13. Uniform Continuity

(13.1) **<u>Definition</u>**: If (X, d_1) , (Y, d_2) be metric spaces. We said that a function $f: X \to Y$ is an uniform continuous on X, if $\forall \varepsilon > 0 \ \exists \delta > 0 \ \exists \forall x, y \in X$, then $d_1(x, y) < \delta \Longrightarrow d_2(f(x), f(y)) < \varepsilon$.

(13.2)**Theorem**: Every uniform continuous is continuous.

Proof: let (X, d_1) , (Y, d_2) are metric spaces and let a function $f: X \to Y$ is an uniform continuous. Let $x_0 \in X$, we must prove that f be continuous at x_0 .

Let $\varepsilon > 0$, since f is an uniform continuous $\Rightarrow \exists \delta > 0 \ni \forall x, y \in X$, then

 $d_1(x,y) < \delta \Rightarrow d_2(f(x),f(y)) < \varepsilon$, since $x_0 \in X \Rightarrow \forall x \in X \Rightarrow d_1(x,x_0) < \delta \Rightarrow d_2(f(x),f(x_0)) < \varepsilon \Rightarrow f$ is a continuous at $x_0 \Rightarrow f$ is a continuous.

(13.3) Example: Let (\mathcal{R}, d_u) be usual metric space and a function $f: \mathcal{R} \to \mathcal{R}$ defined by $f(x) = x^2, x \in \mathcal{R}$, then f is continuous, but does not uniform continuous.

Solution: $\varepsilon > 0 \ni \forall \delta > 0 \exists x, y \in \mathcal{R} \text{ and } |x - y| < \delta \Longrightarrow |f(x) - f(y)| > \varepsilon$

Let $\delta > 0$, (by Archimedes property) $\exists k \in \mathbb{Z}^+ \ni \frac{1}{k} < \delta$

Put
$$y = k + \frac{1}{k}$$
, $x = k \Longrightarrow |x - y| = \frac{1}{k} < \delta$, but $|f(x) - f(y)| = 2 + \frac{1}{k^2} > 2$

 \Rightarrow f does not uniform continuous.

Real- Valued Functions

(13.4) <u>Definition</u>: Let $f, g \in RV(X) = \{f: X \to \mathcal{R}\}, \lambda \in \mathcal{R}$. Define $f + g, \lambda f, \frac{f}{g}, |f|$ as following:

- $\bullet \quad (f+g)(x) = f(x) + g(x)$
- $(\lambda f)(x) = \lambda f(x)$
- $\bullet \quad (fg)(x) = f(x)g(x)$
- $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, g(x) \neq 0 \ \forall x \in X$
- |f|(x) = |f(x)|

Prof. Dr. Najm Abdulzahra Makhrib Al-Seraji, Lectures in Mathematical Analysis (1) [2021-2022]

(13.5) Theorem: If $f, g \in C(X)$ which denoted to set of all a continuous functions and defined from (X, d) into (\mathcal{R}, d_u) and $\lambda \in \mathcal{R}$, then

- 1. $f + g \in C(X)$.
- 2. $\lambda f \in C(X)$.
- 3. $fg \in C(X)$.
- 4. $\frac{f}{g} \in C(X)$.
- 5. $|f| \in C(X)$.

Proof: (1) let $x_0 \in X$, $\varepsilon > 0$

Since $f, g \in C(X) \Longrightarrow f: X \to \mathcal{R}, g: X \to \mathcal{R}$ are continuous functions

 \Rightarrow f, g are continuous at x_0

Since $f: X \to \mathcal{R}$ is continuous at $x_0 \Longrightarrow \exists \delta_1 > 0 \ni \forall x \in X \Longrightarrow d(x, x_0) < \delta_1 \Longrightarrow |f(x) - f(x_0)| < \frac{\varepsilon}{2}$

