
L3-Selections                                 2021-2022                          Lecturer: Dr. Basim Jamil 
 

72 
 

CHAPTER3 

 Selections 

Objectives 

 To declare boolean variables and write Boolean expressions using relational operators 

 To implement selection control using one-way if statements. 

 To implement selection control using two-way if-else statements. 

 To implement selection control using nested if and multi-way if statements. 

 To avoid common errors and pitfalls in if statements. 

 To generate random numbers using the Math.random() method. 

 To program using selection statements for a variety of examples (SubtractionQuiz). 

 To combine conditions using logical operators (!, &&, ||, and ^). 

 To program using selection statements with combined conditions (LeapYear). 

 To implement selection control using switch statements. 

 To write expressions using the conditional operator. 

 To examine the rules governing operator precedence and associativity. 

 

 

 

3.1 Introduction  

The program can decide which statements to execute based on a condition.  Java 

provides selection statements. Selection statements use conditions that are 

Boolean expressions. A Boolean expression is an expression that evaluates to a 

Boolean value: true or false. 

3.2  Boolean Data Type 

The boolean data type declares a variable with the value either true or false.  

Java provides six relational operators (also known as comparison operators), 

shown in the table below, which can be used to compare two values (assume 

radius is 5 in the table). 

 

 

 



L3-Selections                                 2021-2022                          Lecturer: Dr. Basim Jamil 
 

72 
 

Java Operator Math. Symbol Name Example Result 

< < Less than radius < 0  false 

<=  ≤  
 Less than or 

equal 
radius <= 0  false 

>  >  Greater than  radius > 0  true 

>=  ≥  Greater than 

equal to  
radius >= 0  true 

==  =  Equal to  radius == 0  false 

!=  ≠  Not equal to  radius != 0   true 

 

 Boolean variable  

A variable that holds a Boolean value is known as a Boolean variable. The 

boolean data type is used to declare Boolean variables. For example: 

 boolean lightsOn = true; 

true and false are literals, just like a number such as 10. They are treated as 

reserved words and cannot be used as identifiers in the program. 

 

3.3 if Statements  

An if- statement is a construct that enables a program to specify alternative paths 

of execution. 

Java has several types of selection statements:  

 one-way if statements,  

 two-way if-else statements, nested if statements,  

 multi-way if-else statements, 

 switch statements, and  

 conditional operators. 

 A one-way if statement executes an action if and only if the condition is true. 

The syntax for a one-way if statement is as follows: 

 

 

 

The flowchart in Figure 3.1a illustrates how Java executes the syntax of an if 

statement.  

if (boolean-expression)  { 

   statement(s); 

}  

 



L3-Selections                                 2021-2022                          Lecturer: Dr. Basim Jamil 
 

72 
 

 

 

 

 

  

 

 

 

 

 

If the boolean-expression evaluates to true, the statements in the block are 

executed. As an example, see the following code: 

 if (radius >= 0) { 

  area = radius * radius * PI; 

  System.out.println("The area for the circle of radius " + 

   radius + " is " + area); 

 }  

Note 

The block braces can be omitted if they enclose a single statement. For 

example, the following statements are equivalent: 

 

Example 

Write a program that prompts the user to enter an integer. If the number is a 

multiple of 5, the program displays HiFive. If the number is divisible by 2, it 

displays HiEven. 

1 import java.util.Scanner; 

2 

3 public class SimpleIfDemo { 

4 public static void main(String[] args) { 

5 Scanner input = new Scanner(System.in); 

6 System.out.print("Enter an integer: " 



L3-Selections                                 2021-2022                          Lecturer: Dr. Basim Jamil 
 

03 
 

enter input     7 int number = input.nextInt(); 

           8 

check 5           9 if (number % 5 == 0) 

          10 System.out.println("HiFive"); 

          11 

check even    12 if (number % 2 == 0) 

         13 System.out.println("HiEven"); 

        14 } 

        15 } 

 

 

 

 

 Two-Way if-else Statements 

An if-else statement decides the execution path based on whether the condition 

is true or false. the syntax for a two-way if-else statement: 

 

 

 

 

 

 

The flowchart of the statement is shown below: 

 

 

 

 

 

 

 

 

if (boolean-expression) { 

statement(s)-for-the-true-case; 

} else { 

statement(s)-for-the-false-case; 

} 



L3-Selections                                 2021-2022                          Lecturer: Dr. Basim Jamil 
 

03 
 

The  following example checks whether a number is even or odd, as follows: 

 if (number % 2 == 0) 

 System.out.println(number + " is even."); 

 else 

 System.out.println(number + " is odd.");  

 

 Nested if and Multi-Way if-else Statements 

 An if statement can be inside another if statement to form a nested if 

statement. For example, the following is a nested if statement: 

 if (i > k) { 

 if (j > k) 

 System.out.println("i and j are greater than k"); 

 } else 

 System.out.println("i is less than or equal to k"); 

The if (j > k) statement is nested inside the if (i > k) statement. 

