

22-2022

Mustansiriyah University-College of Science-Department of Mathematics 2021-2022

Chapter Two Sets

2.1. Definitions

Definition 2.1.1. A set is a collection of (objects) things. The things in the collection are called **elements** (member) of the set.

A set with no elements is called empty set and denoted by \emptyset ; that is, $\emptyset \Rightarrow \emptyset$.
A set that has only one element, such as $\{x\}$, is sometimes called a singleton set.

List of the symbols we will be using to define other terminologies. y.

- : an element of (belong to) E
- ¢ : not an element of (not belong to)
- \subset or \subseteq : a proper subset of
- \subseteq : a subset of
- ⊈ : not a subset of
- \mathbb{N} : Set of all natural numbers
- \mathbb{Z} : Set of all integer numbers
- : Set of all positive integer numbers \mathbb{Z}^+
- \mathbb{Z}^- : Set of all negative integer numbers
- \mathbb{Z}_{o} : Set of all odd numbers
- \mathbb{Z}_{e} : Set of all even numbers
- : Set of all rational numbers \mathbb{Q}
- \mathbb{R} : Set of all real nombers

Set Description

(i) Tabulation Method

The elements of the set listed between commas, enclosed by braces.

- **{1**,2,37,88,0}
- (2) $\{a, e, i, o, u\}$ Consists of the lowercase vowels in the English alphabet.
- $(3) \{..., -4, -2, 0, 2, 4, 6\}$ Continue from left side
 - $\{-4, -2, 0, 2, 4, 6, ...\}$ Continue from right side

 $\{\dots, -4, -2, 0, 2, 4, 6, \dots\}$ Continue from left and right sides.

 $(4) B = \{\{2,4,6\},\{1,3,7\}\}.$

(ii) Rule Method

Describe the elements of the set by listing their properties writing as

 $S = \{x | A(x)\},\$ where A(x) is a statement related to the elements x. Therefore, $x \in S \Leftrightarrow A(x)$ is hold

(1) $A = \{x | x \text{ is a positive integers and } x > 10\}$ $A = \{x | x \in \mathbb{Z}^+ \text{ and } x > 10\}.$ (2) $\mathbb{Z}_{0} = \{x | x = 2n - 1 \text{ and } n \in \mathbb{Z}\}$ $= \{2n - 1 \mid n \in \mathbb{Z}\}.$ (3) { $x \in \mathbb{Z}$ | |x| < 4} = {-3, -2, -1, 0, 1, 2, 3}. (4) { $x \in \mathbb{Z} | x^2 - 2 = 0$ } = Ø.

Examples 2.1.3.

s. 222 2022 (i) $\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$ Integer numbers. (ii) $\mathbb{Z}_{e} = \{x | x = 2n \text{ and } n \in \mathbb{Z}\}$ $= \{2n \mid n \in \mathbb{Z}\}$. Even numbers

Note that 2 is an element of \mathbb{Z}_e so, we write $2 \swarrow e$ ut, 5 ∉ ℤ_e.

(iii) Let *C* be the set of all natural numbers which are less than 0. In this set, we observe that there are no elements. Hence, C is an empty set; that is,

Definition 2.1.4.

(i) A set A is said to be a subset A is a set B if every element of A is an element of B and denote that by $A \subseteq B$. Therefore,

 $\mathcal{V} = \emptyset$.

$$\mathbf{A} \subseteq B \Leftrightarrow \forall x (x \in A \Longrightarrow x \in B).$$

(ii) If A is a nonempty subset of set B and B contains an element which is not a member of A, then \mathcal{A} is said to be proper subset of B and denoted this by $A \subset B$ or $A \subseteq B$; that is said to be a **proper subset** of B if and only if (2) $A \subset B$ and (2) $A \neq B$. $(1) A \neq$

We use the expression $A \not\subseteq B$ means that A is **not** a subset of B.

Examples 2.1.5.