Since $g: X \to \mathcal{R}$ is continuous at $x_0 \Longrightarrow \exists \delta_2 > 0 \ni \forall x \in X \Longrightarrow d(x, x_0) < \delta_2 \Longrightarrow |g(x) - g(x_0)| < \frac{\varepsilon}{2}$

Put $\delta = \min \{\delta_1, \delta_2\} \Longrightarrow \delta > 0 \ \forall x \in X \Longrightarrow d(x, x_0) < \delta$

$$(f+g)(x) - (f+g)(x_0) = (f(x) + g(x)) - (f(x_0) + g(x_0))$$

$$= (f(x) - f(x_0)) + (g(x) - g(x_0))$$

$$|(f+g)(x) - (f+g)(x_0)| = |f(x) - f(x_0)| + |(g(x) - g(x_0))| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

 $\Rightarrow f + g$ is continuous at $x_0 \Rightarrow f + g \in C(X)$.

Boundedness

(13.6) <u>Definition</u>: Let (X, d) be metric space and $A \subseteq X$. We said that A is bounded in X, if $\delta(A) = \sup \{d(x, y) : x, y \in A\} < \infty$ or $B = \{d(x, y) : x, y \in A\}$ is bounded in \mathcal{R} . We say that X is bounded space, if $\delta(X) < \infty$.

(13.7) Theorem: Let (X, d) be metric space and $A \subseteq X$. We said that A is bounded in $X \Leftrightarrow \forall x_0 \in A \exists k \in \mathbb{Z}^+ \ni d(x, x_0) < k \ \forall x \in A$.

Prof. Dr. Najm Abdulzahra Makhrib Al-Seraji, Lectures in Mathematical Analysis (1) [2021-2022]

(13.8) **Example:** In usual metric space (\mathcal{R}, d_u) , we have

- 1. $A_1 = (a, b), A_2 = (a, b], A_3 = [a, b), A_4 = [a, b]$ be a bounded, since $\delta(A_i) = b a \ \forall i = 1,2,3,4$.
- 2. A space \mathcal{R} is unbounded, since $\delta(\mathcal{R}) = \infty$.
- (13.9) <u>Definition</u>: Let X, d be metric space and (\mathcal{R}, d_u) is usual metric space. We said that a function $f: X \to \mathcal{R}$ is a bounded, if $\exists M \in \mathcal{R}^+ \ni |f(x)| \leq M \ \forall x \in X$.

Intermediate Value Property

(13.10) **<u>Definition</u>**: Let (\mathcal{R}, d_u) is usual metric space. We said that $f: [a, b] \to \mathcal{R}$ satisfies an intermediate value property, if $\forall x, y \in [a, b], \forall s$ between $f(x), f(y) \exists z$ between $x, y \ni f(z) = s$.

(13.11) Example: Let (\mathcal{R}, d_u) be usual metric space and let a function $f: [a, b] \to \mathcal{R}$ defined by $f(x) = x \ \forall \ x \in [a, b]$, then a function f satisfies an intermediate value property.

Solution: let $x, y \in [a, b] \ni x < y$ and let f(x) < s < f(y)

Since
$$f(x) = x \ \forall \ x \in [a, b] \Longrightarrow x < s < y$$

Since $f(s) = s \Rightarrow f$ satisfies an intermediate value property.

(13.12) <u>Theorem</u> (Intermediate Value Theorem)

Let (\mathcal{R}, d_u) is usual metric space. If a function $f: [a, b] \to \mathcal{R}$ is a continuous, then $\forall s$ between $f(a), f(b), \exists z \text{ in } [a, b] \ni f(z) = s$.

(13.13) Example: Let (\mathcal{R}, d_u) be usual metric space. If a function $f: [0,1] \to \mathcal{R}$ defined as $f(x) = \begin{cases} \sin \frac{1}{x}, & 0 < x \le 1 \\ 0, & x = 0 \end{cases}$, then f satisfies an intermediate value property, but its discontinuous.