CHAPTER FOUR

CRYPTANALYSIS OF TRANSPOSITION CIPHER PROBLEMS USING COMBINATORIAL OPTIMIZATION PROBLEMS TECHNIQUES

4.1 <u>Terminology</u>

- **Cryptography:** is the study of principles and techniques by which information can be concealed in ciphertexts and later revealed by legitimates users employing the secret key. Its concern **Encryption** and **Decryption** processes
- **Cryptanalysis:** is the science (and art) of recovering information from ciphertexts without knowledge of the key.
- Encryption: is a process of encoding a message so that the meaning of the message is not obvious.
- **Decryption:** is the reverse process: transforming an encrypted message back into its normal form.
- **Cryptosystem**: A system for encryption and decryption.
- The original form of a message is known as **Plaintext**, and the encrypted form is called **Ciphertext**.

4.2 Notations

- *M*: plaintext message, $P = [m_1, m_2, ..., m_n]$.
- *C*: ciphertext can be written as $C = [c_1, c_2, ..., c_m]$.
- *E* : is the encryption algorithm.
- *D* is the decryption algorithm.

- the transformations between P and C are C = E(M) and M = D(C), so
 M = D(E(M)).
- K: key, so that the C = E(K,M). and M = D(K,E(K,M)).

4.3 Simple Transpositions

The goal of **transposition** is diffusion, spreading the information from the message or the K out widely across the C. Because a transposition is a rearrangement of the symbols of a message, it is also known as a **permutation**.

The **columnar transposition** is a rearrangement of the characters of the plaintext into columns.

The following example is a five-column transposition. The plaintext characters are separated into blocks of five and arranged one block after another, as shown here.

c_1	c_2	c ₃	c_4	c ₅
c ₆	c ₇	c_8	C 9	c_{10}
c ₁₁	c ₁₂	etc.		

The resulting C is formed by transversing the columns.

 $c_1c_6c_{11}....c_2c_7c_{12}....c_3c_8$, etc.

Example (4.1): you would write the plaintext message as:

Т	Η	Ι	S	Ι
S	А	Μ	Е	S
S	А	G	E	Т
0	S	Η	0	W
Η	0	W	А	С
0	L	U	Μ	Ν
А	R	Т	R	Α
Ν	S	Р	0	S
Ι	Т	Ι	0	Ν
W	0	R	Κ	S

The resulting ciphertext would then be read off as:

tssoh oaniw haaso lrsto imghw utpir seeoa mrook istwc nasns

The length of this message happened to be a multiple of five, so all columns came out the same length.

Let E and $D=E^{-1}$ be encryption and decryption function of TCP respectively. The ciphertext C_m of TCP, where $1 \le m \le n!$, using arbitrary encryption key EK_m with length n is:

$$C_{\rm m} = E(M, EK_{\rm m}) \qquad \dots (E)$$

Let DK_m be the decryption key corresponding to the EK_m (σ of n-sequence) for ciphertext C_m of TCP and P_m be the decrypted text using DK_m , is:

$$M=M_m=D(C_m,DK_m) \qquad \dots (D)$$

Its clear that C_m (and M_m) consists of n columns.

Example (4.2): Let's have the following PT message (showed in uppercase letters):

1	2	3	4
Т	Η	Е	Q
U	Ι	С	Κ
В	R	0	W
Ν	F	0	Х
J	U	Μ	Р
S	0	V	E
R	Т	Η	E
L	А	Ζ	Y
D	0	G	Х

The size of the permutation is known as the period. For this example a simple transposition cipher with a period of 4 is used. Let $\Pi = (3,1,4,2)$ be encryption key. Then the message is broken into blocks of 4 characters. Upon encryption the 3rd character in the block will be moved to position 1, the 1^{st} to position 2, the 4^{th} to position 3 and the 2^{nd} to position 4.

3	1	4	2
e	t	q	h
c	u	k	i
0	b	W	r
0	n	Х	f
m	j	р	u
V	S	e	0
h	r	e	t
Z	1	у	a
g	d	Х	0

The resulting ciphertext (in lowercase letters) would then be read off as:

etqhc ukiob wronx fmjpu vseoh retzl yagdx o

Notice also that decryption can be achieved by following the same process as encryption using the "inverse" of the encryption permutation. In this case the decryption key (DK), Π^{-1} is equal to (2, 4, 1, 3).