow 1 \rightarrow 4 \rightarrow 5$
7.	$(1,1,0)$	$1 \rightarrow 5,2 \rightarrow 3,5 \rightarrow 4$	$2 \rightarrow 3 \rightarrow 1 \rightarrow 5 \rightarrow 4$

8. $\quad(1,1,1) \quad 1 \rightarrow 5,2 \rightarrow 3,4 \rightarrow 5 \quad 2 \rightarrow 3 \rightarrow 1 \rightarrow 4 \rightarrow 5$

3.4.3 Special Cases

Definition (3.4): Let $\mathrm{S}=\max \left\{\mathrm{S}_{\mathrm{ij}}\right\}, \forall \mathrm{i}, \mathrm{j} \in \mathrm{P}, \mathrm{i} \neq \mathrm{j}$, then W_{i} is called logical time window if the length ℓ_{i} of W_{i}, for $i \in P$ is $\ell_{i}=L_{i}-E_{i}+1 \geq 2 S$ and $\mathrm{T}_{\mathrm{i}}=\left(\mathrm{E}_{\mathrm{i}}+\mathrm{L}_{\mathrm{i}}\right) / 2$.

Example (3.3): let $\mathrm{W}_{1}=[10,20]$ and $\mathrm{W}_{2}=[25,50], \mathrm{S}_{12}=10, \mathrm{~S}=10$. Note that $\boldsymbol{\ell}_{1}=11$ and $\ell_{2}=26, \mathrm{~W}_{2}$ is logical time window but W_{1} is not. While if $\mathrm{W}_{1}=[10,15]$ and $\mathrm{W}_{2}=[16,24], \mathrm{S}_{12}=15, \mathrm{~S}=15$. Note that both W_{1} and W_{2} are not logical time windows, since if $t_{1}=E_{1}=10$, then $\mathrm{t}_{2}<\mathrm{t}_{1}+\mathrm{S}_{12}=10+15=25>\mathrm{L}_{2}=24$, that mean W_{2} is not logical time definitely, not satisfies the separation constraint.

Case (1): Let $\mathrm{W}_{\mathrm{i} 1}, \mathrm{~W}_{\mathrm{i} 2}, \ldots, \mathrm{~W}_{\mathrm{in}}$ are all disjoint logical time windows in this sequence s.t. $\mathrm{W}_{\mathrm{i}_{\mathrm{k}}} \cap \mathrm{W}_{\mathrm{i}_{\mathrm{j}}}=\phi, \forall \mathrm{i}_{\mathrm{k}}, \mathrm{i}_{\mathrm{j}} \in \mathrm{P}, \mathrm{i}_{\mathrm{k}} \neq \mathrm{i}_{\mathrm{j}}$, then the optimal solution with $\operatorname{cost} \mathrm{Z}=0$ at $\mathrm{t}_{\mathrm{i}_{1}}=\mathrm{T}_{\mathrm{i}_{1}}<\mathrm{t}_{\mathrm{i}_{2}}=\mathrm{T}_{\mathrm{i}_{2}}<\cdots<\mathrm{t}_{\mathrm{i}_{\mathrm{N}}}=\mathrm{T}_{\mathrm{i}_{\mathrm{N}}}$ and $\mathrm{i}_{1} \rightarrow \mathrm{i}_{2} \rightarrow \ldots \rightarrow \mathrm{i}_{\mathrm{N}}$.

Proof: Without loosing the generality, let $\mathrm{N}=3$ to show $\mathrm{Z}=0$ and $1 \rightarrow 2 \rightarrow 3$.
Since W_{1}, W_{2} and,W_{3} are logical time windows this mean $S=\max \left\{S_{i j}\right\}$, $\forall \mathrm{i}, \mathrm{j} \in \mathrm{P}$. Let $\mathrm{t}_{1}=\mathrm{T}_{1}, \mathrm{~T}_{1}+\mathrm{S} \leq \mathrm{L}_{1}<\mathrm{E}_{2}<\mathrm{T}_{2}$, then take:

$$
\begin{equation*}
\mathrm{t}_{2}=\mathrm{T}_{2}>\mathrm{T}_{1}+\mathrm{S}=\mathrm{t}_{1}+\mathrm{S} \tag{a}
\end{equation*}
$$

