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 Chapter Three  

(Nuclear Models) 

 

(3-5) Nuclear Models 

        The aim of nuclear models is to understand how certain combinations 

of N neutrons and Z protons form bound states and to understand the 

masses, spins and parities of those states. The great majorities of nuclear 

species contain excess neutrons or protons and are therefore β-unstable. 

Many heavy nuclei decay by α-particle emission or by other forms of 

spontaneous fission into lighter elements. Another aim of this chapter is to 

understand why certain nuclei are stable against these decays and what 

determines the dominant decay modes of unstable nuclei. The problem of 

calculating the energies, spins and parities of nuclei is one of the most 

difficult problems of theoretical physics. 

 

(3-5-1) Liquid-Drop Model 

         The liquid drop model of the nucleus, proposed by Bohr and derived 

by Von Weizsacker in 1935, was one of the earliest phenomenological 

successes constructed to account for the binding energy of a nucleus. 

Experiments revealed that nuclei were essentially spherical objects, with 

sizes that could be characterized by radii proportional to A
1/3

, which 

suggested that nuclear densities were almost independent of nucleon 



number. This leads quite naturally to a model that envisions the nucleus as 

an incompressible liquid droplet, with nucleons playing the role analogous to 

molecules in a drop of normal liquid. In this picture, known as the liquid 

drop model, the individual quantum properties of nucleons are completely 

ignored. As in the case of a liquid drop, the nucleus is imagined as 

composed of a stable central core of nucleons for which the nuclear force is 

completely saturated (is based on the short range of nuclear forces), and a 

surface layer of nucleons that is not bound as tightly (forces not saturated). 

This weaker binding at the surface decreases the effective binding energy 

per nucleon (B/A), and provides a "surface tension", or an attraction of the 

surface nucleons towards the center. Nucleons interact strongly with their 

nearest neighbors, just as molecules do in a drop of water. Therefore, one 

can attempt to describe their properties by the corresponding quantities, i.e. 

the radius, the density, the surface tension and the volume energy, (see 

figure 3-1).  

 

 

 

 

 

 

 

 

Figure (3-1): Surface layer and core of nucleus in the liquid drop model. 

 

The essential assumptions are: 

1- The nucleus consists of incompressible matter so that R~A
1/3

. 



2- The nuclear force is identical for every nucleon and in particular does 

not depend on whether it is a neutron or a proton. 

3- The nuclear force saturates. 

Semi-empirical mass formula  

          An excellent parameterization of the binding energies of nuclei in 

their ground state was proposed in 1935 by Bethe and Weizsacker. This 

formula relies on the liquid-drop analogy but also incorporates two quantum 

ingredients; one is an asymmetry energy which tends to favor equal numbers 

of protons and neutrons. The other is a pairing energy which favors 

configurations where two identical fermions are paired. The semi-empirical 

mass formula (SEMF) or Bethe-Weizsacker mass formula is: 
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or  B(A,Z)=Tv+ Ts+ Tc+ Ta+ Tp+ Tsh 

The coefficients ai are chosen so as to give a good approximation to the 

observed binding energies. A good combination is the following: 

Volume Term         av = 15.5 MeV  

Surface Term          as = 16.8 MeV  

Coulomb Term       ac = 0.72 MeV  

Asymmetry Term   aa = 23 MeV  

Pairing Term           ap = 34 MeV 

Shell Term      Tsh = η = 1→3MeV 

We will now study each term in the SEMF: 

1- Volume term (Tv):  

           The first term is the volume term (avA), that describes how the 

binding energy is mostly proportional to A i.e. to the volume of nucleus, 



remember that the binding energy is a measure of the interaction among 

nucleons. Since nucleons are closely packed in the nucleus and the nuclear 

force has a very short range, each nucleon ends up interacting only with a 

few neighbors. This means that independently of the total number of 

nucleons, each one of them contribute in the same way. Thus the force is not 

proportional to the total number of nucleons one nucleon can interact with, 

but it‟s simply proportional to A.   
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The  constant  of proportionality  is  a  fitting  parameter  that  is  found  

experimentally to  be av = 15.5MeV  

This  value  is  smaller  than  the  binding  energy  of  the  nucleons  to  their  

neighbors  as  determined  by  the  strength  of  the nuclear  (strong)  

interaction. The  total  binding  energy  is  instead  the  difference  between  

the  interaction of  a  nucleon  to  its  neighbor  and  the  kinetic  energy  of  

the  nucleon  itself.  As for electrons in an atom, the nucleons are fermions, 

thus they  cannot  all be in the same state  with  zero kinetic energy, but they  

will  fill  up  all  the kinetic energy levels  according  to  Pauli‟s  exclusion  

principle.  This  model,  which  takes  into  account  the  nuclear  binding  

energy  and the  kinetic  energy  due  to  the  filling  of  shells,  indeed  gives  

an  accurate  estimate  for av.  

