Prof. Dr. Najm Abdulzahra Makhrib Al-Seraji, Lectures in Mathematical Analysis (1) [2021-2022]

14. Compactness

(14.1) <u>**Definition**</u>: Let $F = \{A_{\lambda}\}_{{\lambda} \in \Lambda}$ is a family of subsets in X, and let $A \subseteq X$. We said that F is a covering of A, if $A \subseteq A_{\lambda}$. If Λ is a finite, then F is a finite covering of A.

(14.2)**Example:** Let $X = \{1,2,3,4,5\}$, $A = \{1,2\}$, then

- 1. A family $\{\{1\}, \{2,3\}\}$ represents a covering of A, since $\{1,2,3\} = \{1\} \cup \{2,3\} \Rightarrow A \subseteq \{1\} \cup \{2,3\}$.
- 2. A family $\{\{2\}, \{4,5\}\}$ does not represent a covering of A, since $A \nsubseteq \{\{2\} \cup \{4,5\}\}$.
- 3. A family $\{\{1,2\}, \{3,4\}, \{1,3,5\}\}$ represents a covering of A and X.

(14.3)**Example:**

- 1. A family $F = \{ [1 \frac{1}{n}, \frac{1}{n}] : n \in \mathbb{Z}^+ \}$ represents an infinite covering of A = (0,1).
- 2. A family $F = \{(n, n + 3) : n \in \mathbb{Z}\}$ represents an infinite covering of \mathbb{R} .
- 3. A family $F = \{(n, n + 1) : n \in \mathbb{Z}^+\}$ does not represent a covering of \mathcal{R} .
- (14.4) <u>**Definition**</u>: Let $A \subseteq X$, $F = \{A_{\lambda}\}_{{\lambda} \in \Lambda}$, $G = \{B_{\gamma}\}_{{\gamma} \in \Lambda'}$ are covering of A, we said that F is a sub covering from G, if for all ${\lambda} \in \Lambda \exists {\gamma} \in \Lambda' \ni A_{\lambda} = B_{\gamma}$.
- (14.5) Example: Each of $F = \{(n, n+3) : n \in \mathbb{Z}\}, G = \{(r, r+3) : r \in \mathcal{R}\}$ are covering of \mathcal{R} and F is a subfamily of G.
- (14.6) <u>**Definition**</u>: Let *A* is a subset of (X, d) and let $F = \{A_{\lambda}\}_{{\lambda} \in \Lambda}$ is a covering of *A*. We said that *F* is an open cover, if A_{λ} is an open set in $X \ \forall {\lambda} \in \Lambda$.
- (14.7) **Example**: In (\mathcal{R}, d_u) . Prove that a family $F = \{\left(\frac{1}{n}, 2\right) : n \in \mathbb{Z}^+\}$ is an open cover of A = (0,1).

Solution: let $x \in A \implies 0 < x < 1$,

Since x > 0 (by Archimedes property) $\Longrightarrow \exists k \in \mathbb{Z}^+ \ni \frac{1}{k} < x$.

Since
$$x < 1 \Longrightarrow \frac{1}{k} < x < 2 \Longrightarrow x \in (\frac{1}{k}, 2) \Longrightarrow x \in \bigcup_{n \in \mathbb{Z}^+} (\frac{1}{n}, 2)$$

 $\Rightarrow A \subset \bigcup_{n \in \mathbb{Z}^+} (\frac{1}{n}, 2) \Rightarrow F \text{ is a covering of } A.$

Prof. Dr. Najm Abdulzahra Makhrib Al-Seraji, Lectures in Mathematical Analysis (1) [2021-2022]

Since $(\frac{1}{n}, 2)$ is open set $\forall n \in \mathbb{Z}^+ \Longrightarrow F$ is an open set of A.

(14.8)**Example**: In (\mathcal{R}, d_u) , we have

 $F_1 = \{(-n, n): n \in \mathbb{Z}^+\}, \quad F_2 = \{(-3n, 3n): n \in \mathbb{Z}^+\}, F_3 = \{(2n - 1, 2n + 1): n \in \mathbb{Z}\}$ are an open cover of \mathcal{R} , also F_2 is a sub cover of F_1 .

(14.9) **Example**: Let (X, d) be discrete metric space and $A \subseteq X$. Prove that $F = \{\{x\}: x \in A\}$ is an open cover of A.

Solution: since $A = \bigcup_{x \in A} \{x\} \Longrightarrow F$ is a covering of A.

Since (X, d) is discrete metric space $\Longrightarrow \{x\}$ an open set in $X \forall x \in X$

 \implies F is an open cover of A.

(14.10)**<u>Definition</u>**: Let (X, d) is metric space and let $A \subseteq X$. We said that A is a compact set in X, if for all open cover A contains a finite sub covering.

(14.11)**Example**: In (\mathcal{R}, d_u) , we have

- 1. A = (0,1)does not compact in \mathcal{R} .
- 2. $A = \{1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots, 0\}$ is a compact in \mathcal{R} .
- 3. A space \mathcal{R} does not compact.

Solution: (1) Take $F = \{(\frac{1}{n}, 2) : n \in \mathbb{Z}^+\}$ is an open cover of A, but F does not contain on a finite sub cover $\Longrightarrow A$ does not compact.

(14.12) **Example**: Every indiscrete metric space is a compact, since an unique open cover of X is X.

(14.13) **Theorem:** Every finite set in a metric space is a compact.

Proof: let A is a finite set in $(X, d) \Longrightarrow A = \{a_1, a_2, ..., a_n\}$

Let $F = \bigcup_{\lambda \in \Lambda} G_{\lambda}$ is a open cover of A in X.

 $\Rightarrow A \subseteq \bigcup_{\lambda \in \Lambda} G_{\lambda}$, G_{λ} is an open set in $X \forall \lambda \in \Lambda$.

Since $a_i \in A \ \forall i = 1, 2, ..., n$

$$\Rightarrow a_i \in \bigcup_{\lambda \in \Lambda} G_{\lambda} \ \forall i = 1, 2, ..., n$$

Prof. Dr. Najm Abdulzahra Makhrib Al-Seraji, Lectures in Mathematical Analysis (1) [2021-2022]

- $\Longrightarrow \forall i \exists \lambda_i \in \Lambda \ni a_i \in G_{\lambda_i}$
- $\Longrightarrow \{G_{\lambda_1}, G_{\lambda_2}, ..., G_{\lambda_n}\}$ is a finite sub covering from F of A.
- \implies A is a compact set.
- (14.14)**Example**: Let (X, d) is discrete metric space, then X is a compact $\iff X$ is a finite.
- (14.15) Theorem: Let (Y, d_Y) is a subspace of a metric space (X, d) and $A \subseteq Y$, then A is a compact in $X \iff A$ is a compact in Y.
- (14.16) **Theorem**: Every closed set in a compact metric space is a compact.
- (14.17) **Theorem**: Every compact set in a metric space is a closed and bounded.
- (14.18)**<u>Definition</u>**: We said that a family of sets that satisfy a finite intersection property, if intersection every finite subfamily is a non- empty set.
- (14.19)Theorem: A metric space (X, d) is a compact \Leftrightarrow if every family of a closed sets satisfies a finite intersection property, then its non-empty set.
- (14.20)**<u>Definition</u>**: We said that a metric space (X, d) is a countable compact, if for all open cover and countable in X contains on a finite sub covering.
- (14.21) Theorem: A metric space (X, d) is a countable compact \Leftrightarrow every countable family of a closed sets and satisfy a finite intersection property is a non-empty intersection.