

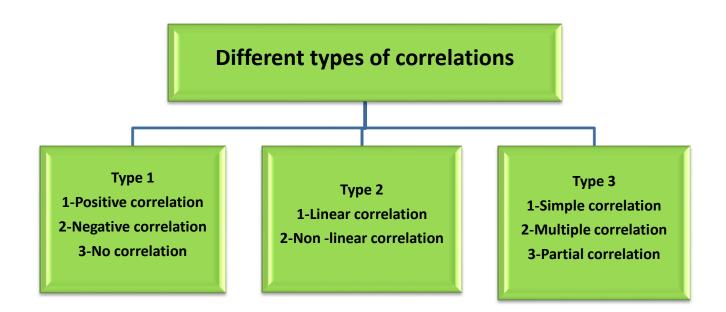
Correlation

Correlation is a measure of association between two variables . The variables are not designated as dependent or independent.

The value of a correlation coefficient can vary from minus one to plus one (-1 to +1), where the calculated value of the correlation coefficient indicates the strength of the relationship while the negative or positive signal indicates the direction of the relationship (direct or negative correlation).

A minus one (-1) indicates a perfect negative correlation, while a plus one (+1) indicates a perfect positive correlation. A correlation of zero means there is no relationship between the two variables.

When there is a negative correlation between two variables, as the value of one variable increases, the value of the other variable decreases, and vice versa.


In other words, for a negative correlation, the variables work opposite each other. When there is a positive correlation between two variables, as the value of one variable increases, the value of the other variable also increases. The variables move together.

Note: In general,

- the relationship can be considered weak if the correlation coefficient value is less than 0.49 .
- the relationship can be considered as medium if the correlation coefficient value ranges from 0.50 to 070.
- if the correlation coefficient value is more than 0.70 the strong relationship between the two variables.
- Note: we can use scatter diagramed {*the value of the first variable on the x-axis and the value of the second variable on the y-axis*} to give a quick idea of the strength and direction of the correlation between two variables.

Different types of correlations

There are three ways to classify the correlation:

Type1

• Positive correlation: If two related variables are such that when

one increases (decreases), the other also increases (decreases)

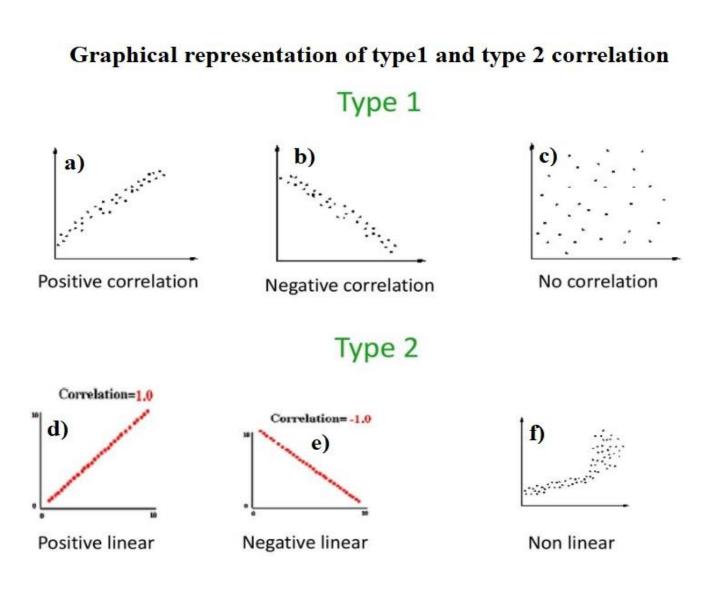
•Negative correlation: If two variables are such that when one

increases (decreases), the other decreases increases)

• No correlation: If both the variables are independent.

Type 2

• Linear correlation: When plotted on a graph it tends to be a perfect line.


• Non-Linear correlation: When plotted on a graph it is not a straight line.

Type 3

Simple correlation: In this only two variables are studied.

Multiple correlation: In this three or more variables are studied simultaneously.

Partial correlation: we recognize more than two variables but consider only two variables to be influencing each other and effect of other influencing variables being kept constant.

Interpret a Correlation Coefficient

Correlation Coefficient = 0	No linear relationship	
Correlation Coefficient = $\pm (0.01 - 0.49)$	A weak linear	
	relationship	
Correlation Coefficient = $\pm (0.50 - 0.69)$	A moderate	
	relationship	
Correlation Coefficient = $\pm (0.70 - 0.90)$	A strong linear	
	relationship	
Correlation Coefficient = Exactly ± 1 .	A perfect linear	
	relationship	

Types of Correlation Coefficient formulas

Usually, in statistics, we measure four types of correlations:

- 1) Pearson correlation
- 2) Kendall rank correlation
- 3) Spearman correlation
- 4) Point-Biserial correlation.

1) Pearson Correlation(r)

A Pearson correlation is a statistical formula that measures linear correlation between two variables X and Y. It has a value between

(+1 and -1), where 1 is total positive linear correlation, 0 is no linear correlation, and -1 is total negative linear correlation. Pearson correlation is widely used in the sciences.

Pearson Correlation (r) – Formula

A Pearson correlation between variables X and Y is calculated by

$$\mathbf{r} = \frac{\mathbf{n}(\sum XY) - (\sum X)(\sum Y)}{\sqrt{[n\sum X^2 - (\sum X)^2][n\sum Y^2 - (\sum Y)^2]}}$$

Where,

- r = Pearson Coefficient
- n= number of the pairs of the stock
- $\sum xy = sum of products of the paired stocks$
- $\sum x = \text{sum of the x scores}$
- $\sum y = sum of the y scores$
- $\sum x^2 =$ sum of the squared x scores
- $\sum y^2 =$ sum of the squared y scores

No	(x)	(y)	
1	40	78	
2	21	70	
3	25	60	
4	31	55	
5	38	80	
6	47	66	

Example 1: Find the Pearson Coefficient (r) for the following table:

Solution: For the Calculation of the Pearson Correlation Coefficient, we will first calculate the following values,

Sr. No	(x)	(y)	ху	x ²	y ²
1	40	78	3120	1600	6084
2	21	70	1470	441	4900
3	25	60	1500	625	3600
4	31	55	1705	961	3025
5	38	80	3040	1444	6400
6	47	66	3102	2209	4356
Total (Σ)	202	409	13937	7280	28365

Here the total number of variables are 6 so, n=6

Now the calculation of the Pearson (r) is as follows,

$$r = \frac{n(\sum XY) - (\sum X) (\sum Y)}{\sqrt{[n \sum X^2 - (\sum X)^2] [n \sum Y^2 - (\sum Y)^2]}}$$
$$r = \frac{6*(13937) - (202)(409)}{\sqrt{[6*7280 - (202)^2] * [6*28365 - (409)^2]}}$$

r = 0.35

Thus the value of the Pearson correlation coefficient is 0.35 (A weak linear relationship)