

Foundation of Mathematics 2

CHAPTER 2 SYSTEM OF NUMBERS

Dr. Bassam AL-Asadi and Dr. Emad Al-Zangana

Chapter Two

System of Numbers

1. Natural Numbers

Let 0 = Set with no point, that is; $0 = \emptyset$, 1 = Set with one point, that is; $1 = \{0\}$, 2 = Set with two points, that is; $2 = \{0,1\}$, and so on. Therefore,

$$1 = \{0\} = \{\emptyset\},\$$

$$2 = \{0,1\} = \{\emptyset, \{\emptyset\}\},\$$

$$3 = \{0,1,2\} = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\},\$$

$$4 = \{0,1,2,3\} = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}\},\$$

:

$$n = \{0,1,2,3,...,n-1\}.$$

Definition 2.1.1. Let A be a set. A successor to A is $A^+ = A \cup \{A\}$ and denoted by A^+ .

According to above definition we can get the numbers 0,1,2,3, ... as follows:

$$0 = \emptyset$$
,

$$1 = \{0\} = \emptyset \cup \{\emptyset\} = \emptyset^+ = 0^+,$$

$$2 = \{0,1\} = \{0\} \cup \{1\} = 1 \cup \{1\} = 1^+,$$

$$3 = \{0,1,2\} = \{0,1\} \cup \{2\} = 2 \cup \{2\} = 2^+,$$

Definition 2.1.2. A set *A* is said to be **successor set** if it satisfies the following conditions:

- (i) $\emptyset \in A$,
- (ii) if $a \in A$, then $a^+ \in A$.

Remark 2.1.3.

- (i) Any successor set should contains the numbers 0,1,2,...n.
- (ii) Collection of all successor sets is not empty.
- (iii) Intersection of any non empty collection of successor sets is also successor set.

Definition 2.1.4. Intersection of all successor sets is called **the set of natural numbers** and denoted by \mathbb{N} , and each element of \mathbb{N} is called **natural element**.

Peano's Postulate 2.1.5.

- (\mathbf{P}_1) $0 \in \mathbb{N}$.
- (\mathbf{P}_2) If $a \in \mathbb{N}$, then $a^+ \in \mathbb{N}$.
- (\mathbf{P}_3) $0 \neq a^+ \in \mathbb{N}$ for every natural number a.
- (P₄) If $a^+ = b^+$, then a = b for any natural numbers a, b.
- (P₅) If X is a successor subset of \mathbb{N} , then $X = \mathbb{N}$.

Remark 2.1.6.

- (i) P_1 says that 0 should be a natural number.
- (ii) P_2 states that the relation $+: \mathbb{N} \to \mathbb{N}$, defined by $+(n) = n^+$ is mapping.
- (iii) P_3 as saying that 0 is the first natural number, or that '-1' is not an element of \mathbb{N} .
- (iv) P_4 states that the map $+: \mathbb{N} \to \mathbb{N}$ is injective.
- (v) P₅ is called the **Principle of Induction**.

2.1.7. Addition + on \mathbb{N}

We will now define the operation of addition + using only the information provided in the Peano's Postulates.

Let $a, b \in \mathbb{N}$. We define $+: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}$ as follows:

$$+(a,b) = a + b = \begin{cases} a + 0 = a & \text{if } b = 0 \\ a + c^+ = (a + c)^+ & \text{if } b \neq 0 \end{cases}$$

where $\boldsymbol{b} = \boldsymbol{c}^{+}$.

Therefore, if we want to compute 1 + 1, we note that $1 = 0^+$ and get

$$1 + 1 = 1 + 0^{+} = (1 + 0)^{+} = 1^{+} = 2.$$

We can proceed further to compute 1 + 2.

To do so, we note that $2 = 1^+$ and therefore that

$$1 + 2 = 1 + 1^{+} = (1 + 1)^{+} = 2^{+} = 3.$$

2.1.8. Multiplication \cdot on \mathbb{N}

We will now define the operation of multiplication \cdot using only the information provided in the Peano's Postulates.

Let $a, b \in \mathbb{N}$. We define $: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ as follows:

$$(a,b) = a \cdot b = \begin{cases} a \cdot 0 = 0 & \text{if } b = 0 \\ a \cdot c^+ = a + a \cdot c & \text{if } b \neq 0 \end{cases}$$

where $\boldsymbol{b} = \boldsymbol{c}^{+}$.

