3. Sequences

- (3.1) **Definition**: Let X be a non-empty set. A function which its domain \mathbb{N} and its codomain X is called a sequence in X, such that if $f: \mathbb{N} \to X$, $\forall n \in \mathbb{N} \exists x_n \in X \ni f(n) = x_n$.
- (3.2) **Example:** If $\{x_n\}$ be a sequence defined in $\mathcal{R} \ni x_n = (-1)^n \ \forall n \in \mathbb{N} \implies \{x_n\} = \{(-1)^n\} = \{-1,1,-1,1,...\}$ a range is $\{x_n : n \in \mathbb{N}\} = \{-1,1\}$.
- (3.3) **Definition**: Let $\{x_n\}, \{y_n\}$ be a sequences in X, we say that $\{y_n\}$ is a subsequence of $\{x_n\}$, if there is a function $\varphi \colon \mathbb{N} \to \mathbb{N} \ni$
 - 1. $x_n \circ \varphi = y_n$;
 - 2. $\forall n \in \mathbb{N} \ \exists k \in \mathbb{N} \ \ni \varphi(m) \ge n \ \forall m \ge k$.
- (3.4) **Example:** Let $x_n = \frac{1}{n}$, $\sigma_n = \frac{1}{2n-1}$, we note that $\{\sigma_n\}$ is a subsequence of $\{x_n\}$, since if we define $\psi: \mathbb{N} \to \mathbb{N}$ by $\psi(n) = 2n-1$, $\sigma_n = x_n \circ \psi = \frac{1}{2n-1}$ and then $\{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\}$ be a subsequence of $\{\frac{1}{n}\}$.
- (3.5) Note: If $\{y_n\}$ is a subsequence of $\{x_n\}$ and $\{y_n\}$ is a subsequence of $\{z_n\}$, then $\{z_n\}$ is a subsequence of $\{x_n\}$.
- (3.6) **Definition**: If $\{x_n\}$ be a sequence in a partially ordered set X, we say that $\{x_n\}$ be an increasing, if $x_n \le x_{n+1} \forall n$, and we say that $\{x_n\}$ be a decreasing, if $x_{n+1} \le x_n \forall n$ and we say that $\{x_n\}$ be a monotone, if $\{x_n\}$ an increasing or a decreasing.

(3.7) **Note:**

- $x_n \uparrow = \{x_n\}$ be an increasing.
- $x_n \uparrow x = \{x_n\}$ be an increasing and $x_n = \sup x_n, n \in \mathbb{N}$.
- $x_n \downarrow = \{x_n\}$ be a decreasing.
- $x_n \downarrow x = \{x_n\}$ be a decreasing and $x_n = \inf x_n, n \in \mathbb{N}$.
- (3.8) **Definition**: Let $\{x_n\}$ be a sequence in a partially ordered set X, we say that $\{x_n\}$ is a converges to $x \in X$, if there is $\{a_n\}, \{b_n\}$ in X, such that
 - 1. $a_n \leq x_n \leq b_n \, \forall n$;
 - 2. $a_n \uparrow x$ and $x_n \downarrow x_n$.
- (3.9) Note: x is called a converge point and written $x_n \stackrel{0}{\to} x$.

- (3.10) **Definition**: Let $\{x_n\}$ be a sequence in a partially ordered set X, we have
 - Inferior limit = $\lim \inf x_n$, where $\lim \inf x_j$, $n \in \mathbb{N}$, $j \ge n$.
 - Superior limit = $\limsup x_n$, where $\limsup x_j$, $n \in \mathbb{N}$, $j \ge n$.
- (3.11) Note: If $\limsup x_n = \limsup x_n = x \implies x_n \stackrel{0}{\to} x$.

Real Sequences

- (3.12) **Note:** We say that $\{x_n\}$ be a real sequence if $X = \mathcal{R}$.
- (3.13) **<u>Definition</u>**: The numerical sequence is a sequence which be subtract output of every term from direct previous term is equal to constant called progression basis and denoted by d.
- (3.14) **Example:** The numerical sequence which its first term a and its basis d is

 $\{a, a+d, a+2d, ..., a+(n-1)d, ...\}$. The general term of a numerical sequence $\{x_n\}$ is $x_n=a+(n-1)d$ where a represents a first term and d represents a basis with the partial summation

$$S_n = \sum_{k=1}^n x_k = \sum_{k=1}^n (a + (k-1)d) = \frac{n}{2}(2a + (n-1)).$$

- (3.15) **<u>Definition</u>**: Geometry progression is a sequence which output of division of every term on direct previous term is equal to a constant called progression basis and denoted by r.
- (3.16) **Example:** Geometric progression which its first term a and its basis r is

 $\{a, ar, ar^2, ..., ar^n, ...\}$. The general term is $x_n = ar^{n-1}$ where a represents a first term and r represents a basis with the partial summation

$$S_n = \sum_{k=1}^n x_k = \sum_{k=1}^n a r^{k-1} = \frac{a(1-r^n)}{1-r}, r \neq 1.$$

If
$$r = 1 \Longrightarrow S_n = a + a + \dots + a = na$$
.

