Example 16.2 (Deciphering).

Definition 16.3. If x is a plaintext letter and y is the corresponding ciphertext letter then, for any $c \in \mathbb{N}$ with $1 \le c \le 25$,

$$y \equiv x + c \pmod{26}$$

is called a shift transformation. For $b \in \mathbb{N}$ with $1 \le b \le 25$ and (b, 26) = 1,

$$y \equiv bx + c \pmod{26}$$

is called an affine transformation.

To encipher with a known affine transformation τ ,

- (1) divide the message into groups of 5 letters;
- change letters to numbers;
- (3) apply τ;
- (4) change numbers to letters.

To decipher, we reverse the process:

- change letters to numbers;
- (2) apply τ⁻¹;
- change numbers to letters;
- (4) rearrange into words.

Note 16.4. Suppose that $\tau(x) \equiv bx + c \pmod{26}$ for some $b, c \in \mathbb{N}$ with $1 \leq b, c \leq 25$ and (b, 26) = 1. Suppose further that $b' \in \mathbb{N}$ satisfies $1 \leq b' \leq 25$, (b', 26) = 1 and $bb' \equiv 1 \pmod{26}$:

Then $y \equiv b\tau^{-1}(y) + c \pmod{26}$. Hence

$$b'y \equiv b' [b\tau^{-1}(y) + c] \pmod{26} \equiv b'b\tau^{-1}(y) + b'c \pmod{26} \equiv \tau^{-1}(y) + b'c \pmod{26}$$

giving that $\tau^{-1}(y) \equiv b'[y-c] \pmod{26}$.

So if
$$y \equiv bx + c \pmod{26}$$
, then $x \equiv b' [y - c] \pmod{26}$.