(i) An empty set \emptyset is a subset of any set B; that is, for every set B, $\phi \subseteq B$.

If this were not so, there would be some element $x \in \emptyset$ such that $x \notin B$. However, this would contradict with the definition of an empty set as a set with no elements.

(ii) Let *B* be the set of natural numbers. Let *A* be the set of even natural numbers. Clearly, *A* is a subset of *B*. However, *B* is not a subset of *A*, for $3 \in B$, but $3 \notin A$.

Theorem 2.1.6. (Properties of Sets)

Let A, B, and C be sets. (i) For any set $A, A \subseteq A$. (Reflexive Property) (ii) If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$. (Transitive Property)

Proof.

(ii)

1 $(A \subseteq B) \Leftrightarrow \forall x (x \in A \Longrightarrow x \in B)$ 2 $(B \subseteq C) \Leftrightarrow \forall x (x \in B \Longrightarrow x \in C)$ $\Rightarrow \forall x (x \in A \Longrightarrow x \in C)$ $\Leftrightarrow A \subseteq C$

Hypothesis and Def. ⊆ Hypothesis and Def. Inf. (1),(2) Syllogism Law

Def. of \subseteq

Definition 2.1.7 If X is a set, the **power set** of X is a other set, denoted as P(X) and defined to be the set of all subsets of X. In symbols,

$$P(X) = \{A | A \land X\}.$$

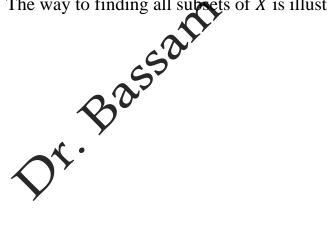
That is, $A \subseteq X$ if and only if $A \in P(X)$.

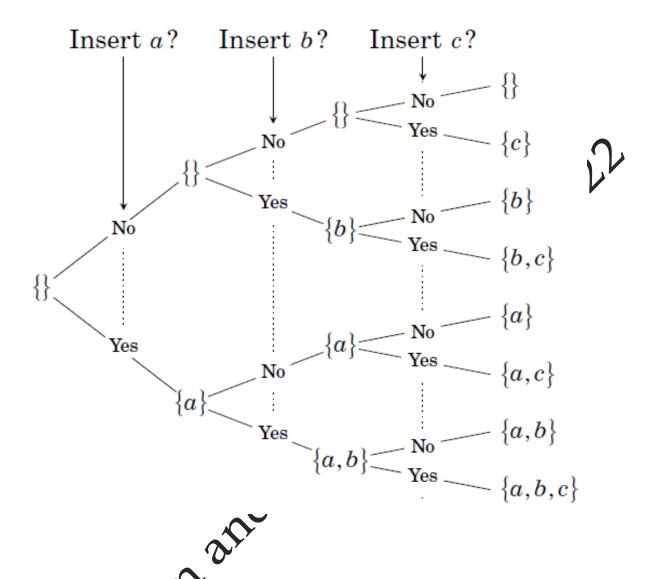
Example 2.1.8.

- (i) \emptyset and a set X are always members of P(X).
- (ii) suppose $X = \{a, b, c\}$ Norm

 $P(X) = \{ a, b, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X \}.$

The way to finding all subsets of X is illustrated in the following figure.





From the above example, if a finite set X has n elements, then it has 2^n subsets, and thus its power set has 2^n elements.

- (iii) $P(\{1,2,4\}) = \{\emptyset, \{0\}, \{1\}, \{4\}, \{0,1\}, \{0,4\}, \{1,4\}, \{1,2,4\}\}.$
- (iv) $P(\emptyset) = \{\emptyset\}.$
- $(\mathbf{v}) \quad \mathbf{v} \in \{\emptyset\}\} = \{\emptyset, \{\emptyset\}\}.$

$$(\mathbf{vi}) \quad P(\{\mathbb{Z}, \mathbb{R}\}) = \{\emptyset, \{\mathbb{Z}\}, \{\mathbb{R}\}, \{\mathbb{Z}, \mathbb{R}\}\}.$$

The following are wrong statements.

