Let

$$\alpha$$
 = rotation anti-clockwise through $\frac{2\pi}{3}$ = 120°,
 β_1 = reflection about the $Re(z)$ axis,

 β_2 = reflection about the line joining 0 to $e^{\frac{2\pi i}{3}}$,

 β_3 = reflection about the line joining 0 to $e^{\frac{4\pi i}{3}}$.

Then
$$D_3 = \{1, \alpha, \alpha^2, \beta_1, \beta_2, \beta_3\}$$
 and

$$\alpha = (ABC)$$
, $\alpha^2 = (ACB)$, $\beta_1 = (BC)$, $\beta_2 = (AC)$, $\beta_3 = (AB)$.

The multiplication table of D_3 is

For example, under $\alpha\beta_1$ we have that $A \mapsto B \mapsto C$, $B \mapsto C \mapsto B$, $C \mapsto A \mapsto A$).

 Let P_n be a regular n-gon and D_n be its group of symmetries. Then D_n is called the dihedral group of degree n and has order 2n:

$$D_n = \{\underbrace{1, \alpha, \alpha^2, \cdots, \alpha^{n-1}}_{\text{rotations}}, \underbrace{\beta_1, \beta_2, \cdots, \beta_n}_{\text{reflections}}\};$$

where α is a rotation through $\frac{2\pi}{n}$ about the centre of P_n and $\beta_1, \beta_2, \dots, \beta_n$ are reflections about the axes of symmetry of P_n .

If n is even, then an axis of symmetry either joins two opposite vertices or the midpoints of two opposite sides.

If n is odd, then an axis of symmetry joins a vertex to the mid-point of the opposite side.