Lecture One

Mathematical Basic Concepts

7. Sequences and Series

7.1 Sequences

Definition (7.1): The sequence in the field F is a function f, whose domain is the set of non negative (or could be positive) integer, s.t. $f:\mathbb{Z}\rightarrow F$, and its denoted by $S=\{S_n\}_{n=0}^{+\infty}$.

Definition (7.2): The Sequence S is **periodic** when $\exists p \in Z^+$ s.t. $s_0=s_p, s_1=s_{p+1},...,$ the minimum p is the **period** of S. If $Z_m=\{0,1,...,m-1\}$, where $m \in Z^+$, then S is digital sequence. In special

If $Z_m = \{0, 1, ..., m-1\}$, where $m \in Z^+$, then S is digital sequence. In specia case, if m=2 then S is binary sequence.

7.2 Series

Definition (7.3): An infinite series is an expression of the form:

 $u_1 + u_2 + \dots + u_k + \dots = \sum_{k=1}^{\infty} u_k$.

Let S_n denotes the sum of the first n terms of the series s.t.

tica

 $S_n = \sum_{k=1}^n u_k$, and $\{S_n\}_{n=1}^{+\infty}$ is called the sequence of partial sums.

 $S = \sum_{k=1}^{\infty} u_k$ is called the **sum** of the series.

Theorem (7.1): A geometric series $a+ar+ar^2+...+ar^{k-1}+...(a\neq 0)$ is converges if |r|<1 and the sum is $\frac{a}{1-r}=a+ar+ar^2+...+ar^{k-1}+...$, and diverges if $|r|\geq 1$.

Mathematical Basic