3.2. Solution of Simultaneous equations with Matrices

Consider the relation

$$
\begin{equation*}
A X=B \tag{3.31}
\end{equation*}
$$

where A and B are matrices whose elements are known, and X is a matrix (a column vector) whose elements are the unknowns. We assume that A and X are conformable for multiplication. Multiplication of both sides of (3.31) by yields:

$$
\begin{equation*}
A^{-1} A X=A^{-1} B=I X=A^{-1} B \tag{3.31}
\end{equation*}
$$

or

$$
\begin{equation*}
X=A^{-1} B \tag{3.32}
\end{equation*}
$$

Therefore, we can use (3.32) to solve any set of simultaneous equations that have solutions. We will refer to this method as the inverse matrix method of solution of simultaneous equations.

Example 3.11.1
Given the system of equations $\left\{\begin{array}{cccc}2 x_{1} & +3 x_{2} & +x_{3} & =9 \\ x_{1} & +2 x_{2} & +3 x_{3} & =6 \\ 3 x_{1} & +x_{2} & +2 x_{2} & =8\end{array}\right\}$, compute the unknowns x_{1}, x_{2}, and x_{3} using the inverse matrix method

Solution

In matrix form, the given set of equations is $A X=B$ where

$$
A=\left[\begin{array}{lll}
2 & 3 & 1 \\
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right], \quad X=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right], \quad B=\left[\begin{array}{l}
9 \\
6 \\
8
\end{array}\right]
$$

Then

$$
X=A^{-1} B
$$

Or

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{lll}
2 & 3 & 1 \\
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right]^{-1}\left[\begin{array}{l}
9 \\
6 \\
8
\end{array}\right]
$$

Next, we find the determinant $\operatorname{det} A$, and the $a d j A$.

$$
\operatorname{det} A=18 \quad \text { and } \quad \operatorname{adj} A=\left[\begin{array}{ccc}
1 & -5 & 7 \\
7 & 1 & -5 \\
-5 & 7 & 1
\end{array}\right]
$$

Thus,

$$
A^{-1}=\frac{1}{\operatorname{det} A} \operatorname{adj} A=\frac{1}{18}\left[\begin{array}{ccc}
1 & -5 & 7 \\
7 & 1 & -5 \\
-5 & 7 & 1
\end{array}\right]
$$

and by equation (4.53) we obtain the solution as follows.

$$
X=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\frac{1}{18}\left[\begin{array}{ccc}
1 & -5 & 7 \\
7 & 1 & -5 \\
-5 & 7 & 1
\end{array}\right]\left[\begin{array}{l}
9 \\
6 \\
8
\end{array}\right]=\frac{1}{18}\left[\begin{array}{c}
35 \\
29 \\
5
\end{array}\right]=\left[\begin{array}{c}
35 / 18 \\
29 / 18 \\
5 / 18
\end{array}\right]=\left[\begin{array}{l}
1.94 \\
1.61 \\
0.28
\end{array}\right]
$$

To verify our results, we could use the MATLAB inv(A) function, and multiply A^{-1} by B.
However, it is easier to use the matrix left division operation $X=A \backslash B$; this is MATLAB's solution of $A^{-1} B$ for the matrix equation $A X=B$, where matrix X is the same size as matrix B, see [1].

Check with MATLAB
Try it! In command window

```
>> A= [2 3 1; 1 2 3; 3 1 2]; B = [9; 6; 8]; X= A\ B % Observe that B is column vector
X=
    1.9444
    1.6111
    0.2778
```

Example 3.11.2
Consider that electric circuit is shown in the following figure

Figure 3.11.1: Electric circuit for example 3.11.2

The mesh equations are given as

$$
\begin{array}{rlr}
10 \mathrm{I}_{1}-9 \mathrm{I}_{2} & =100 \\
-9 \mathrm{I}_{1}+20 \mathrm{I}_{2}-9 \mathrm{I}_{3} & =0 \\
-9 \mathrm{I}_{2}+15 \mathrm{I}_{3} & =0
\end{array}
$$

Use the inverse matrix method to compute the values of the currents I_{1}, I_{2} and I_{3}.
Solution
For this example, the matrix equation is $R I=V$ or $I=R^{-1} V$, where

$$
R=\left[\begin{array}{ccc}
10 & -9 & 0 \\
-9 & 20 & -9 \\
0 & -9 & 15
\end{array}\right], \quad V=\left[\begin{array}{c}
100 \\
0 \\
0
\end{array}\right], \text { and } \quad I=\left[\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right]
$$

The next step is to find R^{-1}. This is found from the relation

$$
R^{-1}=\frac{1}{\operatorname{det} R} \operatorname{adjR}
$$

Therefore, we find the determinant and the adjoint of R. For this example, we find that

$$
\begin{gathered}
\operatorname{det} R=975, \quad \operatorname{adj} R=\left[\begin{array}{ccc}
219 & 135 & 81 \\
135 & 150 & 90 \\
81 & 90 & 119
\end{array}\right] \text {, then } \\
R^{-1}=\frac{1}{\operatorname{det} R} \operatorname{adjR}=\frac{1}{975}\left[\begin{array}{ccc}
219 & 135 & 81 \\
135 & 150 & 90 \\
81 & 90 & 119
\end{array}\right], \text { and hence, } \\
I=\left[\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right]=\frac{1}{975}\left[\begin{array}{ccc}
219 & 135 & 81 \\
135 & 150 & 90 \\
81 & 90 & 119
\end{array}\right]\left[\begin{array}{c}
100 \\
0 \\
0
\end{array}\right]=\frac{100}{975}\left[\begin{array}{c}
219 \\
135 \\
81
\end{array}\right]=\left[\begin{array}{c}
22.46 \\
13.85 \\
8.31
\end{array}\right] \\
\text { Type equation here. }
\end{gathered}
$$

Check with MATLAB

Try it! In command window

```
>> R=[10-9 0;-9 20-9;0-9 15]; V = [100; 0; 0]; I= R\V % Observe that B is column vector
I =
    22.4615
    13.8562
    8.31077
```

