giving that

$$\prod_{i=1}^{s} x_i \equiv x^{\varphi(n)} \prod_{i=1}^{s} x_i \pmod{n}.$$

Since $(x_i, n) = 1 \forall i \in \{1, 2, ..., s\}$, it follows that

$$\left(\prod_{i=1}^{s} x_i, n\right) = 1.$$

If $p \in \mathbb{N}$ is a prime number such that $p \mid \prod_{i=1}^{s} x_i$, then $p \mid x_j$ for some $j \in \{1, 2, \ldots, s\}$. Hence if $p \mid n$ also, then it follows that p = 1. Thus $1 \equiv x^{\varphi(n)} \pmod{n}$.

Lemma 14.6. Let $n \in \mathbb{N}$, and define

$$U_n = {\overline{x} \mid (x, n) = 1}.$$

Then

- (i) |U_n| = φ (n);
- (ii) if \overline{x} , $\overline{y} \in U_n$, then $\overline{xy} \in U_n$;
- (iii) if $\overline{x} \in U_n$, then $\exists \overline{y} \in U_n$ such that $\overline{xy} = \overline{1}$;
- (iv) if $\overline{x} \in U_n$, then $\overline{x^{\varphi(n)}} = \overline{1}$.

Proof (i) This follows from the definition of φ .

- (ii) Suppose that x, y ∈ N satisfy (x, n) = (y, n) = 1. Then (xy, n) = 1.
 Indeed, suppose that p ∈ N is a prime such that p | xy and p | n. Then p | x or p | y. If p | x then, since p | n and (x, n) = 1, p = 1. Similarly, if p | y then p = 1.
- (iii) This is an exercise.
- (iv) This follows from Theorem 14.5.

Example 14.7. We have that $U_8 = \{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}$. Furthermore, multiplication modulo 8 gives the following table for \overline{xy} :

$\overline{x} \setminus \overline{y}$				
1	1	3	5	7
3	3	1	7	5
5	5	7	1	3
7	7	5	3	1