Lecture One

Mathematical Basic Concepts

5. Boolean Ring and Boolean Algebra

Definition (5.1): Let $A \neq \phi$ be a set, f be a binary operation on a set A (f:A×A→A), we call the pair (A,f) as **mathematical system**.

Definition (5.2): Let X be the universal set, and let A and B be two subsets of X, then:

- 1. The operation + defined as $A+b=A\cup B$.
- 2. The operation ⊕ defined on the power P(X) set of X by:
 A⊕B=(A-B)∪(B-A) s.t. A-B=A∩B, B^ν is the *complement* set of B.
 The operation ⊕ called *Exclusive-OR* (XOR) (or the *symmetric difference*).
- 3. The operation defined as $A \cdot B = A \cap B$.

Definition (5.3): Let $(R,+,\bullet)$ be a ring with identity element, if the **Idempotency law** be satisfied $a^2=a$, $\forall a \in R$, then the ring called **Boolean** ring.

Example (5.1): Let P(X) represents the set of all the subsets of the universal set X, then the ring $(P(X), \oplus, \bullet)$ is Boolean ring.

Definition (5.4): In Boolean ring (B, \oplus, \bullet) , we defined:

- 1. **Complement**: $\overline{a}=a\oplus 1$, $\forall a \in B$.
- 2. **Sum (OR)**: $a+b=a\oplus b\oplus a.b \forall a,b\in B$.

Definition (5.5): The *Boolean algebra* is the mathematical system (B, \lor, \land) where $B \neq \varphi$, and the binary operations \lor and \land defined on B as follows:

- 1. The operations \lor and \land are commutative.
- 2. The operations \lor and \land are satisfy the distribution law for each to other.
- 3. \exists two identity distinct elements 0 and 1 of the operations \lor and \land respectively s.t. $a\lor 0=a$ and $a\land 1=a$, $\forall a \in B$.

Example (5.2): The system $(P(X), \bigcup, \bigcap)$ is boolean algebra, $X \neq \varphi$, we use $\varphi=0$ and X=1. If B be a set of subsets of X including φ and X which is closed on \bigcup and complement then (B, \bigcup, \bigcap) is boolean algebra too.

<u>**Theorem (5.1)</u>**: Every boolean algebra (B, \lor, \land) is boolean ring (B, \oplus, \bullet) when we defined the operations \oplus and \bullet as follows:</u>

- 1. $a \oplus b = (a \land b') \lor (a' \land b)$.
- 2. a•b=a∧b.

∀a,b∈B.

<u>**Theorem (5.2)</u>**: Every ring (B, \oplus, \bullet) is Boolean algebra (B, \lor, \land) when we defined \lor and \land as follows: $\forall a, b \in B$.</u>

1. a∨b=a⊕b⊕a•b.

2. a∧b=a•b.

<u>Theorem (5.3)</u>: The ring $(\mathbb{Z}_p, \oplus, \otimes)$ is field iff p is prime number s.t.

 $a \oplus b = a + b \pmod{p}$.

 $a\otimes b=a \cdot b \pmod{p}$.

This field is Galois field and is denoted by GF(p), $\forall a, b \in \mathbb{Z}_p$.