The nested if statement can be used to implement multiple alternatives. The 

statement given in the Figure below, for instance, prints a letter grade 

according to the score, with multiple alternatives. 

 

 

 

 

 

 

 

 

 

          

In fact, Figure b is the preferred coding style for multiple alternative if 

statements. This style, called multi-way if-else statements, avoids deep 

indentation and makes the program easy to read. 

The execution of the above if statement proceeds as shown in the below 

flowchart: 

 

b a 



L3-Selections                                 2021-2022                          Lecturer: Dr. Basim Jamil 
 

07 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Common errors and pitfalls  

 Common errors: 

 Forgetting necessary braces,  

 ending an if statement in the wrong place, 

 mistaking == for =, and  

 dangling else clauses are common errors in selection 

statements.  

 common Pitfalls: 

 Duplicated statements in if-else statements, and 

 testing equality of double values.  

3.4  Generating Random Numbers  

You can use Math.random() to obtain a random double value between 0.0 and 

1.0, excluding 1.0. 

The program randomly generates two single-digit integers, number1 and 

number2, with number1 >= number2, and it displays to the student a question 

such as “What is 9−2?” After the student enters the answer, the program displays 

a message indicating whether it is correct. 

A better approach is to use the random() method in the Math class. Invoking this 

method returns a random double value d such that 0.0 ≤ d < 1.0. Thus, 



L3-Selections                                 2021-2022                          Lecturer: Dr. Basim Jamil 
 

00 
 

(int)(Math.random() * 10) returns a random single digit integer (i.e., a number 

between 0 and 9). 

The program can work as follows: 

1. Generate two single-digit integers into number1 and number2. 

2. If number1 < number2, swap number1 with number2. 

3. Prompt the student to answer, "What is number1 − number2?" 

4. Check the student's answer and display whether the answer is correct. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 



L3-Selections                                 2021-2022                          Lecturer: Dr. Basim Jamil 
 

03 
 

3.5  Logical Operators 

 The logical operators (!, &&, ||, and ^) can be used to create a compound 

Boolean expression.   

 Sometimes, whether a statement is executed is determined by a combination of 

several conditions. You can use logical operators to combine these conditions to 

form a compound Boolean expression.  

Operator Name Description 

! not Logical negation 

&& and Logical conjunction 

|| or Logical disjunction 

^ exclusive or Logical exclusion 

 

Example: 

Write a program that checks whether a number is divisible by 2 and 3, by 2 or 3, 

and by 2 or 3 but not both. 

        1 import class 1 import java.util.Scanner; 

        2 

        3  public class TestBooleanOperators { 

        4  public static void main(String[] args) { 

        5  // Create a Scanner 

        6   Scanner input = new Scanner(System.in); 

        7 

        8  // Receive an input 

        9  System.out.print("Enter an integer: "); 

input          10 int number = input.nextInt(); 

            11 

and            12 if (number % 2 == 0 && number % 3 == 0) 

            13 System.out.println(number + " is divisible by 2 and 3); 

            14 

or              15 if (number % 2 == 0 || number % 3 == 0) 

            16 System.out.println(number + " is divisible by 2 or 3."); 

            17 

exclusive or    18 if (number % 2 == 0 ^ number % 3 == 0) 

            19 System.out.println(number + 

            20    " is divisible by 2 or 3, but not both."); 

            21   } 

 

 



L3-Selections                                 2021-2022                          Lecturer: Dr. Basim Jamil 
 

03 
 

 Case Study: Determining Leap Year  

A year is a leap year if it is divisible by 4 but not by 100, or if it is divisible by 

400. A leap year has 366 days. The February of a leap year has 29 days. You 

can use the following Boolean expressions to check whether a year is a leap 

year: 

// A leap year is divisible by 4 

boolean isLeapYear = (year % 4 == 0); 

// A leap year is divisible by 4 but not by 100 

isLeapYear = isLeapYear && (year % 100 != 0); 

// A leap year is divisible by 4 but not by 100 or divisible by 400 

isLeapYear = isLeapYear || (year % 400 == 0); 

Or you can combine all these expressions into one as follows: 

isLeapYear = (year % 4 == 0 && year % 100 != 0) || (year % 400 == 0); 

EX: Write a program that lets the user enter a year and checks whether it is a 

leap year. 