If
$$|r| < 1 \Longrightarrow \sum_{k=1}^{\infty} ar^{n-1} = \frac{a}{1-r}$$
.

(3.17) **<u>Definition</u>**: Arithmetic geometric progression is $\{a, (a+d)r, (a+2d)r^2, ..., (a+(n-1)d)r^{n-1}, ...\}$. The general term is $x_n = (a+(n-1)d)r^{n-1}$ and the partial summation is

$$S_n = \sum_{k=1}^n x_k = \sum_{k=1}^n (a + (k-1)d)r^{k-1} = \frac{a(1-r^n)}{1-r} + \frac{rd(1-nr^{n-1}) + (n-1)r^n}{(1-r)^2}, r \neq 1.$$
If $|r| < 1 \Rightarrow \sum_{k=1}^\infty (a + (n-1)d)r^{n-1} = \frac{a}{1-r} + \frac{rd}{(1-r)^2}$.

(3.18) **Definition**: Let $\{x_n\}$ be a real sequence, we say that $\{x_n\}$

- 1. Convergent, if $\exists r \in \mathcal{R} \ni \forall \varepsilon > 0 \ \exists k \in \mathbb{Z}^+ \ni |x_n x| < \varepsilon \ \forall n > k$, we say that a point x is a limit point of $\{x_n\}$ and its written by $\lim_{n \to \infty} x_n$ or $x_n \to x$ where $n \to \infty$, therefore $x_n \to x$ iff $|x_n x| \to 0$.
- 2. Divergent, if $\{x_n\}$ does not convergent.
- 3. Cauchy sequence, if $\forall \varepsilon > 0 \exists k \in \mathbb{Z}^+ \ni |x_n x_m| < \varepsilon \forall n, m > k$ and then $\{x_n\}$ is a Cauchy sequence iff $|x_n x_m| \to 0$ where $n, m \to \infty$.

(3.19) **Examples:**

1. Show that $\{x_n\} \to x$.

Solution: since $\forall \varepsilon > 0 \Longrightarrow |x_n - x| = 0 < \varepsilon$.

2. Show that $\{\frac{1}{n}\} \to 0$.

Solution: since $\forall \varepsilon > 0$ (by Archimedes property), $\exists k \in \mathbb{Z}^+ \ni \frac{1}{k} < \varepsilon \Longrightarrow \forall n > k \Longrightarrow \frac{1}{n} < \frac{1}{k} \Longrightarrow \frac{1}{n} < \varepsilon$, so $\left| \frac{1}{n} - 0 \right| = \frac{1}{n} < \varepsilon \ \forall n > k$.

3. Show that $\{n\}$ be a divergent.

Solution: since if we assume that $\{n\}$ be a convergent $\Rightarrow \exists x \in \mathcal{R} \ni x_n \to x$ and then $\forall \varepsilon > 0 \Rightarrow (x - \varepsilon, x + \varepsilon)$ contains of terms $\{n\}$, since $x + \varepsilon \in \mathcal{R} \Rightarrow$ (by Archimedes property) $\Rightarrow \exists k \in \mathbb{Z}^+ \ni x + \varepsilon < k$, since $x + \varepsilon < k < k + 1 < \cdots \Rightarrow k, k + 1, k + 2 \notin (x - \varepsilon, x + \varepsilon)$, this means $(x - \varepsilon, x + \varepsilon)$ does not contain on terms of $\{n\}$, but this is contradiction.

4. Show that $\{x_n\}$ such that $x_n = \begin{cases} n, & n \le 10^6 \\ 1, & n > 10^6 \end{cases}$ converges to one.

Solution: since $\forall \varepsilon > 0$, take $k > 10^6 \ \forall n > k \implies x_n = 1$ and then $|x_n - 1| = 0 < \varepsilon \implies x_n \to 1$.

