- References
- 1- Essentials of biology 3rd edition Mader, S.S.and Windelspencht, M. (2012). McGraw-Hill.

3- Essential Cell Biology ,Davey, J.; and Lord, M.(2002). Volume 2: Cell Function A Practical Approach. Oxford university Prees. P: 251.

Introduction of cell biology Cell biology

The branch of biology dealing with the study of structure, function, molecular organization, growth, reproduction and genetics of the cells, is called **cytology or cell biology**. The discovery of the cells

 1665 - Robert Hooke looks at cork under a microscope. Calls the chambers he saw "cells"

• 1665 -1675 Anton van Leeuwenhoek, the invention of the microscope, studies organisms living in pond water (like you did in lab). He called them "Animalcules."

• 1838-1839 German scientists Schleiden and Schawann ,all living organisms are made of cells. This forms the basis of the Cell Theory of Biology.

The Cell Theory of Biology

1- All living organisms (animals, plants and microbes) are made up of one or more cells and cell products.

2-All metabolic reactions in unicellular and multicellular organisms take place in cells.

3- Cells arise by division of preexisting cells.

4- The smallest clearly defined unit of life is the cell.

5-Cells can be cultured to produce more cells

Properties of Cells

1- Cells are complex and highly organized

- They contain numerous internal structures
- Some are membrane bound (organelles) while others do not

2-Cells contain a genetic blueprint and machinery to use it

- Genes are instructions for cells to create specific proteins
- All cells use the same types of information
- o The genetic code is universal
- o The machinery used for synthesis is interchangeable
- Information transfer must be error free
- o Errors are called mutations

Genetic Code- Table

Second Letter								
		U	с	А	G			
1st letter	U	UUU Phe UUC UUA Leu UUG	UCU UCC Ser UCA UCG	UAU Tyr UAC UAA Stop UAG Stop	UGU Cys UGC UGA Stop UGG Trp	U C A G		
	с	CUU CUC CUA CUG	CCU CCC Pro CCA CCG	CAU His CAC CAA GIN CAG CAG	CGU CGC Arg CGA CGG	U C A G		
	A	AUU AUC AUA AUG Met	ACU ACC ACA ACG	AAU Asn AAC AAA Lys AAG	AGU Ser AGC AGA Arg AGG	U letter C A G		
	G	GUU GUC Val GUA GUG	GCU GCC Ala GCA GCG	GAU Asp GAC GAA Glu GAG	GGU GGC Gly GGA GGG	U C A G		

3-Cells arise from the division of other cells

- Daughter cells inherit the genes from the mother cells
- •Daughter cells inherit cytoplasm and organelles from the mother cells
- •Binary fission cell division in bacteria
- •Mitosis the genetic complement of each daughter cell is identical to the other and to the mother cell. This is asexual reproduction
- •Meiosis the genetic complement of each daughter cell is reduced by half. This is sexual reproduction

The difference between sexual and sexual reproduction as in the following scheme:

4-Cells acquire and utilize energy

- Plant cells undergo photosynthesis
- o convert light energy and CO2 to chemical energy (ATP and glucose)
- Most cells respire
- o release energy found in organic compounds
- o convert organic compounds to CO2 and O2
- o make ATP
- **5-Cells can perform a variety of chemical reactions**
- convert simple organic molecules into complex molecules (anabolism)
- Breakdown complex molecules to release energy (catabolism)
- Metabolism = all reactions by cells

Large Molecule

Small Molecules Catabolism

Energy

nabolism

Small Molecules

Large Molecule

6-Cells can engage in mechanical activities

- Cells can move
- Organelles can move
- Cells can respond to stimuli
- o chemotaxis movement towards chemicals
- o phototaxis movement towards light
- o hormone responses
- o touch responses

7-Cells can regulate activities

- Cells control DNA synthesis and cell division
- Gene regulation cells make specific proteins only when needed
- Turn on and off metabolic pathways
- 8-Cells all contain the following structures:
- Plasma membrane separates the cell from the external environment
- Cytoplasm fluid-filled cell interior
- Nuclear material genetic information stored as DNA

Major Cell Structures and Primary Functions Cell Membrane

Protects the cell; provides for communication via receptor proteins; surface proteins serve as positive identification tags; allows some substances to pass into and out of the cell while denying passage to other substances; this selectivity allows cells to receive nutrition and dispose of waste.

Cytoplasm

Provides storage and work areas for the cell; the work and storage elements of the cell, called organelles, are the ribosomes, endoplasmic reticulum, Golgi apparatus, mitochondria, lysosomes, and centrioles.

Ribosomes

Make enzymes and other proteins; nicknamed "protein factories".

Endoplasmic reticulum (ER)

Carries proteins and other substances through the cytoplasm.

Endoplasmic reticulum (ER)

Carries proteins and other substances through the cytoplasm. Golgi apparatus

Chemically processes the molecules from the endoplasmic reticulum and the packages them into vesicles; nicknamed "chemical processing and packaging center".

Mitochondria

Involved in cellular metabolism and respiration; provides the principle source of cellular energy and is the place where complex, energy-releasing chemical reactions occur continuously; nicknamed "power plants".

