Lecture One

Mathematical Basic Concepts

4. Group Theory

Definition (4.1):

- 1. $\mathbb{Z}_{>a}$ is the set of positive integers greater than a: $\mathbb{Z}_{>a} = \{a+1, a+2, \dots\}.$
- 2. the set of all residue classes modulo a positive integer denoted by Z_n : $Z_n = \{0, 1, 2, ..., n-1\}.$

Definition (4.2): A binary operation * on a set A is a rule that assign to each ordered pair (a,b) of elements of A a unique element of A.

Example (4.1): Ordinary addition + and multiplication • are binary operations on N, Z, R, or C.

Definition (4.2): A *group*, denoted by $\langle G, * \rangle$ (or (G,*)), or simply G, is a $G \neq \varphi$ of elements together with a binary operation *, s.t. the following axioms are satisfied:

- 1. *Closure*: $a*b\in G$, $\forall a,b\in G$.
- 2. Associativity: $(a*b)*c=a*(b*c), \forall a,b,c \in G.$
- Existence of identity: ∃! element e∈G, called the identity, s.t.
 e*a=a*e=a, ∀a∈G.
- 4. *Existence of inverse*: $\forall a \in G, \exists ! \text{ Element } b \in G, \text{ s.t.}$

a*b=b*a=e. This b is denoted by a^{-1} and called the *inverse* of a.

The group $\langle G, * \rangle$ is called *commutative* (*abelian*) group if it satisfies further axiom:

5. *Commutativity*: a*b=b*a, $\forall a,b \in G$.

Example (4.2): the set Z^+ with operation + is not group (\exists no identity element), and it's not group with operation • (\exists no inverse element in Z^+).

Definition (4.3):

- 1. If the binary operation of a group is +, then the identity of group is 0 and the inverse of $a \in G$ is -a; this said to be an *additive group*.
- 2. If the binary operation of a group is •, then the identity of a group is 1 or e, this group is said to be *multiplicative group*.

Definition (4.4): A group is called a *finite group* if it has finite number of elements; otherwise it is called an *infinite group*.

Definition (4.5): The *order* of the group G, denoted by |G| (or by #(G)) is the number of elements of G.

Example (4.3): the order of Z is $|Z| = \infty$.

Definition (4.6): Let $a \in G$, where G is multiplicative group. The elements a^r , where r is an integer, form a subgroup of G, called the *subgroup* generated by a. A group G is *cyclic* if $\exists a \in G$ s.t. the subgroup generated by a is the whole of G.

<u>Remark (4.1)</u>: If G is a finite cyclic group with identity element e, the set of elements G may be written $\{e,a,a^2,...,a^{n-1}\}$, where $a^n = e$ and n is the smallest such positive integer.

Definition (4.7): A *field* by $\langle F, \oplus, \otimes \rangle$ (or (F, \oplus, \otimes)) or simply F, is abelian group w.r.t. addition, and F-{0} is abelian w.r.t. to multiplication.

Definition (4.8): A *finite field* is a field that has a finite number of elements in it; we call the number the order of the field.

<u>Theorem (4.1)</u>: \exists a field of order q iff q is *prime power* (i.e. q=p^r) with p prime and r \in N.

<u>Remark (4.2)</u>: A field of order q with q prime power is called *Galois field* and is denoted by GF(q) or just F_q .

Example (4.4): The finite field F_5 has elements {0,1,2,3,4} and is described by the table(4.1) addition and multiplication table.

		-	-	-	
\oplus	0	1	2	3	4
0	0	1	2	3	4
1	1	2	30	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	A	0	1	2	3

Table (4.1) The addition and multiplication for F_5 .

\otimes	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

3