5. Show that $\{(-1)^n\}$ be a divergent.

Solution: since if we suppose that $\{(-1)^n\}$ be a convergent $\Rightarrow \exists x \in \mathcal{R} \ni x_n = (-1)^n \to x$, let $\varepsilon > 0 \exists k \in \mathbb{Z}^+ \ni |x_n - x| < \varepsilon \ \forall n > k \Rightarrow |(-1)^n - x| < \varepsilon \ \forall n > k \Rightarrow x - \varepsilon < (-1)^n < x + \varepsilon \ \forall n > k \Rightarrow (-1)^n \in (x - \varepsilon, x + \varepsilon) \forall n > k$.

Let x = 1, take $\varepsilon = \frac{1}{4} \Rightarrow \frac{1}{4}\varepsilon > 0 \Rightarrow (-1)^n \in (1 - \frac{1}{4}\varepsilon, 1 + \frac{1}{4}\varepsilon) \forall n \text{ is an even,}$ $(-1)^n \notin (1 - \frac{1}{4}\varepsilon, 1 + \frac{1}{4}\varepsilon) \forall n \text{ is an odd, this means that } (1 - \frac{1}{4}\varepsilon, 1 + \frac{1}{4}\varepsilon) \text{ does not contain all terms of } \{(-1)^n\} \text{ and then } \{(-1)^n\} \text{ does not converge to } 1.$

By same way we prove that $\{(-1)^n\}$ does not converge to -1.

Now, let $x \neq 1, x \neq -1$, let $a_1 = |1 - x|, a_2 = |-1 - x|$, take $\varepsilon \ni \varepsilon < a_1, \varepsilon < a_2$, we deduce that $(x - \varepsilon, x + \varepsilon)$ does not contain on any term of $\{(-1)^n\} \Longrightarrow (-1)^n$ does not converge to x.

(3.20) **Theorem:**

- 1. If a real sequence is a convergent, then a converge point is a unique.
- 2. Every convergent sequence be Cauchy sequence.

Proof: (1) Let $x_n \to x$, $x_n \to y \ni x \neq y$ and let $|x - y| = \varepsilon \Longrightarrow \varepsilon > 0$, since $x_n \to x \Longrightarrow \exists k_1 \in \mathbb{Z}^+ \ni |x_n - x| < \frac{\varepsilon}{2} \forall n > k_1$, $x_n \to y \Longrightarrow \exists k_2 \in \mathbb{Z}^+ \ni |x_n - y| < \frac{\varepsilon}{2} \forall n > k_2$ put $k = \max \{k_1, k_2\} \Longrightarrow |x_n - x| < \frac{\varepsilon}{2}, |x_n - y| < \frac{\varepsilon}{2} \forall n > k \Longrightarrow \varepsilon = |x - y| = |(x_n - x) + (x_n - y)| \le |x_n - x| + |x_n - y| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$, but this is a contradiction $\Longrightarrow x = y$.

(2) let $\{x_n\}$ be a convergent sequence $\Rightarrow \exists x \in X \ni x_n \to x$, let $\varepsilon > 0$, since $x_n \to x \Rightarrow \exists k \in \mathbb{Z}^+ \ni |x_n - x| < \frac{\varepsilon}{2} \forall n > k$, if $n, m \ge k \Rightarrow |x_n - x_m| = |(x_n - x) + (x - x_m)| \le |x_n - x| + |x_m - x|| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$ and then $\{x_n\}$ be Cauchy sequence.

(3.21) **Definition**: If $\{x_n\}$ be a real sequence, we say that $\{x_n\}$ is

- 1. Bounded above, if $\exists M_1 \in \mathcal{R} \ni x_n \leq M_1 \forall n$;
- 2. Bounded below, if $\exists M_2 \in \mathcal{R} \ni M_2 \leq x_n \forall n$;
- 3. Bounded, if $\exists M \in \mathcal{R} \ni |x_n| \leq M \ \forall n$.

(3.22) **Examples**:

- 1. $\{\frac{1}{n}\}$ is a bounded, since $\left|\frac{1}{n}\right| < 2 \ \forall n$.
- 2. $\{\frac{n}{n+1}\}$ is a bounded, since $\left|\frac{n}{n+1}\right| < 1 \ \forall n$.
- 3. $\{(-1)^n\}$ is a bounded, since $|(-1)^n| \le 1 \ \forall n$.
- 4. $\{n\}$ does not bounded, since if we suppose that $\{n\}$ is a bounded $\Rightarrow \exists M \in \mathbb{R}^+ \ni |n| \leq M \ \forall n$, but this is a contradiction (Archimedes property) since $n \geq M, n \in \mathbb{Z}^+$.
- 5. $\{3^n\}$ does not bounded.
- (3.23) **Theorem**: Every Cauchy sequence be a bounded, and then every convergent sequences be a bounded.

