CHAPTER FOUR

CRYPTANALYSIS OF TRANSPOSITION

CIPHER PROBLEMS USING COMBINATORIAL

OPTIMIZATION PROBLEMS TECHNIQUES

4.1 Terminology

- Cryptography: is the study of principles and techniques by which information can be concealed in ciphertexts and later revealed by legitimates users employing the secret key. Its concern Encryption and Decryption processes
- Cryptanalysis: is the science (and art) of recovering information from ciphertexts without knowledge of the key.
- Encryption: is a process of encoding a message so that the meaning of the message is not obvious.
- Decryption: is the reverse process: transforming an encrypted message back into its normal form.
- Cryptosystem: A system for encryption and decryption.
- The original form of a message is known as Plaintext, and the encrypted form is called Ciphertext.

4.2 Notations

- M : plaintext message, $P=\left[m_{l}, m_{2}, \ldots, m_{n}\right]$.
- C : ciphertext can be written as $C=\left[c_{1}, c_{2}, \ldots, c_{m}\right]$.
- E : is the encryption algorithm.
- D is the decryption algorithm.
- the transformations between P and C are $C=E(M)$ and $M=D(C)$, so $M=D(E(M))$.
- K: key, so that the $C=E(K, M)$. and $M=D(K, E(K, M))$.

4.3 Simple Transpositions

The goal of transposition is diffusion, spreading the information from the message or the K out widely across the C . Because a transposition is a rearrangement of the symbols of a message, it is also known as a permutation.

The columnar transposition is a rearrangement of the characters of the plaintext into columns.

The following example is a five-column transposition. The plaintext characters are separated into blocks of five and arranged one block after another, as shown here.

c_{1}	c_{2}	c_{3}	c_{4}	c_{5}
c_{6}	c_{7}	c_{8}	c_{9}	c_{10}
c_{11}	c_{12}	etc.		

The resulting C is formed by transversing the columns.
$\mathrm{c}_{1} \mathrm{c}_{6} \mathrm{c}_{11} \ldots . \mathrm{c}_{2} \mathrm{c}_{7} \mathrm{c}_{12} \ldots . . \mathrm{c}_{3} \mathrm{c}_{8}$, etc.
Example (4.1): you would write the plaintext message as:

T	H	I	S	I
S	A	M	E	S
S	A	G	E	T
O	S	H	O	W
H	O	W	A	C
O	L	U	M	N
A	R	T	R	A
N	S	P	O	S
I	T	I	O	N
W	O	R	K	S

The resulting ciphertext would then be read off as:
tssoh oaniw haaso lrsto imghw utpir seeoa mrook istwc nasns

The length of this message happened to be a multiple of five, so all columns came out the same length.

Let E and $\mathrm{D}=\mathrm{E}^{-1}$ be encryption and decryption function of TCP respectively. The ciphertext C_{m} of $T C P$, where $1 \leq m \leq n$!, using arbitrary encryption key EK_{m} with length n is:

$$
\begin{equation*}
\mathrm{C}_{\mathrm{m}}=\mathrm{E}\left(\mathrm{M}, \mathrm{EK}_{\mathrm{m}}\right) \tag{E}
\end{equation*}
$$

Let DK_{m} be the decryption key corresponding to the EK_{m} (σ of nsequence) for ciphertext C_{m} of TCP and P_{m} be the decrypted text using DK_{m}, is:

$$
\begin{equation*}
\mathrm{M}=\mathrm{M}_{\mathrm{m}}=\mathrm{D}\left(\mathrm{C}_{\mathrm{m}}, \mathrm{DK}_{\mathrm{m}}\right) \tag{D}
\end{equation*}
$$

Its clear that C_{m} (and M_{m}) consists of n columns.

Example (4.2): Let's have the following PT message (showed in uppercase letters):

1	2	3	4
T	H	E	Q
U	I	C	K
B	R	O	W
N	F	O	X
J	U	M	P
S	O	V	E
R	T	H	E
L	A	Z	Y
D	O	G	X

The size of the permutation is known as the period. For this example a simple transposition cipher with a period of 4 is used. Let $\Pi=(3,1,4,2)$ be encryption key. Then the message is broken into blocks of 4 characters. Upon encryption the $3^{\text {rd }}$ character in the block will be moved
to position 1 , the $1^{\text {st }}$ to position 2 , the $4^{\text {th }}$ to position 3 and the $2^{\text {nd }}$ to position 4.

3	1	4	2
e	t	q	h
c	u	k	i
o	b	w	r
o	n	x	f
m	j	p	u
v	s	e	o
h	r	e	t
z	l	y	a
g	d	x	o

The resulting ciphertext (in lowercase letters) would then be read off as:
etqhc ukiob wronx fmjpu vseoh retzl yagdx o
Notice also that decryption can be achieved by following the same process as encryption using the "inverse" of the encryption permutation. In this case the decryption key (DK), Π^{-1} is equal to $(2,4,1,3)$.