- (v) $P(1) = \{\emptyset, \{1\}\}.$
- (vi) $P(\{1,\{1,2\}\}) = \{ \emptyset, \{1\}, \{1,2\}, \{1,\{1,2\}\} \}.$
- (vii) $P(\{1,\{1,2\}\}) = \{ \emptyset, \{\{1\}\}, \{\{1,2\}\}, \{1,\{1,2\}\} \}.$

2.2. Equality of Sets

Definition 2.2.1. Two sets, A and B, are said to be equal if and only if A and B contain exactly the same elements and denote that by A = B. That is, A = B if and only if $A \subseteq B$ and $B \subseteq A$. The description $A \neq B$ means that A and B are not equal sets. Example 2.2.2. Let \mathbb{Z}_e be the set of even integer numbers and $B = \{x | x \in \mathbb{Z} \text{ and divisible proof.} \\ \text{Proof.} \\ \mathbb{T}_e = \{2n | n \in \mathbb{Z}\}. \\ \mathbb{Z}_e = \{2n | n \in \mathbb{Z}\}. \end{cases}$ $x \in \mathbb{Z}_e \iff \exists n \in \mathbb{Z} : x = 2n$ Def. of \mathbb{Z}_{ρ} . $\Rightarrow \frac{x}{2} = n$ Divide both side of x $\Rightarrow x \in B$ Def. of B. $\Rightarrow \mathbb{Z}_e \subseteq B$ Def. of subset (1)To prove $B \subseteq \mathbb{Z}_e$. $x \in B \iff \exists n \in \mathbb{Z} : \frac{x}{2} = n$ $Def_of \mathbb{Z}$ $\Rightarrow x = 2n$ = n by 2. $\Rightarrow x \in \mathbb{Z}_{\rho}$ ef. of $\Rightarrow B \subseteq \mathbb{Z}_{\rho}$ (2)Def. of subset. $\mathbb{Z}_{\rho} = B$ $\inf(1)$, (2) and def. of equality.

Remark 2.2.3.

(i) Two equal sets are a provided and the same elements. However, the rules for the sets may be written differently, as in Example 2.2.2.

(ii) Since any we empty sets are equal, therefore, there is a unique empty set.
(iii) the symbols ⊆, ⊂, ⊊, ⊈ are used to show a relation between two sets and not between an element and a set. With one exception, if x is a member of a set A, we may write x ∈ A or {x} ⊆ A, but not x ⊆ A.
(iv) φ ≠ {φ}.

Theorem 2.2.4. (Properties of Set Equality)(i) For any set A, A = A.(Reflexive Property)(ii) If A = B, then B = A.(Symmetric Property)(iii) If A = B and B = C, then A = C.(Transitive Property)

5

Definition 2.2.5. Let A and B be subsets of a set X. The **intersection** of A and B is the set

Ni

 $A \cap B = \{x \in X \mid x \in A \text{ and } x \in B\},\$

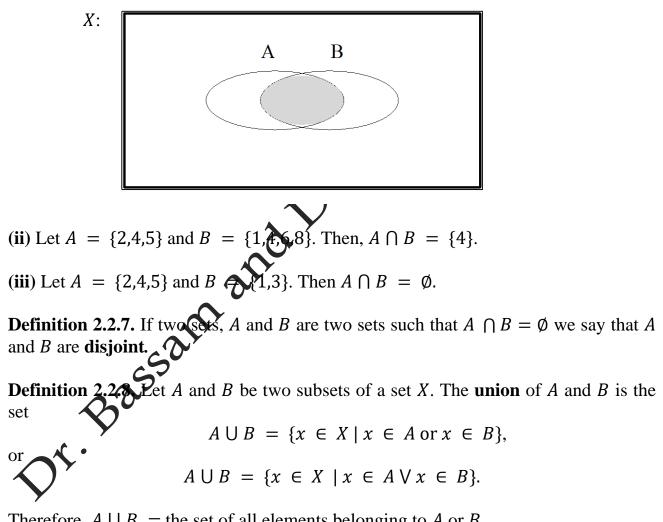
or

$$A \cap B = \{ x \in X \mid x \in A \land x \in B \}.$$

Therefore, $A \cap B$ is the set of all elements in common to both A and B.