Thus, we can easily show that $a \cdot 1 = a$ by noting that $1 = 0^+$ and therefore

$$a \cdot 1 = a \cdot 0^{+} = a + (a \cdot 0) = a + 0 = a$$
.

We can use this to multiply $3 \cdot 2$. Of course, we know that $2 = 1^+$ and therefore

$$3 \cdot 2 = 3 \cdot 1^{+} = 3 + (3 \cdot 1) = 3 + 3 = 3 + 2^{+} = (3 + 2)^{+} = 5^{+} = 6.$$

Remark 2.1.9. From 2.1.7 and 2.1.8 we can deduce that for all $n \in \mathbb{N}$, if $n \neq 0$, then there exist an element $m \in \mathbb{N}$ such that $n = m^+$.

Theorem 2.1.10.

(i)
$$n^+ = n + 1$$
, $n^+ = 1 + n$, $n = n \cdot 1$, $n = 1 \cdot n$, $n = 1 \cdot n$, $n = n$, $n \in \mathbb{N}$.

- (ii) (Associative property of +) $(n+m)+c=n+(m+c), \forall n,m,c \in \mathbb{N}.$
- (iii) (Commutative property of +) n+m=m+n, $\forall n,m \in \mathbb{N}$.
- (iv) (Distributive property of \cdot on +) $\forall n, m, c \in \mathbb{N}$,

From right $(n+m) \cdot c = n \cdot c + m \cdot c$,

From left $c \cdot (n+m) = c \cdot n + c \cdot m$ (The prove depend on (vi)).

- (v) (Commutative property of \cdot) $n \cdot m = m \cdot n$, $\forall n, m \in \mathbb{N}$.
- (vi) (Associative property of \cdot) $(n \cdot m) \cdot c = n \cdot (m \cdot c), \forall n, m, c \in \mathbb{N}.$
- (vii) The addition operation + defined on \mathbb{N} is unique.
- (viii) The multiplication operation \cdot defined on \mathbb{N} is unique.
- (ix) (Cancellation Law for +). m + c = n + c, for some $c \in \mathbb{N} \iff m = n$.
- (x) 0 is the unique element such that 0 + m = m + 0 = m, $\forall m \in \mathbb{N}$.
- (xi) 1 is the unique element such that $1 \cdot m = m \cdot 1 = m$, $\forall m \in \mathbb{N}$.

(i)
$$n^+ = (n+0)^+$$
 (Since $n = n+0$)
= $n+0^+$ (Def. of +)
= $n+1$ (Since $0^+ = 1$)

(ii) Let
$$L_{mn} = \{c \in \mathbb{N} | (m+n) + c = m + (n+c)\}, m, n \in \mathbb{N}.$$

- (1) (m+n) + 0 = m + n = m + (n+0); that is, $0 \in L_{mn}$. Therefore, $L_{mn} \neq \emptyset$.
- (2) Let $c \in L_{mn}$; that is, (m+n)+c=m+(n+c). To prove $c^+ \in L_{mn}$.

$$(m+n) + c^{+} = ((m+n) + c)^{+}$$

= $(m+(n+c))^{+}$ (since $c \in L_{mn}$)
= $m + (n+c)^{+}$ (Def. of +)
= $m + (n+c^{+})$ (Def. of +)

Thus, $c^+ \in L_{mn}$. Therefore, L_{mn} is a successor subset of N. So, we get by P_5 $L_{mn} = \mathbb{N}.$

- (iii) Suppose that $L_m = \{n \in \mathbb{N} | m + n = n + m\}, m \in \mathbb{N}$. Then prove that L_m is successor subset of N.
- (iv) Suppose that $L_{mn} = \{c \in \mathbb{N} | c \cdot (m+n) = c \cdot m + c \cdot n\}, m, n \in \mathbb{N}$. Then prove that L_{mn} is successor subset of N.
- (v) Suppose that $L_m = \{n \in \mathbb{N} | m \cdot n = n \cdot m\}, m \in \mathbb{N}$. Then prove that L_m is successor subset of \mathbb{N} .
- (vi) Suppose that $L_{mn}=\{c\in\mathbb{N}|(m\cdot n)\cdot c=m\cdot (n\cdot c)\},\,m,n\in\mathbb{N}.$ Then prove that L_{mn} is successor subset of \mathbb{N} .
- (vii) Let \oplus be another operation on such that

$$\bigoplus(a,b) = \begin{cases} a \oplus 0 = a & \text{if } b = 0 \\ a \oplus c^+ = (a \oplus c)^+ & \text{if } b \neq 0 \end{cases}$$

where $\boldsymbol{b} = \boldsymbol{c}^{+}$.

