
2022-09-15

1

Prof. DR. Bashar M. Nema

Information Security
M.Sc. Course

•Know how to PROTECT (Data and Information).
•Know how to be a STANDARD APPS in Information security.
•Know how to PROTECT Recourses that connected online via concept of CYBERSECURITY.
•Know other ideas and concepts of these two fields.

Information security (commonly known as InfoSec) refers to the procedures and practices that corporations use to
protect their data.
Information security protects sensitive data from unauthorized acts such as scrutiny, modification, recording,
disruption, or destruction. The goal is to secure and preserve the privacy of important data like client account
information, financial information, or intellectual property.

Cyber security is the activity of securing computer systems, networks, devices, and applications from cyber attacks of
any kind. Cyber security threats have risen above critical levels because of the inevitable spread of digital
transformation, putting your sensitive data in jeopardy.
Because of its complexity in geopolitics and the more dispersed attack methods, corporations and national
governments have begun to perceive cyber security as a key concern. Many firms increasingly include information risk
management into their overall risk management strategy.

Learning objectives

Lesson overview

https://www.simplilearn.com/what-is-information-security-article
https://www.simplilearn.com/introduction-to-cyber-security-article
https://www.simplilearn.com/security-risk-management-rar43-article

2022-09-15

2

EXPLAIN

Course Materials

Information Security

Lectures Seminars

Cybersecurity

Lectures Seminars

To be Contacted me:
 Email: bmn774@gmail.com.

 Mobile: 07715352885.

 Profile: https://www.uomustansiriyah.edu.iq/e-learn/profile.php?id=1873

https://online.lifeliqe.com/app/scene/p_zver_pelikan
https://online.lifeliqe.com/app/scene/p_zver_pelikan
mailto:bmn774@gmail.com
https://www.uomustansiriyah.edu.iq/e-learn/profile.php?id=1873

18 PREFACE

Sanjay Rao and Ruben Torres of Purdue University developed the laboratory exercises

that appear in the IRC. The following people contributed project assignments that appear in

the instructor’s supplement: Henning Schulzrinne (Columbia University); Cetin Kaya Koc

(Oregon State University); and David Balenson (Trusted Information Systems and George

Washington University). Kim McLaughlin developed the test bank.

Finally, I thank the many people responsible for the publication of this book, all of

whom did their usual excellent job. This includes the staff at Pearson, particularly my editor

Tracy Johnson, program manager Carole Snyder, and production manager Bob Engelhardt.

Thanks also to the marketing and sales staffs at Pearson, without whose efforts this book

would not be in front of you.

ACKNOWLEDGMENTS FOR THE GLOBAL EDITION

Pearson would like to thank and acknowledge Somitra Kumar Sanadhya (Indraprastha

Institute of Information Technology Delhi), and Somanath Tripathy (Indian Institute of

Technology Patna) for contributing to the Global Edition, and Anwitaman Datta (Nanyang

Technological University Singapore), Atul Kahate (Pune University), Goutam Paul (Indian

Statistical Institute Kolkata), and Khyat Sharma for reviewing the Global Edition.

ABOUT THE AUTHOR

Dr. William Stallings has authored 18 titles, and counting revised editions, over 40 books

on computer security, computer networking, and computer architecture. His writings have

 appeared in numerous publications, including the Proceedings of the IEEE, ACM Computing
Reviews, and Cryptologia.

He has 13 times received the award for the best Computer Science textbook of the

year from the Text and Academic Authors Association.

In over 30 years in the field, he has been a technical contributor, technical manager,

and an executive with several high-technology firms. He has designed and implemented

both TCP/IP-based and OSI-based protocol suites on a variety of computers and operating

systems, ranging from microcomputers to mainframes. As a consultant, he has advised gov-

ernment agencies, computer and software vendors, and major users on the design, selection,

and use of networking software and products.

He created and maintains the Computer Science Student Resource Site at

ComputerScienceStudent.com. This site provides documents and links on a variety of

 subjects of general interest to computer science students (and professionals). He is a member

of the editorial board of Cryptologia, a scholarly journal devoted to all aspects of cryptology.

Dr. Stallings holds a PhD from MIT in computer science and a BS from Notre Dame

in electrical engineering.