Example 2.2.6.

(i) Given that the box below represents X, the shaded area represents $A \cap$

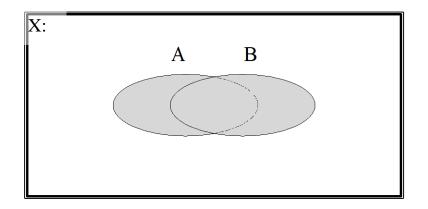


Therefore, $A \cup B$ = the set of all elements belonging to A or B.

Example 2.2.9.

(i) Given that the box below represents X, the shaded area represents $A \cup B$:

٨



(ii) Let $A = \{2,4,5\}$ and $B = \{1,4,6,8\}$. Then, $A \cup B = \{1,2,4,5,6,8\}$. (iii) $\mathbb{Z}_e \cup \mathbb{Z}_o = \mathbb{Z}$.

Remark 2.2.10.

It is easy to extend the concepts of intersection and union of two sets to the intersection and union of a finite number of sets. For instance, if $X_1, X_2, ..., X_n$ are sets, then

$$X_1 \cap X_2 \cap \dots \cap X_n = \{x \mid x \in X_i \text{ for all } i = 1, \dots, n\}$$
$$X_1 \cup X_2 \cup \dots \cup X_n = \{x \mid x \in X_i \text{ for some } i = 1, 2, \dots, n\}$$

and

Similarly, if we have a cohection of sets $\{X_i: i = 1, 2, ...\}$ indexed by the set of positive integers, we can form their intersection and union. In this case, the intersection of the X_i is

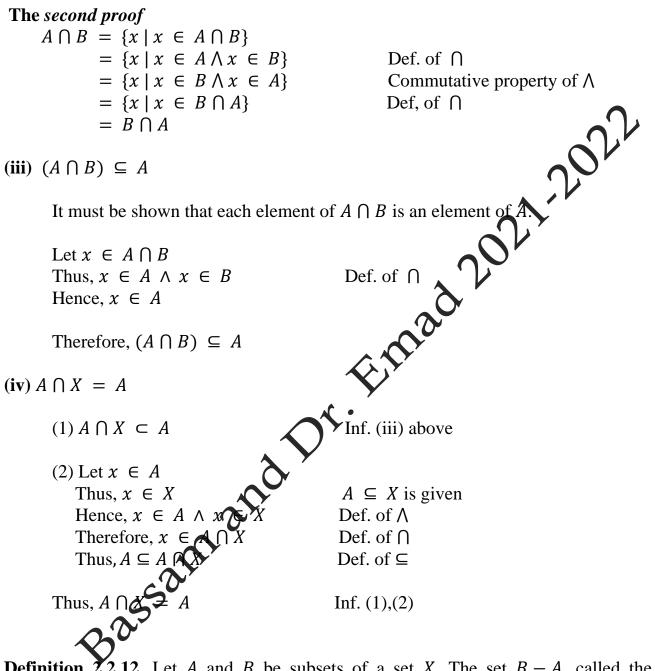
and the unconsolite the
$$X_i$$
 is

$$\bigcup_{i=1}^{\infty} X_i = \{x \in X_i \text{ for all } i = 1, 2, \dots\}$$

$$\bigcup_{i=1}^{\infty} X_i = \{x \in X_i \text{ for some } i = 1, 2, \dots\}.$$