Let $L = \{m \in \mathbb{N} | n + m = n \oplus m, \forall n \in \mathbb{N} \}.$

(1) To prove $0 \in L$.

 $n + 0 = n = n \oplus 0$. Thus, $0 \in L$.

(2) To prove that $k^+ \in L$ for every $k \in L$. Suppose $k \in L$.

$$n + k^+ = (n + k)^+$$
 Def. of +
 $= (n \oplus k)^+$ (Since $k \in L$)
 $= n \oplus k^+$ Def. of \oplus
Thus, $k^+ \in L$.

From (1), (2) we get that L is a successor set and $L \subseteq \mathbb{N}$. From P_5 we get that $L = \mathbb{N}$.

(viii) Exercise.

(ix) Suppose that

 $L = \{c \in \mathbb{N} | m + c = n + c, \text{ for some } c \in \mathbb{N} \iff m = n\}, m, n \in \mathbb{N}. \text{ Then }$ prove that L is successor subset of \mathbb{N} .

(x),(xi)Exercise.

Definition 2.1.11. Let $x, y \in \mathbb{N}$. We say that x less than y and denoted by x < y iff there exist $k \neq 0 \in \mathbb{N}$ such that x + k = y.

Theorem 2.1.12.

- (i) The relation < is transitive relation on \mathbb{N} .
- (ii) $0 < n^+$ and $n < n^+$ for all $n \in \mathbb{N}$.
- (iii) 0 < m or m = 0, for all $m \in \mathbb{N}$.

Proof:

(i),(ii),(iii) Exercise.

Theorem 2.1.13.(Trichotomy)

For each $m, n \in \mathbb{N}$ one and only one of the following is true:

(1) m < n or (2) n < m or (3) m = n.

Proof:

Let $m \in \mathbb{N}$ and

$$L_1 = \{ n \in \mathbb{N} | n < m \},$$

$$L_2 = \{ n \in \mathbb{N} | m < n \},$$

$$L_3 = \{ n \in \mathbb{N} | n = m \},$$

$$M = L_1 \cup L_2 \cup L_3.$$

- (1) $L_i \neq \emptyset$ and $L_i \subseteq \mathbb{N}$, i = 1,2,3. Therefore, $M \subseteq \mathbb{N}$ and $M \neq \emptyset$.
- (2) To prove that *M* is a successor set.
- (i) To prove that $0 \in M$.

(a) If
$$m = 0$$
, then $0 \in L_3 \to 0 \in M$ (Def. of U)

(b) If
$$m \neq 0$$
, then $\exists k \in \mathbb{N} \ni$

$$m = k^+$$

$$\rightarrow 0 < k^+ = m$$
 (Theorem 2.1.12(ii)).

$$\rightarrow 0 \in L_1 \rightarrow 0 \in M$$

Or If $m \neq 0$, then 0 < m (Theorem 2.1.12(iii)).

$$\to 0 \in L_1 \to 0 \in M$$

(ii) Suppose that $k \in M$. To prove that $k^+ \in M$.

Since $k \in M$, then $k \in L_1$ or $k \in L_2$ or $k \in L_3$ (Def. of U)

(a) If $k \in L_1$

$$\rightarrow k < m$$
 (Def. of L_1)

$$\rightarrow \exists c \neq 0 \in \mathbb{N} \ni m = k + c$$
 (Def of $<$)

$$\rightarrow \exists l \in \mathbb{N} \ni c = l^+$$
 (Remark 2.1.9)

$$\rightarrow m = k + c = k + l^+$$
 (Def. of +)

$$=(k+l)^{+}$$

$$\rightarrow m = (k+l)^+ = (l+k)^+$$
 (Commutative law for +)

$$\rightarrow m = l + k^+$$
 (Def. of +)

$$\begin{cases} if \ l = 0, \text{ then } m = k^+ \longrightarrow k^+ \in L_3 \\ if \ l \neq 0, \text{ then } k^+ < m \text{ (Def. } of <) \longrightarrow k^+ \in L_1 \end{cases}$$

- **b**) If $k \in L_2$
- $\rightarrow m < k$ (Def. of L_2)
- $\rightarrow m < k < k^+$ (Theorem 2.1.12(ii))
- $\rightarrow m < k^{+}$ (Theorem 2.1.12(i))
- (c) If $k \in L_3$
- $\rightarrow m = k$ (Def. of L_2)
- $\rightarrow m = k < k^{+}$ (Theorem 2.1.12(ii))
- $\rightarrow m < k^+$ (Theorem 2.1.12(i))
- $\rightarrow k^+ \in L_2$ (Def. of L_2)
- $\rightarrow k^+ \in M$ (Def. of U)

Theorem 2.1.14.

