

Physical Chemistry_Chpt_One_Propert	ies of Gases
Name of a student Mohamed Samiel Signature	No.
A A - Q	1 st Semester-2021
Department of Chemistry	1 st Exam-paper E
Q1: Circle the right answer for all of the following:	(50 points)
1: If a gas has polar particles then the difference between the volume of this gas is:	
	= V _{Perfect} d) V _{Real} ≠ V _{Perfect}
2: A gas occupies 60×10^3 mL at 150 °C and 760 mmHg pressure. What we	
Answer: a) 38.7 mL b) 38.7 dm ³ c) 38.7 L ⁻¹	(d)38.7 dm(3
3: Calculate the weight of H ₂ O gas (18 g.mol ⁻¹) in a 5 L cylinder at 10 x 10 ² kPa and 373 K. Answer: (a) 29.40 g mol ⁻¹ b) 29.40 g c) 29.40 mol d) 29.40 kg	
4: Calculate the density of H ₂ O placed in a 22400 mL cylinder at 10 ⁵ Pa and 0 °C. Answer: a) 0.804 kg L ⁻¹ b) 0.804 g L ⁻¹ c) 0.804 g	
5: According to Graham's law the heaviest gas is? Answer: a) H ₂ O b) CH ₄ c) NH ₃ d) Cl ₂	
6: A tank contains a certain amount of gas at 10^5 Pa. The gas is transferred to another tank 40 dm ³ with pressure of 200×10^3 Pa. What should be its volume?	
Answer: a) 80 L b) 80 Pa L c) 80 Pa dm ³	d) 80 L ⁻¹
7: According to Boyle's law the pressure of a gas is inversly proportional way Answer: (a) (b) (T) (c) (R) (d) (V) (e) (n)	vith?
8: The difference between real and ideal gas, that the real gas interested in?	
Answer: a) V & p b) V & T c) p & n	d) T & p
9: It can follow the direct proportional between temperature and pressure through the law of Answer: a) Van der Waal b) Graham c) Charles d) Gay-Lussac	
10: The behaviour of real gas is ideal when the value of Z is equal to	

Answer:

b) $V_m > V_m^O$

(25 points)

Q2: The following data have been observed for 800 mg of nitrogen gas at 273 K. Calculate the best value of the

p/105 Pa molar mass of N2. 0.750 0.500 0.200 V/dm³ 3.0 4.5 7.0

Q3: A perfect gas undergoes isothermal compression, which reduces its volume by 1.80 dm³. The pf and Vf of the gas are 2×10^2 kPa and 2.14 dm³, respectively. Calculate the p_{original} of the gas in (i) bar, (ii) torr. (25 points)

Thur_11/11/2021

Best wishes

Dr Abduljabbar I. R. Rushdi

