Numerical analysis $2^{\text {nd }}$ Class

11 .Numerical analysis and curve fitting

11.5 Characteristic Polynomial and Roots

[Polynomial comes from the Greek poly, "many" and medieval Latin binomium, "binomial".
\square Forming a sum of several terms produces a polynomial. For example, the following is a polynomial:

$$
\underbrace{3 x^{2}}_{\text {term term term }}-\underbrace{5 x}+\underbrace{4}
$$

It consists of three terms: the first is degree two, the second is degree one, and the third is degree zero.

Numerical analysis $2^{\text {nd }}$ Class

11 .Numerical analysis and curve fitting

11.6 Polynomials in MATLAB

- Represented by a row vector in which the elements are the coefficients as

$$
\left[\begin{array}{lllll}
a_{n} & a_{n-1} \ldots & a_{2} & a_{1} & a_{0}
\end{array}\right]
$$

The a_{i} elements of this vector are the coefficients of the polynomial in descending order.
\square Must include all coefficients, even if 0 :
Examples:-
The polynomial

1) $s^{3}-6 s^{2}-72 s-27$ is represented in MATLAB software as :

$$
\gg p=\left[\begin{array}{llll}
1 & -6 & -72 & -27
\end{array}\right]
$$

2) $8 x+5 \quad, \quad \gg p=[85]$
3) $6 x^{2}-150, \quad \gg h=\left[\begin{array}{lll}6 & 0 & -150\end{array}\right]$

Numerical analysis $2^{\text {nd }}$ Class

11 .Numerical analysis and curve fitting

11.7 Roots of Polynomials

We can find the roots of any polynomial with the roots (p) function where p is a row vector containing the polynomial coefficients in descending order.

Example1:

Find the roots of the polynomial

$$
p_{1}(x)=x^{4}-10 x^{3}+35 x^{2}-50 x+24
$$

Solution:

The roots are found with the following two statements. We have denoted the polynomial as p 1 ,and the roots as roots_ p1.
>> 1 1=[10 $\left.\begin{array}{lllll}10 & 35 & -50 & 24\end{array}\right]$ \% Specify the coefficients of $p 1(x)$
P1=
$\begin{array}{lllll}1 & -10 & 35 & -50 & 24\end{array}$

Numerical analysis
 $2^{\text {nd }}$ Class

11 .Numerical analysis and curve fitting

11.7 Roots of Polynomials

>> roots_p1=roots(p1) \% Find the roots of p1(x)
roots_p1 =
4.0000
3.0000
2.0000
1.0000

We observe that MATLAB displays the polynomial coefficients as a row vector, and the roots as a column vector.

Numerical analysis $2^{\text {nd }}$ Class

11 .Numerical analysis and curve fitting

11.7 Roots of Polynomials

Example2:

Find the roots of the polynomial

$$
p_{2}(x)=x^{5}-7 x^{4}+16 x^{2}-25 x+52
$$

Solution:
There is no cube term; therefore, we must enter zero as its coefficient. The roots are found with the statements below where we have defined the polynomial as p 2 , and the roots of this polynomial as roots_p2.
$\gg p^{r}=\left[\begin{array}{llllll}1 & -6 & 0 & 16 & 25 & 52\end{array}\right]$
P2=
$\begin{array}{llllll}1 & -7 & 0 & 16 & 25 & 52\end{array}$
>> roots_p2=roots(p2)
roots_p2 =

Numerical analysis $2^{\text {nd }}$ Class

11 .Numerical analysis and curve fitting

11.7 Roots of Polynomials

>> roots_p2=roots(p2)
roots_p2 =
6.5014
2.7428
-1.5711
$-0.3366+1.3202 i$
$-0.3366-1.3202 i$
The result indicates that this polynomial has three real roots, and two complex roots.
\qquad

Numerical analysis $2^{\text {nd }}$ Class

11 .Numerical analysis and curve fitting

11.8 Polynomial Construction from Known Roots

We can compute the coefficients of a polynomial from a given set of roots with the poly(r) function where r is a row vector containing the roots.

Example3:

It is known that the roots of a polynomial are 1,2,3 and 4. Compute the coefficients of this polynomial.
Solution:
We first define a row vector, say r3, with the given roots as elements of this vector; then, we find the coefficients with the poly(r) function as shown below.

Numerical analysis

11 .Numerical analysis and curve fitting

11.8 Polynomial Construction from Known Roots

>>r3=[llllll 1234$]$ \% Specify the roots of the polynomial
r3 =
$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
>>poly_r3=poly(r3) \% Find the polynomial coefficients
poly_r3 =
$\begin{array}{lllll}1 & -10 & 35 & -50 & 24\end{array}$
We observe that these are the coefficients of the polynomial p1(x) of Example1.

