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Lecture (3) 

Series Expansion Methods 

3.1 Introduction  

 The approximate solutions of partial differential equations (PDE’s), such as 

advection-dispersion equations, can be found by Finite Difference methods, Series 

Expansion methods, or Finite Volume methods.  

 The purpose of using approximation is to reduce the space of solution of every 

continuous differential equation from an indefinite number to a finite number of 

space or time nodes in order to increase the speed of computations. 

 In the finite difference method, we replace each continuous differential operator (d) 

by discrete difference analog (∆). This analog is an approximation written in terms 

of finite number of values of a variable at each time or space node. 

 If the west-east scalar velocity, ux , is a spatially continuous function at a certain 

time, then its value can be described as an west-east discretized grid (figure 3.1).  

 
Fig.(3.1) Discretization of a continuous west-east scalar velocity ux 

  

 While in the series expansion method, the dependent variable in the PDE (such 

as u, v, w, or N) is replaced by a finite series approximates its value.  

 For example, if the PDE of the west – east equation at the nude i for the 

concentration variable is 

                                                               
𝜕𝑁𝑖

𝜕𝑡
+

𝜕(𝑢𝑁)𝑖

𝜕𝑥
= 0                              (1) 

then the series expansion approximation for N at i : 

                                                      𝑁𝑖 ≈ 𝑁𝑖(𝑥) = ∑ 𝑁𝑗𝑒𝑗(𝑥)

𝑗

                        (2) 

where 𝑁𝑖(𝑥) is a trial function. Now suppose that u is a constant value. The number of 

nodes j over which the trail function is approximated is called the trial space. The trail 

function is the summation, over each node  in the trail space, for the true concentration, 

𝑁𝑗, multiplied by a basis function ej(x). The difference between equation (1) when Ni(x) 
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is used and equation (2) when ∑ 𝑁𝑗𝑒𝑗(𝑥)𝑗  is used, is the residual 𝑅𝑖(𝑥). The residual is 

the difference between the approximate function and the exact function.  

The series expansion method which uses a local basis function is the finite-element 

method. The series expansion method which uses a global basis function counterpart 

to residual is the spectral method. The familiar series expansion method is the spectral 

method. The familiar finite element is the Galerkin finite- element method. With this 

method, the local basis function is also counterpart to the residual. The basis functions 

for the other finite element methods may or may not counterpart to the residual.  

3.3 Spectral methods 

 Spectral methods are powerful methods used for the solution of partial differential 

equations. Unlike finite difference methods, spectral methods are global methods, 

where the computation at any given point depends not only on information at 

neighboring points, but on information from the entire domain. Spectral methods 

converged exponentially, which makes them more accurate than local methods. 

Global methods are preferable to local methods when the solution varies 

considerably in time or space, when very high spatial resolution is required, and also 

when long time integration is needed. 

 However, using finite difference methods to approximate solutions containing very 

significant spatial or temporal variation requires a very fine grid in order to 

accurately resolve the function. Clearly, the use of fine grids requires significant 

computational resources in simulations of interest to science and engineering. In the 

face of such limitations, we seek alternative schemes that will allow coarser grids, 

and therefore fewer computational resources. Spectral methods are such methods; 

they use all available function values to construct the necessary approximations. 
 

3.4 Finite Element Methods 

 The method was developed in the 1950s and originated from the need to solve 

complex elasticity and structural analysis problems in engineering. Mesh 

discretization of a continuous domain converted into a set of discrete sub-domains, 

usually called elements. The FE method is a numerical method to solve differential 

equations by discretizing the domain into a finite mesh. Numerically speaking, a set 

of differential equations are converted into a set of algebraic equations to be solved 

for unknown at the nodes of the mesh.  

 The advantages of this method can be summarized as follows: 

1. Numerical efficiency.   2. Treatment of nonlinearities.  3. Complex geometry: By 

the use of the FE method, any complex domain can be discretized by triangular 

elements in 2D and by tetrahedra elements in 3D.  4. Applicable to many field 

problems: The FE method is suited for structural analysis, heat transfer, fluid and 

acoustic analysis, etc. 

    


