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But T : CG — M,(C) is injective. so v = +1 (= ¢}). ]

Corollary 3.11 Let v € Z{UH(ZG)) where 4™ = 1 and & is finite. Then
v=xgdg € G. (Le. all central torsion units are trivial ).

Proof. Let 4 € Z(U(ZG)) with 4™ = 1 and |G| = n. Let v = Y}, e, 0
andlet c,, 03 € G. .y ' =¥, o gip ! (+) is a unit of finite order
in ZG ( Let g,™ = 1. then (ygy~')™™ = y™™2(g;~!)™™ = 1.1 = 1 since 4
is central).

Now from (+) the coefficient of 1 in 9g,7! is ¢, # 0. Now applying the
Berman-Higman theorem to 4g, ! to get that
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Theorem 3.12 (Higman) Let A be a finite abelion group. Then the group
of torsion units of ZA equals £A.



