D. Mean Center :

the mean was discussed as an important measure of central tendency for a set of data. If this concept of central tendency is extended to locational point data in two dimensions (X and Y coordinates), the average location, called the mean center, can be determined. the only stipulation is that the phenomenon can be displayed graphically as a set of points in a two-dimensional coordinate system.
The directional orientation of the coordinate axes and the location of the origin are both arbitrary.
Once a coordinate system has been established and the coordinates of each point determined, the mean center can be calculated by separately averaging the X and Y coordinates, as follows:
$\bar{X}=\frac{\sum X_{i}}{n} \quad, \quad \bar{Y}=\frac{\sum Y i}{n}$
where:
$\overline{X=}$ mean center of X
$\overline{Y=}$ mean center of Y
$\mathrm{Xi}=\mathrm{X}$ coordinate of point i
$\mathrm{Yi}=\mathrm{Y}$ coordinate of point i
$\mathrm{n}=$ number of points in the distribution
for example\ Calculate the central mean of the following data

Point	Xi	Yi
A	$\mathbf{6 1}$	$\mathbf{3 3}$
B	$\mathbf{8 0}$	$\mathbf{2 0}$
C	$\mathbf{1 0}$	$\mathbf{1 8}$
D	$\mathbf{1 2}$	$\mathbf{1 4}$
E	$\mathbf{2 0}$	$\mathbf{1 2}$

H.W

A-Calculate the central mean of The following points represent weather stations centers.

weather stations centers	\mathbf{X}	\mathbf{Y}
1	$\mathbf{1 0}$	$\mathbf{4}$
2	$\mathbf{1 6}$	$\mathbf{8}$
3	$\mathbf{8}$	9
4	24	12
5	18	16
6	28	13
7	11	10
8	30	20

$B \backslash$ find the weighted mean center for the following data:

weather stations centers	Weight
1	1
2	3
3	3
4	2
5	4
6	5
7	2
8	5