For example Tv (
8
Be) = 15.5x8=124MeV 

2- Surface term (Ts): 

           The  surface  term (-asA
2/3

),  also  based  on  the  strong  force,  is  a  

correction  to  the  volume  term.  We explained the volume  term  as  arising  



from  the  fact  that  each  nucleon  interacts  with  a  constant  number  of  

nucleons,  independent  of A. While  this  is  valid  for  nucleons  deep  

within  the  nucleus,  those  nucleons  on  the  surface  of  the  nucleus  have  

fewer nearest  neighbors.  This  term  is  similar  to  surface  forces  that  

arise  for  example  in  droplets  of  liquids,  a  mechanism that creates  

surface  tension  in  liquids. We can say that; whenever increasing of the 

nuclear surface area, the binding energy will decrease.  
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Where 4πR
2 
is the surface of the sphere, R=RoA

1/3
 
 

Also  the  term must  be  subtracted  from  the  volume  term  and  we  

expect  the coefficient as to have a similar order of magnitude as av. In fact 

as = 16.8MeV.  

Ts for 
8
Be=-16.8x8

2/3 
=-67.2MeV 

3- Coulomb term (Tc):  

            The  third  term -ac Z(Z−1)A
−1/3

 derives  from  the  Coulomb  

interaction  among protons,  and  of  course  is proportional to Z.  This  term  

is  subtracted  from  the volume  term  since  the  Coulomb  repulsion  makes  

a  nucleus  containing  many protons  less  favorable  (more  energetic). To  

find  the  form  of  the  term  and  estimate  the  coefficient ac,  the  nucleus  

is  modeled  as  a  uniformly  charged sphere.  
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We assume that we have a sphere of radius r when collected the nucleon to 

get the nucleus with volume
3r
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The potential energy (Vp) of such a charge distribution at the surface is: 
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The required work to add this layer is 
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To find the total work to forming the nucleus  
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We know that the proton is not repulsion with itself but with the other 

protons around it i.e. repulsion with Z-1 protons, then we can write: 
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This gives the shape of the Coulomb term. Then the constant ac can be 

estimated from 
oo

2

c
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  with Ro=1.2fm, to be ac=0.72MeV which is 

agreement with the experimental value. 
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4- Asymmetry term (Ta):  

            The Coulomb  term  seems  to indicated  that it  would be favorable  

to have less protons in  a  nucleus  and  more  neutrons. However,  this  is  

not  the  case of the liquid-drop  model  in  order  to  explain the  fact  that  

we  have  roughly  the  same  number  of  neutrons  and  protons  in  stable  

nuclei.  There is a correction term  in  the  SEMF  which  tries  to  take  into  

account  the  symmetry  in  protons  and  neutrons, i.e. the equality between 

them.  This correction (and the following  one)  can  only  be  explained  by  

a  more  complex  model  of  the  nucleus,  the shell  model,  together  with  

the quantum-mechanical exclusion  principle.  If we were to add more 

neutrons, they will  have  to  be  more  energetic,  thus  increasing  the  total  

energy  of  the  nucleus. This increase more than the Coulomb  repulsion,  so  

that  it  is  more  favorable  to  have  an  approximately  equal  number  of  

protons  and  neutrons. (A−2Z)
2
 The shape of the symmetry term is 

A

)Z2A( 2
. It can be more easily understood  by  considering  the  fact  that  

this  term goes  to  zero  for A = 2Z  and  its effect is smaller for larger A 

(while for smaller nuclei the symmetry effect is more important). i.e. for 

isobars of Z=N=A/2 (symmetry) has been more stability than isobars of Z≠N 

(Anti symmetry or Asymmetry) which reduce of the binding energy. 



Asymmetry define as the difference between binding energy for two isobar, 

one have Z=N and the other Z≠N. 

