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3. Sequences
(3.1) Definition: Let  be a non-empty set. A function which its domain  and its codomain  is called a sequence in, such that  if .
(3.2) Example: If  be a sequence defined in  a range is .
(3.3) Definition: Let  be a sequences in , we say that  is a subsequence of , if there is a function 
1. ;
2. .
(3.4) Example: Let , we note that  is a subsequence of , since if we define  by,  and then  be a subsequence of {.
(3.5) Note: If  is a subsequence of  and  is a subsequence of, then  is a subsequence of .
(3.6) Definition: If  be a sequence in a partially ordered set , we say that  be an increasing, if , and we say that  be a decreasing, if  and we say that  be a monotone, if  an increasing or a decreasing.
(3.7) Note:
·  be an increasing.
·  be an increasing and  sup , .
·  be a decreasing.
·  be a decreasing and inf , .
(3.8) Definition: Let  be a sequence in a partially ordered set  , we say that  is a converges to , if there is   in , such that 
1. ;
2.  and .
(3.9) Note:  is called a converge point and written .
(3.10) Definition: Let  be a sequence in a partially ordered set  , we have
· Inferior limit  lim inf  , where lim inf .
· Superior limit  lim sup  , where lim sup .
(3.11) Note: If lim sup   lim sup   .
Real Sequences
(3.12) Note: We say that  be a real sequence if .
(3.13) Definition: The numerical sequence is a sequence which be subtract output of every term from direct previous term is equal to constant called progression basis and denoted by .
(3.14) Example: The numerical sequence which its first term  and its basis  is 
. The general term of a numerical sequence  is  where  represents a first term and  represents a basis with the partial summation
 .
(3.15) Definition: Geometry progression is a sequence which output of division of every term on direct previous term is equal to a constant called progression basis and denoted by .
(3.16) Example: Geometric progression which its first term  and its basis  is 
. The general term is  where  represents a first term and  represents a basis with the partial summation
 .
If .
If  .
(3.17)Definition: Arithmetic geometric progression is . The general term is  and the partial summation is
 .
If  .
(3.18) Definition: Let  be a real sequence, we say that  
1. Convergent, if , we say that a point  is a limit point of  and its written by  or where , therefore  iff .
2. Divergent, if  does not convergent.
3. Cauchy sequence, if and then  is a Cauchy sequence iff  where .
(3.19) Examples:
1. Show that .
Solution: since .
2. Show that .
Solution: since  (by Archimedes property), , so .
3. Show that  be a divergent.
Solution: since if we assume that  be a convergent  and then  contains of terms , since  (by Archimedes property) , since , this means  does not contain on terms of , but this is contradiction.
4. Show that  such that  converges to one .
Solution: since , take  and then .
5. Show that  be a divergent.
Solution: since if we suppose that  be a convergent , let . 
Let , take is an even, is an odd,  this means that   does not contain all terms of  and then  does not converge to .
By same way we prove that  does not converge to .
Now, let , let , take , we deduce that  does not contain on any term of  does not converge to .
(3.20) Theorem:
1. If a real sequence is a convergent, then a converge point is a unique.
2. Every convergent sequence be Cauchy sequence.
Proof: (1) Let  and let , since  put max , but this is  a contradiction .
(2) let  be a convergent sequence , let , since , if  and then  be Cauchy sequence.
(3.21) Definition: If  be a real sequence, we say that  is 
1. Bounded above, if ;
2. Bounded below, if ;
3. Bounded, if .

(3.22) Examples:
1.  is a bounded, since .
2.  is a bounded, since .
3.  is a bounded, since .
4.  does not bounded, since if we suppose that  is a bounded , but this is a contradiction (Archimedes property) since .
5.  does not bounded.
(3.23) Theorem: Every Cauchy sequence be a bounded, and then every convergent sequences be a bounded.
Proof: Let   be Cauchy sequence, we must prove that is a bounded. Let , since  is a Cauchy sequence , let , since, put  max, and then  is a bounded.
(3.24) Note: If a real sequence is a bounded, then its not a necessary be a convergent, for example   is a bounded, but does not convergent.
(3.25) Definition: Let  be a real sequence. We said that 
1. Non-decreasing, if .
2. Increasing, if .
3. Non-increasing, if  .
4. Decreasing, if .
(3.26) Note: We said that  is a monotonic, if its be satisfy any one of above.
(3.26) Examples:
1. { is a decreasing   a monotonic.
2.  is an increasing  a monotonic.
3.  does not a monotonic.
(3.27) Theorem:
1. Every bounded real sequence and monotonic be a convergent.
2. Every bounded real sequence contains on a convergent partial sequence.
(3.28) Theorem: (Some special sequences)
1. If .
2. If .
3. .
4. If .
Proof: (1) let  , take .
(2) a. if , put , since .
b. if .
c. if , put  and , since .
(3) let , since .
(4) .
a. if .
b. if  exists, put , since ,   ,   put .

(3.29) Theorem: Let be a real sequences such that  and , then 
1. .
2. .
3. .
4. .
5.  where .
6.  where .
7. .
8. .
9. If .
Proof: (1) let , since , since , put  max , , so .
(3.30) Theorem:
1. For all real number, there is Cauchy sequence of rational numbers converge of them.
2. For all real number, there is Cauchy sequence of irrational numbers converge of them.
3. There is Cauchy sequence of rational numbers does not converge to any rational number.
 Proof: (1) let , since  (by density of rational numbers) , now, we must prove that , let  (by Archimedes property) .
(3.31) Definition: We said that a space  is a complete, if every Cauchy sequence in   be a convergent in .
(3.32) Note:  is an incomplete, while  is a complete.
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