- (i) For all $n \in \mathbb{N}$, $0 < n \Leftrightarrow n \neq 0$.
- (ii) For all $m, n \in \mathbb{N}$, if $n \neq 0$, then $m + n \neq 0$.
- (iii) $m + k < n + k \Leftrightarrow m < n$, for all $m, n, k \in \mathbb{N}$.
- (iv) If $m \cdot n = 0$, then either m = 0 or n = 0, $\forall m, n \in \mathbb{N}$. (N has no zero divisor)
- (v) (Cancellation Law for ·) $m \cdot c = n \cdot c$, for some $c \neq 0 \in \mathbb{N} \iff m = n$.
- (vi) For all $k \neq 0 \in \mathbb{N}$, if m < n, then $m \cdot k < n \cdot k$, for all $m, n \in \mathbb{N}$.
- (vii) For all $k \neq 0 \in \mathbb{N}$, if $m \cdot k < n \cdot k$, then m < n, for all $m, n \in \mathbb{N}$.

Proof:

(ii) Case 1:

If
$$m = 0$$
.

$$\longrightarrow m + n = 0 + n = n \neq 0$$

$$\rightarrow m + n \neq 0$$

Case 2:

If
$$m \neq 0 \rightarrow 0 < m$$
 By (i)

Suppose that m + n = 0

- $\rightarrow m < 0$
- $\rightarrow m < 0$ and 0 < m

Contradiction with Trichotomy Theorem; that is, $m + n \neq 0$.

(vii) Let $m \cdot k < n \cdot k$. Assume that $m \not < n$

(i),(iii),(iv),(v),(vi) Exercise.

2. Construction of Integer Numbers

Let write $\mathbb{N} \times \mathbb{N}$ as follows:

Let define a relation on $\mathbb{N} \times \mathbb{N}$ as follows:

$$(a,b)R^*(c,d) \Leftrightarrow a+d=b+c.$$

Example 2.2.1.
$$(1,0)R^*(4,3)$$
 since $1+3=0+4$. $(1,0)R^*(6,4)$ since $1+4\neq 0+6$.

Theorem 2.2.2. The relation R^* on $\mathbb{N} \times \mathbb{N}$ is an equivalence relation. *Proof:*

- (1) Reflexive. For all $(a, b) \in \mathbb{N} \times \mathbb{N}$, a + b = a + b; that is $(a, b)R^*(a, b)$.
- (2) Symmetric. Let $(a, b), (c, d) \in \mathbb{N} \times \mathbb{N}$ such that $(a, b)R^*(c, d)$. To prove that $(c, d)R^*(a, b)$.

$$\rightarrow a + d = b + c$$
 (Def. of R^*)

$$\rightarrow d + a = c + b$$
 (Comm. law for +)

$$\rightarrow c + b = d + a$$
 (Equal properties)

$$\rightarrow$$
 $(c,d)R^*(a,b)$ (Def. of R^*)

(3) Transitive. Let $(a, b), (c, d), (r, s) \in \mathbb{N} \times \mathbb{N}$ such that $(a, b)R^*(c, d)$ and $(c, d)R^*(r, s)$. To prove $(a, b)R^*(r, s)$.

$$a + d = b + c$$
 (Since $(a, b)R^*(a, b)$)(1)

$$c + s = d + r$$
 (Since $(c, d)R^*(r, s)$)(2)

$$\rightarrow$$
 $(a+d)+s=(b+c)+s$ (Add s to both side of (1))

$$= b + (c + s)$$
 (Cancellations low and asso. law for +)(3)

$$\rightarrow (a+d) + s = b + (c+s)$$
 (Sub.(2) in (3))
= $b + (d+r)$

Remark 2.2.3.

