

$$ax = afse = ase = e^2 = e$$

and so a = ea = axa. Since $a \mathcal{L} f$ there exists $t \in S^1$ with ta = f. Then

$$xa = fsea = fsa = tasa = ta = f.$$

Also

$$xax = fx = ffse = fse = x.$$

So we have

$$e = ax$$
 $a = axa$ $x = xax$ $f = xa$.

We have $e \mathcal{R} a$ and ea = a therefore $\rho_a : H_e \to H_a$ is a bijection. From $a \mathcal{L} f$ and xa = f we have $\lambda_x : H_a \to H_f$ is a bijection. Hence $\rho_a \lambda_x : H_e \to H_f$ is a bijection. So we have the diagram

Let $h, k \in H_e$. Then

$$h(\rho_a \lambda_x)k(\rho_a \lambda_x) = (xha)(xka) = xh(ax)ka =$$

 $xheka = xhka = hk(\rho_a \lambda_x).$

So, $\rho_a \lambda_x$ is an isomorphism and $H_e \cong H_f$.