Hence

$$b = a^{-1}(ab) = a^{-1}1 = a^{-1}.$$

by identity

axiom

(ii) Suppose that e ∈ G satisfies

$$ae = a = ea \quad \forall a \in G.$$

We need to show that e = 1. Indeed, considering a = 1 gives that 1e = 1 = e1. By the identity axiom, 1e = e. Hence e = 1.

For a finite group G, its product table can be used to determine the identity element and the inverse of each element.

Proposition 1.8. For any group G, one has that

- (i) $(ab)^{-1} = b^{-1}a^{-1} \quad \forall a, b \in G$,
- (ii) $(a^{-1})^{-1} = a \quad \forall a \in G$.

Proof This is left as an exercise.

Hint: in each case, check that the element on the right behaves like the stated inverse and use the uniqueness of inverses.

Proposition 1.9 (the Cancellation Law). For any group G and elements $a, b, x \in G$, one has that

- (i) ax = ay ⇒ x = y,
- (ii) $xa = ya \Rightarrow x = y$.

Proof (i) Suppose that $a, b, x \in G$ satisfy ax = ay.

Multiplying on the left by a^{-1} gives that $a^{-1}(ax) = a^{-1}(ay)$. Furthermore,

$$a^{-1}(ax) = (a^{-1}a)x = 1x = x,$$
 $\uparrow \qquad \uparrow \qquad \uparrow$

by associativity by inverse by identity

and similarly, $a^{-1}(ay) = y$. Hence x = y.