19

PART ONE: BACKGROUND

CHAPTER

Computer and Network
Security Concepts

1.1 Computer Security Concepts

A Definition of Computer Security

Examples

The Challenges of Computer Security

1.2 The OSI Security Architecture

1.3 Security Attacks

Passive Attacks

Active Attacks

1.4 Security Services

Authentication

Access Control

Data Confidentiality

Data Integrity

Nonrepudiation

Availability Service

1.5 Security Mechanisms

1.6 Fundamental Security Design Principles

1.7 Attack Surfaces and Attack Trees

Attack Surfaces

Attack Trees

1.8 A Model for Network Security

1.9 Standards

1.10 Key Terms, Review Questions, and Problems

19

Hiva-Network.Com

http://www.hiva-network.com/
Lab
Highlight

20 CHAPTER 1 / COMPUTER AND NETWORK SECURITY CONCEPTS

This book focuses on two broad areas: cryptographic algorithms and protocols, which

have a broad range of applications; and network and Internet security, which rely

heavily on cryptographic techniques.

Cryptographic algorithms and protocols can be grouped into four main areas:

 ■ Symmetric encryption: Used to conceal the contents of blocks or streams of

data of any size, including messages, files, encryption keys, and passwords.

 ■ Asymmetric encryption: Used to conceal small blocks of data, such as encryp-

tion keys and hash function values, which are used in digital signatures.

 ■ Data integrity algorithms: Used to protect blocks of data, such as messages,

from alteration.

 ■ Authentication protocols: These are schemes based on the use of crypto-

graphic algorithms designed to authenticate the identity of entities.

The field of network and Internet security consists of measures to deter, prevent,

detect, and correct security violations that involve the transmission of information.

That is a broad statement that covers a host of possibilities. To give you a feel for the

areas covered in this book, consider the following examples of security violations:

1. User A transmits a file to user B. The file contains sensitive information

(e.g., payroll records) that is to be protected from disclosure. User C, who is

not authorized to read the file, is able to monitor the transmission and capture

a copy of the file during its transmission.

2. A network manager, D, transmits a message to a computer, E, under its man-

agement. The message instructs computer E to update an authorization file to

include the identities of a number of new users who are to be given access to

that computer. User F intercepts the message, alters its contents to add or delete

entries, and then forwards the message to computer E, which accepts the mes-

sage as coming from manager D and updates its authorization file accordingly.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

 ◆ Describe the key security requirements of confidentiality, integrity, and

availability.

 ◆ Describe the X.800 security architecture for OSI.

 ◆ Discuss the types of security threats and attacks that must be dealt with

and give examples of the types of threats and attacks that apply to differ-

ent categories of computer and network assets.

 ◆ Explain the fundamental security design principles.

 ◆ Discuss the use of attack surfaces and attack trees.

 ◆ List and briefly describe key organizations involved in cryptography

standards.

Lab
Highlight

Lab
Highlight

Lab
Sticky Note
يتكون مجال أمن الشبكات والإنترنت من إجراءات لردع ومنع وكشف وتصحيح الانتهاكات الأمنية التي تنطوي على نقل المعلومات.

1.1 / COMPUTER SECURITY CONCEPTS 21

3. Rather than intercept a message, user F constructs its own message with the

desired entries and transmits that message to computer E as if it had come

from manager D. Computer E accepts the message as coming from manager D

and updates its authorization file accordingly.

4. An employee is fired without warning. The personnel manager sends a mes-

sage to a server system to invalidate the employee’s account. When the invali-

dation is accomplished, the server is to post a notice to the employee’s file as

confirmation of the action. The employee is able to intercept the message and

delay it long enough to make a final access to the server to retrieve sensitive

information. The message is then forwarded, the action taken, and the confir-

mation posted. The employee’s action may go unnoticed for some consider-

able time.

5. A message is sent from a customer to a stockbroker with instructions for vari-

ous transactions. Subsequently, the investments lose value and the customer

denies sending the message.

Although this list by no means exhausts the possible types of network security viola-

tions, it illustrates the range of concerns of network security.