Proof: Let $\{x_n\}$ be Cauchy sequence, we must prove that $\{x_n\}$ is a bounded. Let $\varepsilon = 1$, since $\{x_n\}$ is a Cauchy sequence $\Rightarrow \exists k \in \mathbb{Z}^+ \ni |x_n - x_m| < 1 \forall n, m > k$, let $m = k + 1 \Rightarrow |x_n - x_m| < 1 \forall n > k$, since $|x_n| - |x_{k+1}| \le |x_n - x_{k+1}| \Rightarrow |x_n| - |x_{k+1}| < 1 \ \forall n > k \Rightarrow |x_n| < 1 + |x_{k+1}| \ \forall n > k$, put $M = \max\{|x_1|, |x_2|, \dots, |x_k|, |x_{k+1}| + 1\}$, and then $\{x_n\}$ is a bounded.

- (3.24) Note: If a real sequence is a bounded, then its not a necessary be a convergent, for example $\{(-1)^n\}$ is a bounded, but does not convergent.
- (3.25) **Definition**: Let $\{x_n\}$ be a real sequence. We said that $\{x_n\}$
 - 1. Non-decreasing, if $x_n \le x_{n+1} \, \forall n$.
 - 2. Increasing, if $x_n < x_{n+1} \, \forall n$.
 - 3. Non-increasing, if $x_{n+1} \le x_n \ \forall n$.
 - 4. Decreasing, if $x_{n+1} < x_n \ \forall n$.
- (3.26) **Note**: We said that $\{x_n\}$ is a monotonic, if its be satisfy any one of above.

(3.26) **Examples**:

- 1. $\{\frac{1}{\sqrt{2}}\}$ is a decreasing \implies a monotonic.
- 2. $\{\frac{n}{n+1}\}$ is an increasing \implies a monotonic.
- 3. $\{(-1)^n\}$ does not a monotonic.

(3.27) **Theorem**:

- 1. Every bounded real sequence and monotonic be a convergent.
- 2. Every bounded real sequence contains on a convergent partial sequence.

(3.28) **Theorem**: (Some special sequences)

1. If
$$p > 0 \Longrightarrow x_n = \frac{1}{n^p} \to 0$$
.

2. If
$$p > 0 \Longrightarrow x_n = n^p \to 1$$
.

3.
$$x_n = \sqrt[n]{n} \to 1$$
.

4. If
$$|a| < 1 \Longrightarrow x_n = a^n \to 0$$
.

<u>Proof:</u> (1) let $\varepsilon > 0$, take $k > (\frac{1}{\varepsilon})^{1/p} \ \forall n > k \implies n > (\frac{1}{\varepsilon})^{1/p} \implies \frac{1}{n^p} < \varepsilon \implies \left| \frac{1}{n^p} - 0 \right| < \varepsilon$.

(2) a. if
$$p > 1 \Rightarrow \sqrt[n]{p} > 1$$
, put $y_n = \sqrt[n]{p} - 1 \Rightarrow y_n > 0 \Rightarrow \sqrt[n]{p} = 1 + y_n \Rightarrow (1 + y_n)^n = 1 + ny_n + \frac{n(n-1)}{2}y_n^2 + \dots + y_n^n$, since $y_n > 0 \ \forall n \Rightarrow p \ge 1 + ny_n \Rightarrow \frac{p-1}{n} \ge y_n \Rightarrow 0 < y_n < \frac{p-1}{n} \Rightarrow y_n \to 0 \Rightarrow x_n \to 0$.

b. if
$$p = 1 \Longrightarrow \sqrt[n]{p} = 1 \ \forall n \Longrightarrow \sqrt[n]{p} \to 1$$
.

c. if
$$0 1$$
, put $\lambda = \frac{1}{p} \Longrightarrow \sqrt[n]{p} = \frac{1}{\sqrt[n]{\lambda}}$ and $\sqrt[n]{\lambda} \to 1$, since $\lambda > 0 \Longrightarrow \sqrt[n]{p} \to 1$.

