

Computation Theory
Chapter Three: Regular language & Regular Grammar

zied othman 3/6/22 [Course title]

Chapter Three: Regular Language & Regular Grammars……………………………….. Zied O. Ahmed

1

Chapter 3: regular languages
and regular grammars

3.1 Regular Expressions
One way of describing regular languages is via the notation of regular

expressions. This notation involves a combination of strings of symbols from
some alphabet Σ, parentheses, and the operators +, ., and *.

3.1.1 Formal Definition of a Regular Expression

Let Σ be a given alphabet. Then

1. Ø,λ and a ∈ Σ are all regular expressions. These are called regular

expressions.

2 If r1 and r2 are regular expressions, so are r1+ r2,r1.r2, , and (r1).

3. A string is a regular expression if and only if it can be derived from the
regular expressions by a finite number of applications of the rules in (2).

The language-defining symbols we are about to create are called regular
expressions. The languages that are associated with these regular expressions
are called regular languages.

3.1.2 Languages Associated with Regular Expressions
The language L(r) denoted by any regular expression r is defined by the

following rules.

1. Ø is a regular expression denoting the empty set,

2. λ is a regular expression denoting {λ}.

Chapter Three: Regular Language & Regular Grammars……………………………….. Zied O. Ahmed

2

3. For every a ∈ Σ, a is a regular expression denoting {a}.

If r1 and r2 are regular expressions, then

4. L (r1 + r2) = L (r1)∪ L (r2),

5.L (r1 · r2) = L (r1) ∪ L (r2);

6 L ((r1)) = L (r1),

7.L (r1*) = (L (r1))*.

Example consider the language L

where L={Λ x xx xxx …} by using star notation we may write

L=language(x*).

Since x* is any string of x's (including Λ).

Example if we have the alphabet Σ={a,b}

And L={a ab abb abbb abbbb …}

Then L=language(ab*)

Example (ab)*= Λ or ab or abab or ababab or abababab or ….

Example L1=language(xx*)

The language L1 can be defined by any of the expressions:

x, xx, xxx, xxxx, xxxxx, ….

Remember x* can always be Λ.

Example language(ab*a)={aa aba abba abbba abbbba …}

Example language(a*b*)={ Λ a b aa ab bb aaa aab abb bbb … } ba and

aba are not in this language so a*b* ≠ (ab)*

Chapter Three: Regular Language & Regular Grammars……………………………….. Zied O. Ahmed

3

Example consider the language T defined over the alphabet Σ={a,b,c}

T={a c ab cb abb cbb abbb cbbb abbbb cbbbb …}

Then T=language((a+c)b*)

T=language(either a or c then some b's)

Example consider a finite language L that contains all the strings of a's

and b's of length exactly three.

L={aaa aab aba abb baa bab bba bbb}

L=language((a+b)(a+b)(a+b))

L=language((a+b)3)

Note from the alphabet Σ={a,b} , if we want to refer to the set of all

possible strings of a's and b's of any length (including Λ) we could write (a+b)*

Example we can describe all words that begins with a and end with b with
the expression a(a+b)*b which mean a(arbitrary string)b

Example if we have the expression (a+b)*a(a+b)* then the word abbaab
can be considered to be of this form in three ways: (Λ)a(bbaab) or (abb)a(ab)

or (abba)a(b)

Example (a+b)*a(a+b)*a(a+b)* = (some beginning)(the first important
a)(some middle)(the second important a)(some end) Another expressions that
denote all the words with at least two a's are:

b*ab*a(a+b)*, (a+b)*ab*ab*, b*a(a+b)*ab*

Then we could write:

language((a+b)*a(a+b)*a(a+b)*)

language(b*ab*a(a+b)*)

language((a+b)*ab*ab*)

language(b*a(a+b)*ab*)

Chapter Three: Regular Language & Regular Grammars……………………………….. Zied O. Ahmed

4
all words with at least two a's.

Note: we say that two regular expressions are equivalent if they describe
the same language.

