(2020-2021)

Mustansirivah University

College of Science Dept. of Math.

OR V (Disjunction)			
p	q	p V q	
T	T	T	
T	F	T	
F	T	T	
г	ъ	г	

Exclusive $(\ \ \)$ one of p or q (read p or else q)

⊻	(Exclusive)	
p	q	p⊻q
T	T	F
T	F	T
F	T	T
F	F	F

If \rightarrow Then Statements – These statements are false only when p is true and q is false (because anything can follow from a false premise).

Equivalent Forms of $(\mathbf{p} \rightarrow \mathbf{q})$ read as:

If p then q":

p implies q

p is a sufficient condition for q

q if p

q whenever p

q is a necessary condition for p.

$If \rightarrow Then$				
p	q	$p \rightarrow q$		
T	T	T		
T	F	F		
F	T	T		
F	F	T		

Here, p called **hypothesis** (antecedent) and q called **consequent** (conclusion).