│Ta│=B(A,Z=N)-B(A,Z≠N) 

The coefficient is aa = 23MeV 
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5- Pairing term (Tp):  

          This term  is  linked  to  the  physical  evidence  that  like-nucleons  

tend  to  pair off. Then it means that the binding energy is greater (δ > 0)  if  

we  have  an  even-even  nucleus, where  all  the  neutrons  and  all  the  

protons  are  paired-off. If we have a nucleus with both an odd number of 

neutrons and of protons, it is thus favorable to convert one of the protons 

into a neutrons or vice-versa. Thus, with all other factor constant, we have to 

subtract (δ<0) a term from the binding energy for odd-odd configurations. 

Finally, for even-odd configurations we do not expect any influence from 

this pairing energy (δ = 0). The pairing term is then: 
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with ap = 34MeV 

Assume that A is the mass number for even-odd nucleus, then A+1 represent 

an even-even nucleus and A-1 for odd-odd, the pairing term is written as: 

)A(B
2

)1A(B)1A(B
Tp 


   

MeV87.8)Li(T,0)Li(T,MeV25.416x34OforT 3

6

3p4

7

3p

4/3

8

16

8p  

 



 

Figure (3-2): summary of liquid-drop model treatment of average binding 

energy. 

6- Shell term (Tv): 

            There is found experimentally that for N=Z nuclei which has a 

double magic number (2,8,20,28,50,82,…) has been a very stability, very 

high nuclear binding energy and high abundance, then for one magic number 

N or Z, then for nearest of magic number which due to increases in binding 

energy. 

Tsh=1→3MeV 

Tsh=3 for double magic number (N and Z = magic number) like 
8

16

82

4

2 O,He  

Tsh=2 for single magic number (N or Z = magic number and the other is near 

of magic number) like 
7

15

88

15

7 O,N  

Tsh=1 for single magic number (N or Z = magic number and the other is far 

from magic number) like 
10

18

8 O  

Tsh=0 for no magic number of N and Z, like 
9

16

7 N  



H.W.: find the binding energy for O,Be,Li 17

8

8

4

6

3
, Pb208

82
 . Using: 

a) mass formula, b) Weizsacker formula. Were the atomic mass of 

6
Li=6.015124u,

 8
Be=8.02502u,

 17
O=17.00453u and 

208
Pb=208.04754u  

 

Mass parabolas 

With a little rearrangement of SEMF Eq.: 
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From the formula of binding energy depending on the mass: 

MN(A,Z)=Zmp+Nmn-B(A,Z) 

we can write the mass of a nucleus in the following way: 
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 It‟s clear that for any value of A (A = constant), this equation 

represent of a parabola equation as M(A,Z)c
2
=xA+yZ+zZ

2
±δ. 

The minimum mass occurs for Z = Zo (usually not an integer). The plot of Z 

versus A or N gives the line of greatest nuclear stability. Setting ∂(Mc
2
)/∂Z 

= 0 yields: 
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For odd-A isobars, δ = 0. and therefore the equation gives a single parabola, 

which is shown in Fig. (3-3) for a typical case. 

It is clear from Fig. (3-3a) that for odd-A nuclides there can be only one 

(stable) isobar for which both these conditions do not occur. Note that: 

 



For even-A isobars, two parabolas are generated by above equation, 

differing in mass by 26. A typical case is given in Fig. (3-3b). Depending on 

the curvature of the parabolas and the separation 26, there can be several 

stable even-even isobars. Three is the largest number found in nature. There 

should be no stable odd-odd nuclides. The exceptional cases H
2
, Li

6
, B

10
, 

and N
14

 are caused by rapid variations of the nuclear binding energy for very 

light nuclides, because of nuclear structure effects which are not included in 

the liquid-drop model. Figure (3-3b) shows that for certain odd-odd nuclides 

both conditions are met so that electron and positron decay from the 

identical nuclide are possible and do indeed occur. 

 

 

Figure (3-3): mass parabola for isobars. (a) odd A nuclei. (b) even A nuclei. 

Full circles represent stable nuclides and open circles radioactive nuclides. 



 

(3-5-2) Nuclear Shell Model 

            The nuclear shell model is based on the analogous model for the 

orbital structure of atomic electrons in atoms. Although the liquid drop 

model of the nucleus has proved to be quite successful for predicting subtle 

variations in the mass of nuclides with slightly different mass and atomic 

numbers, it avoids any mention of the internal arrangement of the nucleons 

in the nucleus. We have observed that: 

1- There are an abnormally high number of stable nuclides whose proton 

and/or neutron numbers equals the magic numbers 2,8,20,28,50,82,126.  