(3) let
$$y_n = \sqrt[n]{n} - 1$$
, since $\sqrt[n]{n} > 1 \forall n \Rightarrow y_n > 0 \ \forall n \Rightarrow \sqrt[n]{n} = 1 + y_n \Rightarrow n = (1 + y_n)^n = 1 + ny_n + \frac{n(n-1)}{2}y_n^2 + \dots + y_n^n \Rightarrow n > \frac{n(n-1)}{2}y_n^2 \Rightarrow y_n^2 < \frac{2}{n-1} \Rightarrow |y_n| < \sqrt{\frac{2}{n-1}} \Rightarrow y_n < \sqrt{\frac{2}{n-1}} \ \forall n \ge 2 \Rightarrow y_n \to 0 \Rightarrow x_n \to 0.$

$$(4) \ \forall \varepsilon > 0 \ \exists k \in \mathbb{Z}^+ \ni |x_n| < \varepsilon \ \forall n > k.$$

a. if
$$a = 0, k = 0$$
.

b. if
$$a \neq 0 \Rightarrow \frac{1}{|a|}$$
 exists, put $b = |a| - 1 \Rightarrow \frac{1}{|a|} = 1 + b$, since $|a| < 1 \Rightarrow \frac{1}{|a|} > 1 \Rightarrow b > 0$, $|a^n| = |a|^n = \frac{1}{(1+b)^n}$, $(1+b)^n = 1 + nb + \dots + b^n > nb \Rightarrow \frac{1}{(1+b)^n} < \frac{1}{nb} \Rightarrow |a^n| < \frac{1}{nb} \forall n$, put $k > \frac{1}{\varepsilon b} \forall n > k \Rightarrow n > \frac{1}{\varepsilon b} \Rightarrow \frac{1}{nb} < \varepsilon \Rightarrow |a^n| < \varepsilon \Rightarrow x_n = a^n \to 0$.

(3.29) **Theorem**: Let $\{x_n\}$, $\{y_n\}$ be a real sequences such that $x_n \to x$ and $y_n \to y$, then

- 1. $x_n + y_n \rightarrow x + y$.
- 2. $\lambda x_n \to \lambda x \ \forall \lambda \in \mathcal{R}$.
- 3. $\lambda + x_n \to \lambda + x \ \forall \lambda \in \mathcal{R}$.
- 4. $x_n y_n \rightarrow xy$.
- 5. $\frac{x_n}{y_n} \to \frac{x}{y}$ where $y_n \neq 0 \ \forall n$.
- 6. $\frac{1}{y_n} \to \frac{1}{y}$ where $y_n \neq 0 \ \forall n$.
- 7. $|x_n| \to |x|$.
- 8. $|x_n y_n| \to |x y|$.
- 9. If $x_n \le y_n \Longrightarrow x \le y \ \forall n$.

Proof: (1) let $\varepsilon > 0$, since $x_n \to x \Longrightarrow \exists k_1 \in \mathbb{Z}^+ \ni |x_n - x| < \frac{\varepsilon}{2} \forall n > k_1$, since $y_n \to x \Longrightarrow \exists k_2 \in \mathbb{Z}^+ \ni |y_n - y| < \frac{\varepsilon}{2} \forall n > k_2$, put $k = \max\{k_1, k_2\} \Longrightarrow |x_n - x| < \frac{\varepsilon}{2}$, $|y_n - y| < \frac{\varepsilon}{2} \forall n > k$, $|(x_n - x) + (x_n - y)| \le |x_n - x| + |x_n - x| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$, so $x_n + y_n \to x + y$.

(3.30) **Theorem**:

- 1. For all real number, there is Cauchy sequence of rational numbers converge of them.
- 2. For all real number, there is Cauchy sequence of irrational numbers converge of them.
- 3. There is Cauchy sequence of rational numbers does not converge to any rational number.

Proof: (1) let $r \in \mathcal{R}$, since $r - \frac{1}{n} < r < r + \frac{1}{n} \forall n \in \mathbb{Z}^+ \Longrightarrow$ (by density of rational numbers) $\Longrightarrow \forall n \in \mathbb{Z}^+ \exists r_n \in \mathbb{Q} \ni |r_n - r| < \frac{1}{n} \ \forall n \in \mathbb{Z}^+ \Longrightarrow r - \frac{1}{n} < r_n < r + \frac{1}{n} \forall n \in \mathbb{Z}^+$, now, we must prove that $r_n \to r$, let $\varepsilon > 0 \Longrightarrow$ (by Archimedes property) $\Longrightarrow \exists k \in \mathbb{Z}^+ \ni \frac{1}{k} < \varepsilon \ \forall n > k \Longrightarrow \frac{1}{n} < \frac{1}{k} \Longrightarrow |r_n - r| < \frac{1}{n} < \frac{1}{k} < \varepsilon \Longrightarrow r_n \to r$.

- (3.31) **Definition**: We said that a space *X* is a complete, if every Cauchy sequence in *X* be a convergent in *X*.
- (3.32) Note: \mathbb{Q} is an incomplete, while \mathcal{R} is a complete.