Theorem 2.2.11. Let *A*, *B*, and *C* be arbitrary subsets of a set *X*. Then

(i) $A \cap B = B \cap A$ (Commutative Law for Intersection) $A \cup B = B \cup A$ (Commutative Law for Union) $A \cap (B \cap C) = (A \cap B) \cap C$ (Associative Law for Intersection) (ii) $A \cup (B \cup C) = (A \cup B) \cup C$ (Associative Law for Union) $A \cap B \subseteq A$ (iii) $A \cap X = A; A \cup \emptyset = A$ **(iv)** $A \subseteq A \cup B$ **(v)** $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ (Distributive Law) b**∮** Únion with (**vi**) respect to Intersection). (vii) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (Distributive Law of Intersection with respect to Union), (Idempotent Laws) (viii) $A \cup A = A, A \cap A = A$ $A \cup \emptyset = A, A \cap X = A$ (Identity Laws) (ix) $A \cup X = X, A \cap \emptyset = \emptyset$ **Domination** Laws) **(x)** $A \cup (A \cap B) = A$ Absorption Laws) $A \cap (A \cup B) = A$. (xi) **Proof.** (i) $A \cap B = B \cap A$. This proof can be done in two ways. The first proof Uses the fact that the two sets with be equal only if $(A \cap B) \subseteq (B \cap A)$ and $(B \cap A) \subseteq (A \cap B)$. (1) Let x be an element of Therefore, $x \in \mathcal{M} \land x \in B$ Def. of \cap Thus, $x \in A$ $x \in A$ Commutative Property of Λ Def. of $B \cap A$ Hence. $B \cap A$ Def. of \subseteq Therefore, $A \cap B \subseteq B \cap A$ et x be an element of $B \cap A$ Therefore, $x \in B \land x \in A$ Def. of \cap Thus, $x \in A \land x \in B$ Commutative property of Λ Hence, $x \in A \cap B$ Def. of \cap Thus, $B \cap A \subseteq A \cap B$ Def. of \subseteq Therefore, $A \cap B = B \cap A$ Inf. (1),(2)



Definition 2.2.12. Let A and B be subsets of a set X. The set B - A, called the **difference** of B and A, is the set of all elements in B which are not in A. Thus, $B - A = \{x \in X \mid x \in B \text{ and } x \notin A\}.$

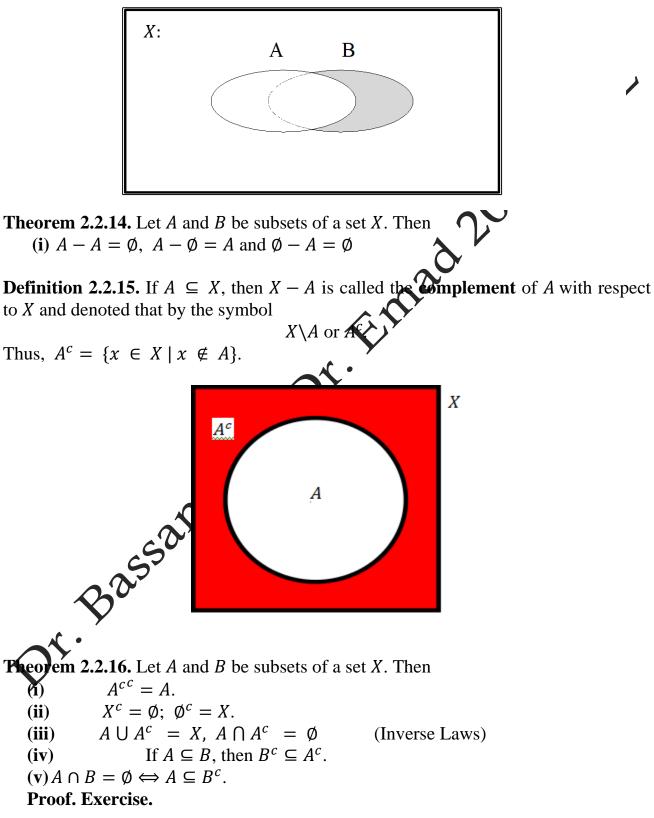
Example 2.2.13.