2- Further evidence for such magic numbers is provided by the very high 

binding energy of nuclei with both Z and N being magic. 

3- The abnormally high or low alpha and beta particle energies emitted by 

radioactive nuclei according to whether the daughter or parent nucleus has a 

magic number of neutrons. Similarly. 

4- Nuclides with a magic number of neutrons are observed to have a 

relatively low probability of absorbing an extra neutron, i.e. they have 

lowest of absorption cross sections for neutrons (neutron-capture cross 

sections). 

To explain such nuclear systematics and the internal structure of the nucleus, 

a shell model of the nucleus has been developed. This model uses 

Schrodinger‟s wave equation or quantum mechanics to describe the 

energetics of the nucleons in a nucleus in a manner analogous to that used to 

describe the discrete energy states of electrons around the nucleus. This 

model assumes: 



1. Each nucleon moves independently in the nucleus uninfluenced by the 

motion of the other nucleons. 

2. Each nucleon moves in a potential well which is constant from the center 

of the nucleus to its edge where it increases rapidly by several tens of MeV. 

When the model's quantum-mechanical wave equation is solved 

numerically, the nucleons are found to distribute themselves into a number 

of energy levels. There is a set of energy levels for protons and an 

independent set of levels for neutrons. Filled shells are indicated by large 

gaps between adjacent energy levels and are computed to occur at the 

experimentally observed values of 2, 8, 20, 28, 50, 82, and 126 neutrons or 

protons. Such closed shells are analogous to the closed shells of orbital 

electrons. However, the shell model has been useful to obtain such results 

that predicts the magic numbers and particularly useful in predicting several 

properties of the nucleus, including (1) the total angular momentum of a 

nucleus, (2) characteristics of isomeric transitions, which are governed by 

large changes in nuclear angular momentum, (3) the characteristics of beta 

decay and gamma decay, and (4) the magnetic moments of nuclei. 

Single-particle shell model 

            The basic assumption of any shell model is that despite the strong 

overall attraction between nucleons which provides the binding energy 

considered in previous section, the motion of each nucleon is practically 

independent of that of any other nucleon. This apparent contradiction is 

resolved by effects of the Pauli Exclusion Principle. If all inter-nucleon 

couplings (called residual interactions) are ignored, we call the model the 

single-particle shell model. In terms of Schrodinger's equation, each nucleon 

is then assumed to move in the same potential. The potential is spherical in 



the simplest case, but there is good evidence that for nucleon numbers far 

from closed shells the potential should have an ellipsoidal shape. This 

condition will be considered later. 

This model depends on two quantum numbers, the radial (total) quantum 

number n and the orbital quantum number  . In nuclear physics each state is 

specified by n and  . Also for   = 0, 1, 2, 3, 4, 5, we use the spectroscopic 

letters s, p, d, f, g, h, respectively. A state denoted by 2p therefore means 

that n = 2,  = 1.  

The simplest useful potentials are an infinite square well potential of radius 

R 

 

or a harmonic oscillator potential 

 

where ω is the frequency of oscillation of the particle of mass mo. More 

realistic potentials are a finite square well potential as: 

 



 

Figure (3-4): Energy levels of nucleons. (a) in an infinite spherical square-

well potential. (b) in a harmonic oscillator potential. The spectroscopic 

notation (n, ) and the total occupation number up to any particular level are 

given. 

 

Spin-Orbit coupling shell model 

          A simple Coulomb potential is clearly not appropriate and we need 

some form that describes the effective potential of all the other nucleons. 

Since the strong nuclear force is short-ranged we would expect the potential 

to follow the form of the density distribution of nucleons in the nucleus. For 

medium and heavy nuclei, the Fermi distribution fits the data and the 

corresponding potential is called the Woods-Saxon form:   

 



However, although these potentials can be shown to offer an explanation for 

the lowest magic numbers, they do not work for the higher ones. This is true 

of all purely central potentials. 

The crucial step in understanding the origin of the magic numbers was 

suggested that by analogy with atomic physics there should also be a spin–

orbit part, so that the total potential is: 

 

Where L and S are the orbital and spin angular momentum operators for a 

single nucleon and )r(V s  is an arbitrary function of the radial coordinate. 