$\therefore \mathrm{t}_{1}=\mathrm{T}_{1}$ and $\mathrm{t}_{2}=\mathrm{T}_{2}$ satisfy the window and separation conditions (WSC's). By applying relation (a) again for t_{2} and t_{3} we obtain that: $t_{2}=T_{2}$ and $t_{3}=T_{3}$ satisfy the WSCs.
\therefore The optimal solution with cost $\mathrm{Z}=0$ for $\mathrm{N}=3$ and $1 \rightarrow 2 \rightarrow 3$.
Consequently, this case can be applied for N aircraft and for any sequence π.
Case (2): Let $\mathrm{W}=\mathrm{W}_{1}=\mathrm{W}_{2}=\ldots=\mathrm{W}_{\mathrm{N}}$ be the same large time window, then the optimal solution $Z=0$ at $t_{i_{k}}=T_{i_{k}}$ if $T_{i_{k}}$ satisfies the separation constraint $\forall \mathrm{i}_{\mathrm{k}} \in \mathrm{P}$ and $\mathrm{i}_{1} \rightarrow \mathrm{i}_{2} \rightarrow \ldots \rightarrow \mathrm{i}_{\mathrm{N}}$.

Proof: let's take any arbitrary sequence π. Since $T_{\mathrm{i}_{\mathrm{k}}}$ satisfy the separation constraints, this means: $\mathrm{T}_{1} \leq \mathrm{T}_{2}-\mathrm{S}_{12}, \mathrm{~T}_{2} \leq \mathrm{T}_{3}-\mathrm{S}_{23}, \ldots, \mathrm{~T}_{\mathrm{N}-1} \leq \mathrm{T}_{\mathrm{N}}-\mathrm{S}_{\mathrm{N}-1, \mathrm{~N}}$. If we take $t_{i_{k}}=T_{i_{k}}$, then the landing timest $t_{i_{k}}$ satisfy the separation constraint $\forall \mathrm{i}_{\mathrm{k}} \in \mathrm{P}$.
\therefore The optimal solution with cost $\mathrm{Z}=0$ and $1 \rightarrow 2 \rightarrow \ldots \rightarrow \mathrm{~N}$.
Of course, this case can be applied for any sequence π.
Exercise (3.2): Find the SR for:

1. For $\mathrm{N}=5$ let's have the following ALP information:

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}
E_{i}	129	111	123	89	96
$\mathrm{~T}_{\mathrm{i}}$	155	123	135	98	106
$\mathrm{~L}_{\mathrm{i}}$	191	135	147	110	118
$\mathrm{~g}_{\mathrm{i}}$	10	30	30	30	30
$\mathrm{~h}_{\mathrm{i}}$	10	30	30	30	30

S_{ij}	1	2	3	4	5
1	0	15	15	15	15
2	15	0	8	8	8
3	15	8	0	8	8
4	15	8	8	0	8
5	15	8	8	8	0

2. For $\mathrm{N}=5$ let's have the following ALP information:

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}
E_{i}	146	241	90	95	108
$\mathrm{~T}_{\mathrm{i}}$	155	250	93	98	111
$\mathrm{~L}_{\mathrm{i}}$	164	259	96	101	114
$\mathrm{~g}_{\mathrm{i}}$	10	10	30	30	30
$\mathrm{~h}_{\mathrm{i}}$	10	10	30	30	30

S_{ij}	1	2	3	4	5
1	0	3	15	15	15
2	3	0	15	15	15
3	15	15	0	8	8
4	15	15	8	0	8
5	15	15	8	8	0

3. For $\mathrm{N}=5$ let's have the following ALP information:

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}
E_{i}	241	146	108	90	95
$\mathrm{~T}_{\mathrm{i}}$	250	155	111	93	98
$\mathrm{~L}_{\mathrm{i}}$	259	164	114	96	101
$\mathrm{~g}_{\mathrm{i}}$	10	10	30	30	30
$\mathrm{~h}_{\mathrm{i}}$	10	10	30	30	30

S_{ij}	1	2	3	4	5
1	0	3	15	15	15
2	3	0	15	15	15
3	15	15	0	8	8
4	15	15	8	0	8
5	15	15	8	8	0

