Let hy, ha € H. Since ¢ : (7 — H is a homomorphism, it preserves the group operation
of product and henee

2 (4 (ha) ¥ (ha)) = @ (¥ (ha)) @ (1 (ha)) = haho,
where the second equality comes from using that oo = iy, It follows that
¥ (haha) = ¥ (@ (¥ (ha) ¥ (he))) = ¥ (M) ¥ (h2),
where the second equality comes from using that ¢ o ¢ = ig. O

Remark 7.10. It follows that if there exists an isomorphism from a group (7 to the group
H . then 7 and H have the same order.

However, the converse is not true. For example, Oy is not isomorphic to the group Sy
even though both groups are of order 6.

Definition 7.11. Let & and H be groups and » : 7 — H be a homomorphism. The image
of v, Im (), is the subset

Im(p)={heH:3Ige G withh=p(g)}
of the group H.

Proposition 7.12. Let (¢ and H be groups and ¢ : G — H be a homomorphism. The image
of @, Im (i2), is a subgroup of H. Moreover, the following are equivalent:

(i) ¢ : G — H is surjective;

(i) Im{y)=H,

Proof Note that (i) € Im (), and hence Im () is a non-empty subset of H.

By Proposition 3.2, to show that Im{y) is a subgroup of H it is sufficient to show that
it satisfies the closure and inverse axioms with respect to the product operation of H.

Pick h, &' € Im (). To show that Im (p) satisfies the closure axiom, we must show that
hh' € Im ().

By the definition of Im (), there exist g, ¢’ € (7 such that

h=¢(g) and K =g(g).

Since ¢ ¢ G — H is a homomorphism, it preserves the group operation of product, Henee
vlgg') = wlg)ply) = AN,

giving that kA" € Im () as required.
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