Numerical analysis $2^{\text {nd }}$ Class

11 .Numerical analysis and curve fitting

11.8 Polynomial Construction from Known Roots

Example4:

It is known that the roots of a polynomial are $-1,-2,-3,4+j 5$, and $4-j 5$. Find the coefficients of this polynomial.

Solution:

We form a row vector, say r4, with the given roots, and we find the polynomial coefficients with the poly(r) function as shown below.
>> r4=[-1-2 -3 4+5j 4-5j]

Numerical analysis

11 .Numerical analysis and curve fitting

11.8 Polynomial Construction from Known Roots

Example4:

>> r4=[-1 -2 -3 4+5j 4-5j]
r4 =
Columns 1 through 4
$-1.0000+0.0000 i-2.0000+0.0000 i-3.0000+0.0000 i 4.0000+5.0000 i$
Column 5
4.0000-5.0000i
>> poly_r4=poly(r4)

Numerical analysis $2^{\text {nd }}$ Class

11 .Numerical analysis and curve fitting

11.8 Polynomial Construction from Known Roots

Example4:

>> poly_r4=poly(r4)
poly_r4 =
$\begin{array}{llllll}1 & -2 & 4 & 164 & 403 & 246\end{array}$
Therefore, the polynomial is

$$
P_{4}(x)=x^{5}+14 x^{4}+100 x^{3}+340 x^{2}+499 x+246
$$

Numerical analysis

11 .Numerical analysis and curve fitting

11.9 Evaluation of a Polynomial at Specified Values

The polyval (p, x) function evaluates a polynomial $P(x)$ at some specified value of the independent variable x.

Example5:

Evaluate the polynomial

$$
P_{5}(x)=x^{6}-3 x^{5}+5 x^{3}-4 x^{2}+3 x+2
$$

at $x=-3$.

Solution:

>>p5=[1-3 0 1 5 -4 3 2 2 ; \% These are the coefficients

Numerical analysis $2^{\text {nd }}$ Class

11 .Numerical analysis and curve fitting

11.9 Evaluation of a Polynomial at Specified Values

$$
P_{5}(x)=x^{6}-3 x^{5}+5 x^{3}-4 x^{2}+3 x+2
$$

at $x=-3$.
Solution:
>>p5=[1-3 $\left.\begin{array}{llllll}1 & -3 & 5 & -4 & 3 & 2\end{array}\right] ;$ \% These are the coefficients
>> val_minus3=polyval(p5, -3) \% Evaluate p5 at $\mathrm{x}=-3$.
val_minus3 =
1280

Numerical analysis
 $2^{\text {nd }}$ Class

11 .Numerical analysis and curve fitting

11.10 Relations with Polynomials: conv, deconv ,polyder ,polyint
conv(a,b) - multiplies two polynomials a and b
$[\mathrm{q}, \mathrm{r}]=$ deconv(c,d) - divides polynomial c by polynomial d and displays the quotient q and remainder r .
polyder(p) - produces the coefficients of the derivative of a polynomial p.
polyint(p) - produces the coefficients of the integral of a polynomial p.

11. Numerical analysis and curve fitting

11.10 Relations with Polynomials: conv, deconv ,polyder ,polyint

Example6: Let $\quad P_{1}(x)=x^{5}-3 x^{4}+5 x^{2}+7 x+9$

$$
P_{2}(x)=2 x^{6}-8 x^{4}+4 x^{2}+10 x+12
$$

Compute the product p1.p2 with the $\operatorname{conv}(\mathrm{a}, \mathrm{b})$ function.

Solution:

>>p2=[20-8 04410 12];
>> p1p2=conv(p1,p2)
p1p2 =

Numerical analysis
 $2^{\text {nd }}$ Class

11 .Numerical analysis and curve fitting

11.10 Relations with Polynomials: conv, deconv ,polyder ,polyint
>> p1p2=conv(p1,p2)
p1p2 =

Therefore,
$P 1 . P 2_{1}=2 x^{11}-6 x^{10}-8 x^{9}+34 x^{8}-18 x^{7}-24 x^{6}-74 x^{5}-88 x^{4}+78 x^{3}$
$+166 x^{2}+174 x+108$

11 .Numerical analysis and curve fitting

11.10 Relations with Polynomials: conv, deconv ,polyder ,polyint

Example7:

$$
\text { Let } \begin{array}{ll}
& P_{3}(x)=x^{7}-3 x^{5}+5 x^{3}+7 x+9 \\
& P_{4}(x)=2 x^{6}-8 x^{2}+4 x^{2}+10 x+12
\end{array}
$$

