Let $h_1, h_2 \in H$. Since $\varphi : G \mapsto H$ is a homomorphism, it preserves the group operation of product and hence

$$\varphi (\psi (h_1) \psi (h_2)) = \varphi (\psi (h_1)) \varphi (\psi (h_2)) = h_1 h_2,$$

where the second equality comes from using that $\varphi \circ \psi = i_H$. It follows that

$$\psi (h_1h_2) = \psi (\varphi (\psi (h_1) \psi (h_2))) = \psi (h_1) \psi (h_2),$$

where the second equality comes from using that $\psi \circ \varphi = i_G$.

Remark 7.10. It follows that if there exists an isomorphism from a group G to the group H, then G and H have the same order.

However, the converse is not true. For example, C_6 is not isomorphic to the group S_3 even though both groups are of order 6.

Definition 7.11. Let G and H be groups and $\varphi : G \mapsto H$ be a homomorphism. The *image* of φ , Im (φ) , is the subset

$$\operatorname{Im}(\varphi) = \{ h \in H : \exists g \in G \text{ with } h = \varphi(g) \}$$

of the group H.

Proposition 7.12. Let G and H be groups and $\varphi : G \mapsto H$ be a homomorphism. The image of φ , Im (φ) , is a subgroup of H. Moreover, the following are equivalent:

- (i) φ : G → H is surjective;
- (ii) Im (φ) = H.

Proof Note that $\varphi(i_G) \in \text{Im}(\varphi)$, and hence $\text{Im}(\varphi)$ is a non-empty subset of H.

By Proposition 3.2, to show that $\text{Im}(\varphi)$ is a subgroup of H it is sufficient to show that it satisfies the closure and inverse axioms with respect to the product operation of H.

Pick $h, h' \in \text{Im }(\varphi)$. To show that $\text{Im }(\varphi)$ satisfies the closure axiom, we must show that $hh' \in \text{Im }(\varphi)$.

By the definition of $\text{Im}(\varphi)$, there exist $g, g' \in G$ such that

$$h = \varphi(g)$$
 and $h' = \varphi(g')$.

Since $\varphi : G \mapsto H$ is a homomorphism, it preserves the group operation of product. Hence

$$\varphi(gg') = \varphi(g)\varphi(g') = hh',$$

giving that $hh' \in \text{Im}(\varphi)$ as required.