Lecture One

Mathematical Basic Concepts

8. Polynomials over Fields

Let $f(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + a_{n-2} \cdot x^{n-2} + \ldots + a_1 \cdot x + a_0$ be a polynomial of degree n in one variable x over a field F (namely a_n , $a_{n-1}, \ldots, a_1, a_0 \in F$).

<u>**Theorem (8.1)**</u>: The equation f(x)=0 has at most n solutions in F.

8.1 Irreducible Polynomials

Definition (8.1): A polynomial is irreducible in GF(p) if it does not factor over GF(p). Otherwise it is reducible.

Examples (8.1):

The polynomial $x^5+x^4+x^3+x+1$ is *reducible* in Z₅ but *irreducible* in Z₂.

8.2 Implementing GF(p^k) Arithmetic

<u>Theorem (8.1)</u>: Let f(x) be an irreducible polynomial of degree k over Z_p . The finite field $GF(p^k)$ can be realized as the set of degree k-1 polynomials over Z_p , with addition and multiplication done modulo f(x).

Example (8.2): (Implementing GF(2^k))

By the theorem the finite field $GF(2^5)$ can be realized as the set of degree 4 polynomials over Z₂, with addition and multiplication done modulo the irreducible polynomial: $f(x)=x^5+x^4+x^3+x+1$.

The coefficients of polynomials over Z_2 are 0 or 1. So a degree k polynomial can be written down by k+1 bits. For example, with k=4: $x^{3}+x+1$ (0,1,0,1,1) $x^4 + x^3 + x + 1$ (1,1,0,1,1).

8.3 Implementing GF(2^k)

```
concepts
Addition: bit-wise XOR (since 1+1=0)
    x^{3}+x+1 (0,1,0,1,1)
+
x^4 + x^3 + x + 1 (1,1,0,1,1)
\mathbf{x}^4
              (1.0.0.0.0)
Multiplication: (x^2+x+1)\cdot(x^3+x+1) in GF(2<sup>5</sup>)
(1,1,1) \cdot (1,0,1,1)
1011
  1011
    1011
_____
1\ 1\ 0\ 0\ 0\ 1 = x^5 + x^4
8.4 The Number of Primitive Polynomials
The function \mu : Z^+ \rightarrow Z^+ defined by:
```

∫ 1 if n = 1; $\mu(n) = \begin{cases} (-1)^r \text{ if } n = p_1 p_2 \dots p_r, \text{ where the } p_i \text{ are distinct primes;} \end{cases}$ 0 if n has a squared factor

is called the *Möbius Function*.

The number of monic irreducible polynomials of degree k over F_q is given by:

$$\psi_{q}(k) = \frac{1}{k} \sum_{d|k} \mu(\frac{k}{d}) q^{d}$$

where this sum is over all positive divisors d of k.

Clearly, not every monic irreducible polynomial in $F_q[x]$ is necessarily a primitive polynomial over F_q . In fact, the number of primitive polynomials of degree k over F_q is:

$$\lambda_{q}(k) = \frac{\phi(q^{k} - 1)}{k}$$

Example (8.3): Consider (monic) irreducible polynomials of degree 8 over $F_2=Z_2$. The positive divisors of 8 are d = 1, 2, 4, 8 so that 8/d = 8, 4, 2, 1 and $\mu(8/d)=0, 0, -1, 1$.

Therefore, the number of monic irreducible polynomials of degree 8 in $F_2[x]$ is:

$$\Psi_2(8) = \frac{1}{8} \sum_{d|8} \mu(\frac{8}{d}) 2^d = (0 + 0 - 16 + 256)/8 = 30.$$

Furthermore, the number of primitive polynomials of degree 8 in $F_2[x]$ is:

$$\lambda_2(8) = \frac{\phi(2^8 - 1)}{8} = \frac{\phi(255)}{8} = \frac{\phi(3.5.17)}{8} = \frac{2.4.16}{8} = 16.$$

Hence, just over half the irreducible polynomials of degree 8 in $Z_2[x]$ are primitive.

However, if $2^k - 1$ is prime then $\psi_2(k) = \lambda_2(k) = (2^k - 2)/k$ so that every irreducible polynomial of degree k is in fact a primitive polynomial in $Z_2[x]$. It is therefore beneficial, in the practical sense, to choose a reasonably large value of k such that $2^k - 1$ is prime.

Of course, if we have a prime p>2 then $p^k - 1$ is always even, and hence not a prime (excluding the trivial case: $3^1 - 1$ is prime). Thus, for

prime's p>2, the number of primitive polynomial of degree k in $F_p[x]$ will always be less than the number of irreducible polynomials of degree k over F_p , with the exception of the above trivial case.

Consequently, determining a maximal period length shift register generator presents no special problem in comparison to a linear recurrence generator modulo p. We simply choose k such that M_k is prime so that every irreducible polynomial over Z_2 is a primitive th yield m control the second polynomial. Then taking any such polynomial as the characteristic polynomial for the shift register generator will yield maximal period