(i) The equivalence class of each $(a, b) \in \mathbb{N} \times \mathbb{N}$ is as follows:

$$[(a,b)] = [a,b] = \{(r,s) \in \mathbb{N} \times \mathbb{N} | a+s = b+r \}$$

$$[1,0] = \{(x,y) \in \mathbb{N} \times \mathbb{N} | 1+y = 0+x \}$$

$$= \{(x,y) \in \mathbb{N} \times \mathbb{N} | x = 1+y \}$$

$$= \{(y+1,y) | y \in \mathbb{N} \}$$

$$= \{(1,0), (2,1), (3,2), \dots \}.$$

$$[0,0] = \{(x,y) \in \mathbb{N} \times \mathbb{N} | 0+y = 0+x \}$$

$$= \{(x,y) \in \mathbb{N} \times \mathbb{N} | x = y \}$$

$$= \{(x,x) | x \in \mathbb{N} \}$$

$$= \{(0,0), (1,1), (2,2), \dots \}.$$

$$(ii) [a,b] = \{(a,b), (a+1,b+1), (a+2,b+2), \dots \}.$$

(iii) These classes [(a,b)] formed a partition on $\mathbb{N} \times \mathbb{N}$.

Theorem 2.2.4. For all $(x, y) \in \mathbb{N} \times \mathbb{N}$, one of the following hold:

- (i) [x, y] = [0,0], if x = y.
- (ii) [x, y] = [z, 0], for some $z \in \mathbb{N}$, if y < x.
- (iii)[x, y] = [0, z], for some $z \in \mathbb{N}$, if x < y.

Proof:

Let $(x, y) \in \mathbb{N} \times \mathbb{N}$. Then by Trichotomy Theorem, there are three possibilities. (1) x = y,

$\rightarrow 0 + y = 0 + x$	Def. of +
$\rightarrow (0,0)R^*(x,y)$	Def. of R^*
$\rightarrow [0,0] = [x,y]$	Def. of [<i>a</i> , <i>b</i>]
(2) x < y,	
$\rightarrow y = x + z \text{ for some } z \in \mathbb{N}$	Def. of <

(3)
$$y < x$$
,

$$\begin{array}{ll}
(3) \ y < x, \\
\rightarrow x = y + z \text{ for some } z \in \mathbb{N} \\
\rightarrow x + 0 = y + z \\
\rightarrow (x, y) R^*(z, 0) \rightarrow (z, 0) R^*(x, y)
\end{array}$$
Def. of $<$
Def. of $+$
Def.

2.2.5. Constriction of Integer Numbers \mathbb{Z} .

Let

$$\mathbb{Z} = \bigcup_{(a,b)\in\mathbb{N}\times\mathbb{N}} [(a,b)] = \bigcup_{a(\neq 0)\in\mathbb{N}} [(a,0)] \bigcup_{b(\neq 0)\in\mathbb{N}} [(0,b)] \bigcup [(0,0)].$$

2.2.6. Addition, Subtraction and Multiplication on \mathbb{Z}

Addition: $\bigoplus : \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z}$;

$$[r,s] \oplus [t,u] = [r+t,s+u]$$

Subtraction: \ominus : $\mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z}$;

$$[r,s] \ominus [t,u] = [r,s] \ominus [u,t] = [r+u,s+t]$$

Multiplication: $\bigcirc: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$;

$$[r,s] \odot [t,u] = [r \cdot t + s \cdot u, r \cdot u + s \cdot t]$$

Theorem 2.2.7. The relations \oplus , \ominus and \odot are well defined; that is, \oplus , \ominus and \odot are functions.

Proof:

To prove \oplus is function. Assume that $[r,s] = [r_0,s_0]$ and $[t,u] = [t_0,u_0]$. $[r,s] \oplus [t,u] = [r+t,s+u]$ $[r_0,s_0] \oplus [t_0,u_0] = [r_0+t_0,s_0+u_0]$ To prove $[r+t,s+u] = [r_0+t_0,s_0+u_0]$.

 \ominus and \bigcirc (Exercise)

Example 2.2.8.

$$[2,4] \oplus [0,1] = [2 + 0,4 + 1] = [2,4] = [0,2].$$

 $[5,2] \oplus [8,1] = [5 + 8,2 + 1] = [13,3] = [10,0].$

Notation 2.2.9.

- (i) Let identify the equivalence classes [r, s] according to its form as in Theorem 2.2.3.
- $[a, 0] = +a, a \in \mathbb{N}$, called **positive integer**.
- $[0, b] = -b, b \in \mathbb{N}$, called **negative integer**.
- [0,0] = 0, called the **zero element**.

$$[4,6] = [0,2] = -2$$

$$[9,6] = [3,0] = 3$$

$$[6,6] = [0,0] = 0$$

(ii) The relation $i: \mathbb{N} \to \mathbb{Z}$, defined by i(n) = [n, 0] is 1-1 function, and $i(n+m) = i(n) \oplus i(m)$, $i(n \cdot m) = i(n) \odot i(m)$. So, we can identify n with +n; that is, $\boxed{+n = n}$, $\boxed{+= \bigoplus}$ and $\boxed{\cdot = \bigcirc}$.