This form for the total potential is the same as that used in atomic physics 

except for the presence of the function )r(V s . Once we have coupling 

between L and S then smandm  are no longer „good‟ quantum numbers 

and we have to work with eigenstates of the total angular momentum vector 

J, defined by J=L+S. Squaring this, we have: 

 

 

and hence the expectation value of L.S, which we write as s , is: 

 

(We are always dealing with a single nucleon, so that s=1/2) The splitting 

between the two levels is thus: 

 

Experimentally, it is found that )r(V s  is negative, which means that the 

state with 
2

1
j    has a lower energy than the state with

2

1
j   . This is the 



opposite of the situation in atoms. Also, the splitting are substantial and 

increase linearly with . Hence for higher , crossings between levels can 

occur. Namely, for large , the splitting of any two neighboring degenerate 

levels can shift the 
2

1
j    state of the initial lower level to lie above the 

2

1
j    level of the previously higher level. 

         An example of the resulting splitting up to the 1G state is shown in 

Figure (3-5), where the usual atomic spectroscopic notation has been used, 

i.e. levels are written  (n j) with S, P, D, F, G, ... : used for  = 0, 1, 2, 3, 4, 

.. . . Magic numbers occur when there are particularly large gaps between 

groups of levels. Note that there is no restriction on the values of   for a 

given n because, unlike in the atomic case, the strong nuclear potential is not 

Coulomb-like. 

The configuration of a real nuclide (which of course has both neutrons and 

protons) describes the filling of its energy levels (sub-shells), for protons and 

for neutrons, in order, with the notation (n j)
k
 for each sub-shell, where k is 

the occupancy of the given sub-shell. Sometimes, for brevity, the completely 

filled sub-shells are not listed, and if the highest sub-shell is nearly filled, k 

can be given as a negative number, indicating how far from being filled that 

sub-shell is. 



 

Figure (3-5): low-lying energy levels in a single-particle shell model using a 

Woods-Saxon potential plus spin-orbit term. 

Using the ordering diagram above, and remembering that the maximum 

occupancy of each sub-shell is 2j+1, we predict, for example, the 

configuration for O17

8
 to be: 

 

 

Notice that all the proton sub-shells are filled, and that all the neutrons are in 

filled sub-shells except for the last one, which is in a sub-shell on its own. 

Most of the ground state properties of O17

8
 can therefore be found from just 

stating the neutron configuration as 
1

2

5 )d1( . 

Although the spin-orbit shell model had one of the most stimulating effects 

on nuclear structure physics, the simple form given above cannot be 

sufficient. For example, the model cannot explain why even-even nuclei 

always have a zero ground-state spin, or more generally, why any even 



number of identical nucleons couples to zero ground-state spin. Evidently 

there is a (residual) nucleon-nucleon interaction which favors the pairing of 

nucleons with opposing angular momenta. 

 

 

 

 



 

Figure (3-6): Nucleon orbitals in a model with a spin-orbit interaction. The 

two left columns show the magic numbers and energies for a pure harmonic 

potential. The splitting of different values of the orbital angular momentum 

  can be arranged by modifying the central potential. Finally, the spin-orbit 

coupling splits the levels so that they depend on the relative orientation of 



the spin and orbital angular momentum. The number of nucleons per level 

(2j+1) and the resulting magic numbers are shown on the right. 

Table (3-1): Arrangement of the nuclear shells and its distributions. 
  

  
n 

0 1 2 3 4 5 6 shell 
No. of 

nucleons 
1 1s       s 2 

2  1p      p 6 

3 2s  1d     d 10 

4  2p  1f    f 14 

5 3s  2d  1g   g 18 

6  3p  2f  1h  h 22 

7 4s  3d  2g  1i i 26 

 

For example, 
8

17

9 F and 
9

17

8 O have one unpaired nucleon outside a doubly 

magic 
8

16

8O core. The above figure, tells us that the unpaired nucleon is in a 

 =2, j=5/2. The spin parity of the nucleus is predicted to be 5/2
+
 since the 

parity of the orbital is 
1 . This agrees with observation. The first excited 

states of 
8

17

9 F and 
9

17

8 O corresponding to raising the unpaired nucleon to the 

next higher orbital, are predicted to be 1/2
+
, once again in agreement with 

observation. 