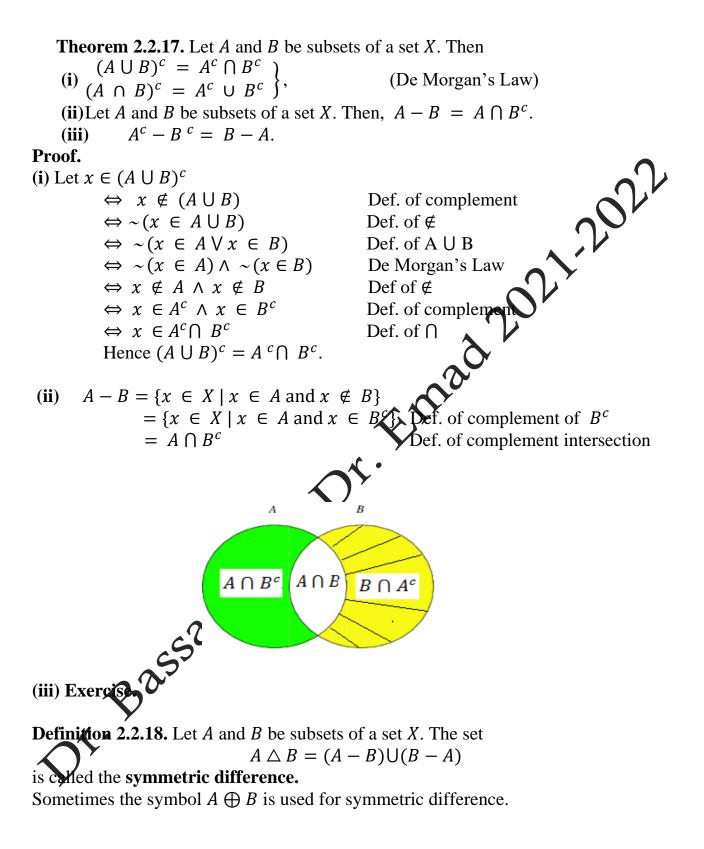
(i) Let
$$B = \{2,3,6,10,13,15\}$$
 and $A = \{2,10,15,21,22\}$. Then
 $B - A = \{3,6,13\}.$

(ii)
$$\mathbb{Z} - \mathbb{Z}_o = \mathbb{Z}_e$$
.

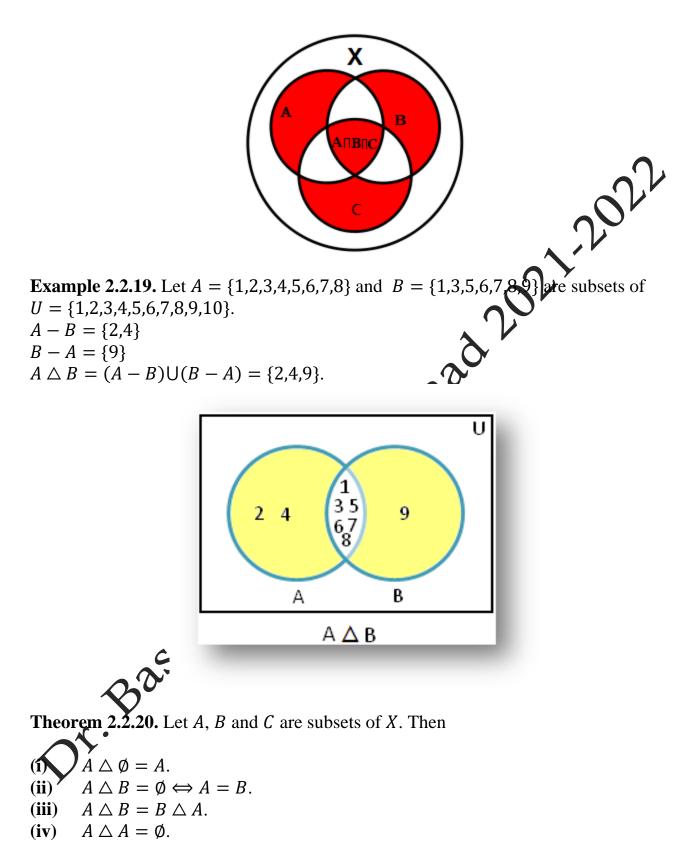
Dr. Bassam AL-Asadi and Dr. Emad Al-Zangana