Lysosomes

Contain enzymes that can digest food compounds; nicknamed "digestive bags".

Centrioles

Play an important role in cell reproduction

Cilia

Hair-like processes that project from epithelial cells; help propel mucus, dust particles, and other foreign substances from the respiratory tract.

Flagellum

"Tail" of the sperm that enables for the sperm to "swim" or move toward the ovum.

Nucleus

Controls every organelle (little organ) in the cytoplasm; contains the generic matter necessary for cell reproduction as well as control over activity within in the cell's cytoplasm; responsible for the cell's metabolism, growth, and reproduction.

Types of Cells

1-Prokaryotes

- Pro = before; karyon = nucleus
- relatively small 5 10 um
- lack membrane-bound organelles
- earliest cell type

2-Archaea

- Originally thought to be prokaryotes
- relatively small 5 10 um
- lack membrane-bound organelles
- Usually live in extreme environments (thermophiles, halophiles) etc)

3-Eukaryotes

- Eu = true; karyon = nucleus
- contain membrane-bound organelles
- Evolved from prokaryotes by endosymbiosis association
- Include Protozoans, Fungi, Animals, and Plants

A comparison of a few traits of bacteria, archaea, and eukarya.

Property	Bacteria	Archaea	Eukaryotes
Cell type	Prokaryotic	Prokaryotic	Eukaryotic
Cell wall	Madeof peptidoglycan	Does not contain peptidoglycan	In plants and fungi, composed of polysaccharides
Sensitivityto antibiotics	Yes	No	No
Firstaminoacid duringprotein synthesis	Formylmethioni ne	Methionine	Methionine
DNA	Mostlycircular chromosomeand plasmids	Circular chromosomeand plasmids	Linear chromosome, rarely plasmids
Histones	No	Yes	Yes
Organelles	No	No	Yes

Characteristics of Prokaryotic cells

- No membrane bound organelles.
- DNA not enclosed in membrane bound nucleus.
 - DNA is localized in a nucleoid region
- Genome is one circular chromosome.
- DNA is not associated with histones.
- Cell wall made of peptidoglycan.
- Divide by binary fission.

- Generally: Smaller & less complex than eukaryotic cells.

characteristic of eukaryotic cells:

Eukaryotic cells have a nucleus

 Have many membrane-bound organelles (mitochondria, vacuole, endoplasmic reticulum, ribosomes, lysosomes, plastids in plants). DNA contained in "linear nucleus chromosomes". Cytoplasm present. Outer boundary is cell membrane except in plant cells - wall made of cellulose Cell membrane inside wall (plants)

•Some have flagella/cilia for movement.

Larger, more complex
Examples: protozoans, algae, fungi, plants, animals

What is the difference between prokaryotic and eukaryotic:

Prokaryotic cells	Eukaryotic	
Small cells 5 ym	Larger cells 10 ym	
Always unicellular	Often <u>multicellular</u>	
No nucleus or any membrane-bound	Always have nucleus and other	
organelles, such as mitochondria	membrane bund organelles	
DNA is circular, without proteins	DNA is linear and associated with	
	proteins to form chromatin	
Ribosomes are small (70s)	Ribosomes are large (80)	
No cytoskeleton	Always has a cytoskeleton	
Motility by rigid rotating flagellum. Made	Motility by flexible waving cilia or	
of flagellin	flagellae. Made of tubulin	
Cell division is by binary fission	Cell division is by mitosis or meiosis	
Reproduction is always asexual	Reproduction is asexual or sexual	
Huge variety of metabolic pathways	Common metabolic pathways	

What is the difference between an animal cell and a plant cell?

<u>Animal cell</u>	<u>Plant cell</u>
. Animal cells are generally	1. Plant cells are larger than
small in size	animal cells.
2.Cell wall is absent.	2. Rigid cell wall of cellulose
3. absent plastids.	3. present plastids.
4. Vacuoles are many and	4. Vacuoles are few and large
small.	5. many simpler units of Golgi
5. Single highly complex	apparatus, called dictyosomes.
Golgi apparatus.	6. Absent centrosome and
6. present centrosome and	centrioles.
centrioles.	

Characteristics of Viruses

Virus are nonliving!

- Are not made of cells.
- Do not have organelles or cytoplasm
- Can't carry out metabolic processes such as metabolism and homeostasis
- Do not grow through Cell Division
- Can't reproduce outside their host cell (Need host cells structures to reproduce)

Wendell Stanley was the first scientist to crystallize a virus. This is evidence that viruses are not made of cells and are not alive.

TABLE 1-2 METRIC MEASUREMENTS OF SIZE

1 meter (m) 39.4 inches (in.) •1 meter (m) = 100 centimeters (cm) 1 centimeter (cm) = 10 millimeters (mm) 1 millimeter (mm) = 1000 micrometers (µm) or microns (µ) 1 micrometer (μm) = 1000 nanometers (nm) or millimicrons (mµ) 1 nanometer (nm) = 10 angstroms (Å)