Example if we want all the words with exactly two a's, we could use the
expression: b*ab*ab* which describe such words as aab, baba, bbbabbabbbb,
…

Example the language of all words that have at least one a and at least one
b is:

(a+b)*a(a+b)*b(a+b)*+(a+b)*b(a+b)*a(a+b)*

Note: (a+b)*b(a+b)*a(a+b)* ≠ bb*aa* since the left includes the word

aba, which the expression on the right side does not.

Note: (a+b)* = (a+b)* + (a+b)*

(a+b)* = (a+b)*(a+b)*

(a+b)* = a(a+b)* + b(a+b)* + Λ

(a+b)* = (a+b)*ab(a+b)* + b*a*

Note: usually when we employ the star operation, we are defining an
infinite language. We can represent a finite language by using the plus alone.

EXERCISES

1. Find all strings in L((a + b) b (a + ab)*) of length less than four.

2. Find a regular expression for the set {anbm: n ≥ 3,m is even}.

3. Find a regular expression for L = {abnw: n ≥ 3, w ∈ {a, b}+}.

4. Give regular expressions for the following languages on Σ = {a, b, c}.

(a) all strings containing exactly one a,

Chapter Three: Regular Language & Regular Grammars……………………………….. Zied O. Ahmed

5

(b) all strings containing no more than three a’s,

(c) all strings that contain at least one occurrence of each symbol in Σ,

5. Write regular expressions for the following languages on {0, 1}.

(a) all strings ending in 01,

(b) all strings not ending in 01,

(c) all strings containing an even number of 0’s,

(d) all strings having at least two occurrences of the substring 00. (Note that
with the usual interpretation of a substring, 000 contains two such occurrences),

(e) all strings with at most two occurrences of the substring 00,

(f) all strings not containing the substring 101.

3.2 Connection between Regular Expressions and Regular
Languages

for every regular language there is a regular expression, and for every
regular expression there is a regular language. We will show this in two parts.

3.2.1 Regular Expressions Denote Regular Languages
Let r be a regular expression. Then there exists some nondeterministic

finite automata that accepts L(r). Consequently, L(r) is a regular language.

We begin with automata that accept the languages for the simple regular
expressions Ø, λ, and a ∈ Σ. These are shown in Figure (a), (b), and (c),

respectively.

Chapter Three: Regular Language & Regular Grammars……………………………….. Zied O. Ahmed

6
(a) NFA accepts Ø.

(b) NFA accepts {λ}.

(c) NFA accepts {a}.

Assume now that we have automata M (r1) and M (r2) that accept languages
denoted by regular expressions r1 and r2, respectively. We need not explicitly
construct these automata, but may represent them schematically, as in Figure
below. In this scheme, the graph vertex at the left represents the initial state, the
one on the right the final state.

we then construct automata for the regular expressions r1 + r2, r1r2, and r1*.
The constructions are shown in Figures.

Automaton for L(r1 + r2).

Automaton for L(r1r2).

Chapter Three: Regular Language & Regular Grammars……………………………….. Zied O. Ahmed

7

Automaton for L(r1*).

Example

Find an NFA that accepts L(r), where

r=(a + bb)* (ba* + λ)

(a) M1 accepts L(a + bb).

(b) M2 accepts L (ba* + λ).

3.2.2 Regular Expressions for Regular Languages
A generalized transition graph (TG) is a transition graph whose edges are

labeled with regular expressions; otherwise, it is the same as the usual transition
graph. The label of any walk from the initial state to a final state is the
concatenation of several regular expressions, and hence itself a regular
expression.

Chapter Three: Regular Language & Regular Grammars……………………………….. Zied O. Ahmed

8
Example

Figure represents a transition graph. The language accepted by it is L (a* +
a* (a + b) c*), as should be clear from an inspection of the graph. The edge (qo,
qo) labeled a is a cycle that can generate any number of a's, that is, it represents
L (a*). We could have labeled this edge a* without changing the language
accepted by the graph

Exercise

1. Find DFA's that accept the following languages
(a) a*
(b) a + b
(c) (a + b)*
(d) a* b
(e) b(a + b)*
(f) ab(a + b)*
(g) a a* b
(h) a* b a*
(i) a* bab b*
(j) aba + bab
(k) (aa)* ba
(l) contains 2 a
(m) contains even number of a
2. Find an NFA that accepts the language L (ab*aa + bba*ab).
3. Give an NFA that accepts the language L((a + b)* b(a + bb)*).
4. Find DFA's that accept the following languages.