Theorem 2.2.10.

- (i) $a \in \mathbb{Z}$ is positive if there exist $[x, y] \in \mathbb{Z}$ such that a = [x, y] and y < x.
- (ii) $b \in \mathbb{Z}$ is negative if there exist $[x, y] \in \mathbb{Z}$ such that b = [x, y] and x < y.
- (iii) For each element $[x, y] \in \mathbb{Z}$, $[y, x] \in \mathbb{Z}$ is the unique element such that [x, y] + [y, x] = 0. Denote [y, x] by -[x, y].
- (iv) $(-m) \odot n = -(m \cdot n)$, $\forall n, m \in \mathbb{Z}$.
- (v) $m \odot (-n) = -(m \cdot n)$, $\forall n, m \in \mathbb{Z}$.
- (vi) $(-m) \odot (-n) = m \cdot n$, $\forall n, m \in \mathbb{Z}$.
- (vii) (Commutative property of +) n+m=m+n, $\forall n,m \in \mathbb{Z}$.
- (viii) (Associative property of +) (n+m)+c=n+(m+c), $\forall n,m,c \in \mathbb{Z}$.
- (ix) (Commutative property of \cdot) $[n \cdot m = m \cdot n], \forall n, m \in \mathbb{Z}.$
- (x) (Associative property of \cdot) $(n \cdot m) \cdot c = n \cdot (m \cdot c), \forall n, m, c \in \mathbb{Z}.$
- (xi) (Cancellation Law for +). m + c = n + c, for some $c \in \mathbb{Z} \iff m = n$.
- (xii) (Cancellation Law for ·). $m \cdot c = n \cdot c$, for some $c \neq 0 \in \mathbb{Z} \iff m = n$.
- (xiii) 0 is the unique element such that 0 + m = m + 0 = m, $\forall m \in \mathbb{Z}$.
- (xiv) 1 is the unique element such that $1 \cdot m = m \cdot 1 = m$, $\forall m \in \mathbb{Z}$.
- (xv) Let $a, b, c \in \mathbb{Z}$. Then $c = a b \Leftrightarrow a = c + b$.
- (**xvi**) $\boxed{-(-b)=b}, \forall b \in \mathbb{Z}.$

Proof: Exercise.

Remark 2.2.11.

For each element $a = [x, y] \in \mathbb{Z}$, the unique element in Theorem 2.2.8(xiv) is -a = [y, x].

Definition 2.2.12. (\mathbb{Z} as an Ordered)

Let [r, s], $[t, u] \in \mathbb{Z}$. We say that [r, s] less than [t, u] and denoted by $[r, s] < [t, u] \Leftrightarrow r + u < s + t$.

This is well defined and agrees with the ordering on N.

Theorem 2.2.13.(Trichotomy For \mathbb{Z}) (Well Ordering)

For each [r, s], $[t, u] \in \mathbb{Z}$ one and only one of the following is true:

(1) [r,s] < [t,u] or (2) [t,u] < [r,s] or (3) [r,s] = [t,u].

Proof:

Since r + u, $t + s \in \mathbb{N}$, so by Trichotomy Theorem for \mathbb{N} one and only one of the following is true:

$$(1) r + u < s + t \rightarrow [r, s] < [t, u]$$

$$(2) s + t < r + u \rightarrow [t, u] < [r, s]$$

(3)
$$r + u = s + t \rightarrow (r, s)R^*(t, u) \rightarrow [r, s] = [t, u].$$

Theorem 2.2.14.

For each $[r, s] \in \mathbb{Z}$, $[r, s] < [0, 0] \Leftrightarrow r < s$. *Proof:*

$$[r,s] < [0,0] \Leftrightarrow r+0 < s+0 \Leftrightarrow r < s.$$

Remark 2.2.15.

According to Theorem 2.2.11 and Notation 2.2.7(i), for all $[r,s] \in \mathbb{Z}$ $[r,s] < [0,0] \Leftrightarrow r < s \Leftrightarrow [r,r+l] \in \mathbb{Z}$, where s=r+l for some $l \Leftrightarrow [0,l] < [0,0] \Leftrightarrow -l < 0$.