                  1 import java.util.Scanner; 

                   2 

                   3 public class LeapYear { 

                   4 public static void main(String[] args) { 

                   5 // Create a Scanner 

                   6 Scanner input = new Scanner(System.in); 

input            7 System.out.print("Enter a year: "); 

                    8 int year = input.nextInt(); 

                    9 

                    10 // Check if the year is a leap year 

leap year?    11 boolean isLeapYear = 

                    12 (year % 4 == 0 && year % 100 != 0) || (year % 400 == 0); 

                    13 

                    14 // Display the result 

          display result 15 System.out.println(year + " is a leap year? " 

                    16 } 

                    17 } 

 

 

 

 

 

 

 

 



L3-Selections                                 2021-2022                          Lecturer: Dr. Basim Jamil 
 

03 
 

3.6  Switch Statements  

A switch statement executes statements based on the value of a variable or an 

expression. Java provides a switch statement to simplify coding for multiple 

conditions. the full syntax for the switch statement is shown below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The switch statement observes the following rules: 

 The switch-expression must yield a value of char, byte, short, int, or String type 

and must always be enclosed in parentheses.  

 The value1, ..., and valueN must have the same data type as the value of the 

switch-expression. Note that value1, ..., and valueN are constant expressions, 

meaning they cannot contain variables, such as 1 + x. 

 When the value in a case statement matches the value of the switch-expression, 

the statements starting from this case are executed until either a break statement 

or the end of the switch statement is reached. 

 The default case, which is optional, can be used to perform actions when none of 

the specified cases matches the switch-expression. 

 The keyword break is optional. The break statement immediately ends the switch 

statement. 

Example, the following code displays Weekday for days 1–5 and Weekend for 

day 0 and day 6. 

  switch (day) { 

   case 1: 

   case 2: 

   case 3: 

   case 4: 

   case 5: System.out.println(“Weekday"); break; 

   case 0: 

   case 6: System.out.println(“Weekend"); 

     } 

 

 

switch (switch-expression) { 

   case value1: statement(s)1; 

   break; 

   case value2: statement(s)2; 

   break; 

     ... 

   case valueN: statement(s)N; 

   break; 

   default: statement(s)-for-default; 

} 



L3-Selections                                 2021-2022                          Lecturer: Dr. Basim Jamil 
 

02 
 

3.7  Conditional Operators 

A conditional operator evaluates an expression based on a condition.  

The syntax to use the operator is as follows: 

 

 

The result of this expression is expression1 if boolean-expression is true; 

otherwise the result is expression2. 

You might want to assign a value to a variable that is restricted by certain 

conditions. For example, the following statement assigns 1 to y if x is greater than 

0 and -1 to y if x is less than or equal to 0:  

   

 

 

 

You can use a conditional operator to achieve the same result. 

 

 

The symbols ? and : appearing together is called a conditional operator, also 

known as a ternary operator because it uses three operands. 

Suppose you want to assign the larger number of variable num1 and num2 to 

max. You can simply write a statement using the conditional operator: 

 

 

For another example, the following statement displays the message "num is even” 

if num is even, and otherwise displays “num is odd.” 

 

  

3.8  Operator Precedence and Associativity 

Operator precedence and associativity determine the order in which operators are 

evaluated. The precedence rule defines precedence for operators, as shown below,  

Operators are listed in decreasing order of precedence from top to bottom. The 

logical operators have lower precedence than the relational operators, and the 

relational operators have lower precedence than the arithmetic operators. 

Operators with the same precedence appear in the same group. 

 

 

boolean-expression ? expression1 : expression2 



L3-Selections                                 2021-2022                          Lecturer: Dr. Basim Jamil 
 

02 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If operators with the same precedence are next to each other, their associativity 

determines the order of evaluation. All binary operators except assignment operators 

are left associative. For example, since + and − are of the same precedence and are 

left associative, the expression 

 

Assignment operators are right associative. Therefore, the expression 

 

Suppose a, b, and c are 1 before the assignment; after the whole expression is 

evaluated, a becomes 6, b becomes 6, and c becomes 5. Note left associativity for the 

assignment operator would not make sense. 