On the other hand, 
7

15

8 N and 
7

15

8 O have one “hole” in their 
8

16

8O core, the 

ground state quantum numbers should then be the quantum numbers of the 

hole which are     =1 and j=1/2 according to above Figure. The quantum 

numbers of the ground state are then predicted to be 1/2
−
, in agreement with 

observation. 

 

 



(3-5-3) Fermi Gas Model (Statistical Model or Uniform Particle Model) 

              This model supposes that, as a result of the strong nuclear 

compound between the nucleons, the movement of them cannot study alone, 

but we must study them statistically, i.e. it's give the average of the physical 

quantity from all of the nucleons.   

In this model, the protons and neutrons that make up the nucleus are 

assumed to comprise two independent systems of nucleons, each freely 

moving inside the nuclear volume subject to the constraints of the Pauli 

principle. The potential felt by every nucleon is the superposition of the 

potentials due to all the other nucleons. In the case of neutrons this is 

assumed to be a finite-depth square well; for protons, the Coulomb potential 

modifies this. A sketch of the potential wells in both cases is shown in 

Figure (3-7). 

For a given ground state nucleus, the energy levels will fill up from the 

bottom of the well. The energy of the highest level that is completely filled 

is called the Fermi level of energy EF and has a momentum pF=(2MEF)
1/2

, 

where M is the mass of the nucleon. Within the volume V, the number of 

states with a momentum between p and p+dp is given by the density of states 

factor: 

 



 

Figure (3-7): proton and neutron potentials and states in the fermi gas model. 

 

Since every state can contain two fermions of the same species, we can have 

(using 
Fp

0

)dn2n  

 

For neutrons and protons, respectively, with a nuclear volume 

 

Where experimentally Ro=1.2fm, Assuming for the moment that the depths 

of the neutron and proton wells are the same, we find for a nucleus with 

Z=N=A/2, the Fermi momentum: 

 

Thus the nucleons move freely within the nucleus with quite large momenta. 



The Fermi energy is: 

 

The difference between the top of the well and the Fermi level is constant 

for most heavy nuclei and is just the average binding energy per nucleon 

Bave=B/A=7–8 MeV. The depth of the potential and the Fermi energy are to 

a good approximation independent of the mass number A: 

Vo=EF+Bave≈40MeV 

Heavy nuclei generally have a surplus of neutrons. Since the Fermi levels of 

the protons and neutrons in a stable nucleus have to be equal (otherwise the 

nucleus can become more stable by β-decay) this implies that the depth of 

the potential well for the neutron gas has to be deeper than for the proton 

gas, as shown in Figure (3-7). Protons are therefore on average less tightly 

bound in nuclei than are neutrons. 

(3-5-4) Collective Model 

             For each of the liquid drop model and shell model have a specific 

applications, all of them succeed in the interpretation of some phenomena 

and fails to explain other phenomena. So it became logical to consider each 

of these models is complementary to another in a single model called the 

collective model as a model that combines the two models. This model 

views the nucleus as having a hard core of nucleons in filled shells, as in the 

shell model, with outer valence nucleons that behave like the surface 

molecules of a liquid drop. In addition to the successes of each of the two 

models, this model has succeeded in formulating an equation to calculate the 

rotational energy levels to the even-even nuclei, i.e. the energy levels of 

deformed nuclei are very complicated, because there is often coupling 



between the various modes of excitation, but nevertheless many predictions 

of the collective model are confirmed experimentally.  
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Where, I is the moment of inertia to the nucleus. 

J is the total angular momentum to the nucleus. 

 

(3-5-5) Optical Model 

           The name comes from likening of the nucleus target as an optical 

lens, while the fallen particle represents the fallen optical wave. The most 

important achievements of the optical model are a description of the cross 

section for neutron absorption as a function of neutron's energy and of the 

mass number of the nucleus target. This model has been assumed that the 

total potential of the neutron and the nucleus target is a complex potential 

and can be written as: 

 V=Vo+iV1  

Where Vo is the real part to the total potential which represents the effect of 

the nucleus on the neutron. 

Vo=-42MeV for r≤R 

     =0             for r>R 

While iV1 is the imaginary part to the potential which represents the 

probability to creates the compound nuclei. 

(3-5-6) Cluster Model (α-Particle Model) 

            This model supposes that the alpha particle represent the building 

block of the nucleus, it's clear that this model explain the emitting of alpha 

particles from the heavy nucleus, for examples: 
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