(a) L (aa* + aba*b*).
(b) L (ab (a + ab)* (a + aa)).
(c) L ((abab)* + (aaa* + b)*).
(d) L (((aa*)* b)*).

Chapter Three: Regular Language & Regular Grammars……………………………….. Zied O. Ahmed

9
5. Consider the following transition graph.

What is the language accepted by this graph?

6. What language is accepted by the following transition graph?

7. Find regular expressions for the languages accepted by the following

automata.

Chapter Three: Regular Language & Regular Grammars……………………………….. Zied O. Ahmed

10

8. Find a regular expression over the alphabet {a, b} that contain exactly
three a's.

9. Find a regular expression over the alphabet {a, b} that end with ab.
10. Find a regular expression over the alphabet {a, b} that has length of 3.
11. Find a regular expression over the alphabet {a, b} that contain exactly

two successive a's.

3.3 Regular Grammars
A third way of describing regular languages is by means of certain

grammars. Grammars are often an alternative way of specifying languages.

3.3.1 Right- and Left-Linear Grammars
A grammar G =(V, T, S, P) is said to be right-linear if all productions are

of the form

A → xB,

A → x,

where A, B ∈ V, and x ∈ T*. A grammar is said to be left-linear if all

productions are of the form

A → Bx,

or

A → x.

A regular grammar is one that is either right-linear or left-linear.

Note that in a regular grammar, at most one variable appears on the right
side of any production. Furthermore, that variable must consistently be either the
rightmost or leftmost symbol of the right side of any production.

Example

The grammar G1 = ({S}, {a,b},S,P1), with P1 given as

Chapter Three: Regular Language & Regular Grammars……………………………….. Zied O. Ahmed

11

S→ abS|a

is right-linear. The grammar G2 = ({S, S1, S2}, {a, b}, S, P2), with
productions

S → S1ab,

S1 → S1ab|S2,

S2 → a,

is left-linear. Both G1 and G2 are regular grammars.

Example

The grammar G =({S, A, B}, {a, b}, S, P) with productions

S→ A

A→ aB|λ,

B→ Ab,

is not regular. Although every production is either in right-linear or left-
linear form, the grammar itself is neither right-linear nor left-linear, and
therefore is not regular. The grammar is an example of a linear grammar.

A linear grammar is a grammar in which at most one variable can occur on
the right side of any production, without restriction on the position of this
variable. Clearly, a regular grammar is always linear, but not all linear grammars
are regular

3.3.2 Right-Linear Grammars Generate Regular Languages
First, we show that a language generated by a right-linear grammar is

always regular. To do so, we construct an NFA that mimics the derivations of a
right linear grammar. Note that the sentential forms of a right-linear grammar
have the special form in which there is exactly one variable and it occurs as the
rightmost symbol. Suppose now that we have a step in a derivation

Chapter Three: Regular Language & Regular Grammars……………………………….. Zied O. Ahmed

12

arrived at by using a production D dE. The corresponding NFA can imitate this step
by going from state D to state E when a symbol d is encountered.

Example

Construct a finite automaton that accepts the language generated by the grammar
V0  aV1,

V1  abV0|b,
where V0 is the start variable. We start the transition graph with vertices V0, V1, and Vf.
The first production rule creates an edge labeled a between V0 and V1.
For the second rule, we need to introduce an additional vertex so that there is a path

labeled ab between V1 and V0.
Finally, we need to add an edge labeled b between V1 and Vf, giving the automaton

shown in figure.
The language generated by the grammar and accepted by the automaton is the regular

language L ((aab) * ab.

EXERCISES

1. Construct a DFA that accepts the language generated by the grammar
S → abA,
A → baB,

B → aA|bb.
2. Find a regular grammar that generates the language L (aa* (ab+ a)*).
3. Construct a left-linear grammar for the language in Exercise 1.
4. Construct right- and left-linear grammars for the language

L = {anbm : n ≥ 2, m ≥ 3}.
5. find a left-linear grammar for the language accepted by the NFA below.

