3.2. Solution of Simultaneous equations with Matrices

Consider the relation

$$AX = B \tag{3.31}$$

where *A* and *B* are matrices whose elements are known, and *X* is a matrix (a column vector) whose elements are the unknowns. We assume that *A* and *X* are conformable for multiplication. Multiplication of both sides of (3.31) by yields:

$$A^{-1}AX = A^{-1}B = IX = A^{-1}B$$
(3.31)

or

$$X = A^{-1}B \tag{3.32}$$

Therefore, we can use (3.32) to solve any set of simultaneous equations that have solutions. We will refer to this method as the *inverse matrix method of solution* of simultaneous equations.

Example 3.11.1

Given the system of equations
$$\begin{cases} 2x_1 + 3x_2 + x_3 = 9\\ x_1 + 2x_2 + 3x_3 = 6\\ 3x_1 + x_2 + 2x_2 = 8 \end{cases}$$
, compute the unknowns x_1, x_2 , and

 x_3 using the inverse matrix method

Solution

In matrix form, the given set of equations is AX = B where

$$A = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix}, \qquad X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \qquad B = \begin{bmatrix} 9 \\ 6 \\ 8 \end{bmatrix}$$

Then

$$X = A^{-1}B$$

Or

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix}^{-1} \begin{bmatrix} 9 \\ 6 \\ 8 \end{bmatrix}$$

Next, we find the determinant *detA*, and the *adjA*.

$$detA = 18$$
 and $adjA = \begin{bmatrix} 1 & -5 & 7 \\ 7 & 1 & -5 \\ -5 & 7 & 1 \end{bmatrix}$

Thus,

2nd Course

Topics in computer sciences MATLAB

Dr. A. Jaber

$$A^{-1} = \frac{1}{detA} adjA = \frac{1}{18} \begin{bmatrix} 1 & -5 & 7\\ 7 & 1 & -5\\ -5 & 7 & 1 \end{bmatrix}$$

and by equation (4.53) we obtain the solution as follows.

$$X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \frac{1}{18} \begin{bmatrix} 1 & -5 & 7 \\ 7 & 1 & -5 \\ -5 & 7 & 1 \end{bmatrix} \begin{bmatrix} 9 \\ 6 \\ 8 \end{bmatrix} = \frac{1}{18} \begin{bmatrix} 35 \\ 29 \\ 5 \end{bmatrix} = \begin{bmatrix} 35/18 \\ 29/18 \\ 5/18 \end{bmatrix} = \begin{bmatrix} 1.94 \\ 1.61 \\ 0.28 \end{bmatrix}$$

To verify our results, we could use the MATLAB inv(A) function, and multiply A^{-1} by B. However, it is easier to use the *matrix left division* operation $X = A \setminus B$; this is MATLAB's solution of $A^{-1}B$ for the matrix equation AX = B, where matrix X is the same size as matrix B, see [1].

Check with MATLAB

Try it! In command window >> A= [2 3 1; 1 2 3; 3 1 2]; B = [9; 6; 8]; X= A\ B % Observe that B is column vector X = 1.9444 1.6111 0.2778

Example 3.11.2

Consider that electric circuit is shown in the following figure

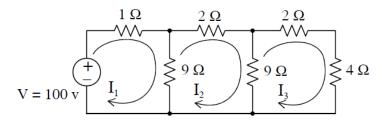


Figure 3.11.1: Electric circuit for example 3.11.2

The mesh equations are given as

$$10I_1 - 9I_2 = 100$$

-9I_1 + 20I_2 - 9I_3 = 0
-9I_2 + 15I_3 = 0

	Topics in computer sciences	
2 nd Course	MATLAB	Dr. A. Jaber

Use the inverse matrix method to compute the values of the currents I_1 , I_2 and I_3 .

Solution

For this example, the matrix equation is RI = V or $I = R^{-1}V$, where

$$R = \begin{bmatrix} 10 & -9 & 0 \\ -9 & 20 & -9 \\ 0 & -9 & 15 \end{bmatrix}, \quad V = \begin{bmatrix} 100 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \text{ and } I = \begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix}$$

The next step is to find R^{-1} . This is found from the relation

$$R^{-1} = \frac{1}{detR} a djR$$

Therefore, we find the determinant and the adjoint of R. For this example, we find that

$$detR = 975, \quad adjR = \begin{bmatrix} 219 & 135 & 81\\ 135 & 150 & 90\\ 81 & 90 & 119 \end{bmatrix}, \text{ then}$$
$$R^{-1} = \frac{1}{detR} adjR = \frac{1}{975} \begin{bmatrix} 219 & 135 & 81\\ 135 & 150 & 90\\ 81 & 90 & 119 \end{bmatrix}, \text{ and hence,}$$
$$I = \begin{bmatrix} I_1\\ I_2\\ I_3 \end{bmatrix} = \frac{1}{975} \begin{bmatrix} 219 & 135 & 81\\ 135 & 150 & 90\\ 81 & 90 & 119 \end{bmatrix} \begin{bmatrix} 100\\ 0\\ 0\\ 0 \end{bmatrix} = \frac{100}{975} \begin{bmatrix} 219\\ 135\\ 81 \end{bmatrix} = \begin{bmatrix} 22.46\\ 13.85\\ 8.31 \end{bmatrix}$$

Type equation here.

Check with MATLAB

Try it! In command window >> R= [10 -9 0; -9 20 -9; 0 -9 15]; V = [100; 0; 0]; I= R\ V % Observe that B is column vector I = 22.4615 13.8562 8.31077