Compute the quotient $\mathrm{p} 3 / \mathrm{p} 4$ using the $\operatorname{deconv}(\mathrm{p}, \mathrm{q})$ function.

```
Solution:
>> p3=[[1 0 -3 0 5 7 7 9];p4=[[2 -8 0 0 4 10 12];[q,r] = deconv(p3,p4)
q =
    0.5
r=
    0}44-3 00 3 2 3
```


Numerical analysis

11 .Numerical analysis and curve fitting

11.10 Relations with Polynomials: conv, deconv ,polyder ,polyint
0.5
$r=$

$$
043-303123
$$

Therefore, the quotient $\mathrm{q}(\mathrm{x})$ and remainder $\mathrm{r}(\mathrm{x})$ are :

$$
\mathrm{q}(\mathrm{x})=0.5 \quad r(x)=4 x^{5}-3 x^{4}+3 x^{2}+2 x+3
$$

Numerical analysis $2^{\text {nd }}$ Class

11 .Numerical analysis and curve fitting

11.10 Relations with Polynomials: conv, deconv ,polyder ,polyint

Example8: Let $\quad p_{5}=2 x^{6}-8 x^{4}+4 x^{2}+10 x+12$
Compute the derivative $d p_{5} / \mathrm{dx}$ using the polyder(p) function.

Solution:

>>der_p5=polyder(p5)
der_p5 =

$$
\begin{array}{llllll}
12 & 0 & -32 & 0 & 8 & 10
\end{array}
$$

Therefore,

$$
d p_{5} / d x=12 x^{5}-32 x^{3}+8 x+10
$$

Numerical analysis
 $2^{\text {nd }}$ Class

11 .Numerical analysis and curve fitting

11.10 Relations with Polynomials: conv, deconv ,polyder ,polyint

Compute the integral $\int p_{6} \mathrm{dx}$ using the polyint(p$)$ function.

Solution:

>> p6=[llll $\left.\begin{array}{ll}6 & 0\end{array}\right] ;$
>>der_p6=polyint(p5)
int_p6 =

$$
2000
$$

Therefore,

Numerical analysis $2^{\text {nd }}$ Class

11 .Numerical analysis and curve fitting

11.11 Curve fitting

Matlab also has a convenient tool for curve fitting. If we have two vectors, x and y, with paired observations, we can approximate the functional relation between them with a polynomial of some degree.

If the degree is 1 , the relation is linear;
\square if it is 2 , the relation is quadratic, etc.
\square This can be done with the function polyfit().

```
                                    Numerical analysis

\section*{11 .Numerical analysis and curve fitting}
```

\square The following script estimates the coefficients of polynomials of order 1, 2, and 3, for a given set of observations, and plots the results in three graphs.
clc, clear all
x = [1 2345678 9]; $y=[23357889$ 7];
x_val = linspace(0,10,100);
for degree=1:3
poly $=$ polyfit(x, y, degree $)$;
disp(['Coeff., case ' num2str(degree) ': ' num2str(poly)])
y_val = polyval(poly,x_val);
subplot(3,1,degree)
plot(x,y,'r*'), axis([0 100 10])
hold on
plot(x_val,y_val)
ylabel(['Degree: ' num2str(degree)])
end

Numerical analysis $2^{\text {nd }}$ Class

11 .Numerical analysis and curve fitting

11.11 Curve fitting: poly = polyfit(x,y,degree)

The output is:
Coeff., case 1: 0.851 .5278
Coeff., case 2: -0.12229 $2.0729-0.71429$
Coeff., case 3: -0.053872 $0.68579-1.3318 \quad 2.8413$
\square The first two inputs to polyfit() are the vectors of X - and Y -values, and the third is the degree of the polynomial (i.e., the highest value of the exponent).
poly = polyfit(x,y,degree);
The function responds with a matrix that holds one more element than the degree.
\square The elements of the matrix are the coefficients of the estimated polynomial.
\square For example, in the third case above

$$
y=-0.053872 x^{3}+0.68579 x^{2}-1.3318 x+2.8413
$$

Numerical analysis

 $2^{\text {nd }}$ Class
11 .Numerical analysis and curve fitting

11.11 Curve fitting: poly = polyfit(x,y,degree)

The function polyval() uses a matrix of coefficients, poly above, and returns Y values for given X -values.
y_val = polyval(poly,x_val);Figure 11-1 shows the resulting three plots. The red markers are the same in all three cases, but the curves correspond to the fitted polynomials.