(iii) Given that the box below represents X, the shaded area represents B - A.





11



Proof. Exercise.

Theorem 2.2.21. (Properties of \cup , \cap , -, \triangle and P(X)) $A - (B \cap C) = (A - B) \cup (A - C)$ **(i)** De Morgan's Low on – $A - (B \cup C) = (A - B) \cap (A - C).$ $A - (A \cap B) = (A - B) = (A \cup B) - B$ (ii) $A - (A \cup B) = \emptyset.$ 2021-2022 $(A \cap B) - C = (A - C) \cap (B - C)$ (iii) $(A \cup B) - C = (A - C) \cup (B - C).$ (iv) $(A - B) \cap (C - D) = (C - B) \cap (A - D).$ If $A \subseteq B$, then $P(A) \subseteq P(B)$. (**v**) (vi) $P(A \cap B) = P(A) \cap P(B)$. (vii) $P(A) \cup P(B) \subseteq P(A \cup B)$. The converse is not true. (viii) $A = B \Leftrightarrow P(A) = P(B)$. (ix) $A \cap B = \emptyset \iff P(A) \cap P(B) = \emptyset$. $A \bigtriangleup B = (A \cup B) - (A \cap B).$ **(x)** sociative Law of \triangle (xi) $A \bigtriangleup (B \bigtriangleup C) = (A \bigtriangleup B) \bigtriangleup C$. (xii) $A \triangle C = B \triangle C \implies A = B$. (xiii) If $A \subseteq B$ and C = B - A, then A = B(xiv) $A \cap (B - C) = (A \cap B) - (A \cap C)$? $(xv) (A - B) \cap (C - D) = (A \cap C) - (B \cup C)$ (xvi) $A \cap (B \triangle C) = (A \cap B) \triangle (A \cap B)$ Dist. of \cap on \triangle **Proof.** (i) $A - (B \cap C) = A \cap (B \cap C)$ Theorem 2.2.17(ii) $= A \cap (B^c \wedge C)$ De Morgan's Law $=(A \cap B^{c}) \cup (A \cap C^{c})$ Dist. Law $=(A - R) \cup (A - C).$ Theorem 2.2.17(ii) P(B)(vii) Let $H \in P_{A}$ $\Rightarrow H \in P(A) \land H \in P(B)$ Def. \cap $\Rightarrow H \subseteq A \land H \subseteq B$ Def. of power set $\Rightarrow H \subseteq (A \cap B)$ Def. \cap \Rightarrow *H* \in *P*(*A* \cap *B*) Def. of power set $\Leftrightarrow x \in (A - B) \cup (B - A)$ Def. of \triangle $\Leftrightarrow x \in (A - B) \vee (B - A)$ Def. U $\Leftrightarrow x \in A \land x \notin B) \lor (x \in B \land x \notin A)$ Def. of difference $(x \in A \lor x \in B) \land (x \notin B \lor x \in B)$ Dist. Law of \Leftrightarrow $(x \in A \lor \notin A)$ $(x \notin B \lor x \notin A)$ Λ

Dr. Bassam AL-Asadi and Dr. Emad Al-Zangana