 1.1 COMPUTER SECURITY CONCEPTS

A Definition of Computer Security

The NIST Computer Security Handbook [NIST95] defines the term computer secu-
rity as follows:

Computer Security: The protection afforded to an automated information system

in order to attain the applicable objectives of preserving the integrity, availability,

and confidentiality of information system resources (includes hardware, software,

firmware, information/data, and telecommunications).

This definition introduces three key objectives that are at the heart of com-

puter security:

 ■ Confidentiality: This term covers two related concepts:

Data1 confidentiality: Assures that private or confidential information is

not made available or disclosed to unauthorized individuals.

Privacy: Assures that individuals control or influence what information re-

lated to them may be collected and stored and by whom and to whom that

information may be disclosed.

1RFC 4949 defines information as “facts and ideas, which can be represented (encoded) as various forms
of data,” and data as “information in a specific physical representation, usually a sequence of symbols
that have meaning; especially a representation of information that can be processed or produced by a
computer.” Security literature typically does not make much of a distinction, nor does this book.

Lab
Highlight

Lab
Sticky Note
We can see more here:
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-12.pdf

Lab
Sticky Note
الحماية الممنوحة لنظام المعلومات الآلي من أجل تحقيق الأهداف القابلة للتطبيق للحفاظ على سلامة موارد نظام المعلومات وتوافرها وسريتها (بما في ذلك الأجهزة والبرامج ،
البرامج الثابتة والمعلومات / البيانات والاتصالات).

Lab
Highlight

22 CHAPTER 1 / COMPUTER AND NETWORK SECURITY CONCEPTS

 ■ Integrity: This term covers two related concepts:

Data integrity: Assures that information (both stored and in transmit-

ted packets) and programs are changed only in a specified and authorized

manner.

System integrity: Assures that a system performs its intended function in

an unimpaired manner, free from deliberate or inadvertent unauthorized

manipulation of the system.

 ■ Availability: Assures that systems work promptly and service is not denied to

authorized users.

These three concepts form what is often referred to as the CIA triad. The

three concepts embody the fundamental security objectives for both data and for

information and computing services. For example, the NIST standard FIPS 199

(Standards for Security Categorization of Federal Information and Information
Systems) lists confidentiality, integrity, and availability as the three security objec-

tives for information and for information systems. FIPS 199 provides a useful char-

acterization of these three objectives in terms of requirements and the definition of

a loss of security in each category:

 ■ Confidentiality: Preserving authorized restrictions on information access

and disclosure, including means for protecting personal privacy and propri-

etary information. A loss of confidentiality is the unauthorized disclosure of

information.

 ■ Integrity: Guarding against improper information modification or destruc-

tion, including ensuring information nonrepudiation and authenticity. A loss

of integrity is the unauthorized modification or destruction of information.

 ■ Availability: Ensuring timely and reliable access to and use of information.

A loss of availability is the disruption of access to or use of information or an

information system.

Although the use of the CIA triad to define security objectives is well estab-

lished, some in the security field feel that additional concepts are needed to present a

complete picture (Figure 1.1). Two of the most commonly mentioned are as follows:

Figure 1.1 Essential Network and Computer Security
Requirements

Data
and

services

Availability

Integrity

A
ccountability

A
ut

he
nt

ic
ity

Confidentiality

Lab
Highlight

Lab
Highlight

Lab
Highlight

1.1 / COMPUTER SECURITY CONCEPTS 23

 ■ Authenticity: The property of being genuine and being able to be verified and

trusted; confidence in the validity of a transmission, a message, or message

originator. This means verifying that users are who they say they are and that

each input arriving at the system came from a trusted source.

 ■ Accountability: The security goal that generates the requirement for actions

of an entity to be traced uniquely to that entity. This supports nonrepudia-

tion, deterrence, fault isolation, intrusion detection and prevention, and after-

action recovery and legal action. Because truly secure systems are not yet an

achievable goal, we must be able to trace a security breach to a responsible

party. Systems must keep records of their activities to permit later forensic

analysis to trace security breaches or to aid in transaction disputes.

Examples

We now provide some examples of applications that illustrate the requirements just

enumerated.2 For these examples, we use three levels of impact on organizations or

individuals should there be a breach of security (i.e., a loss of confidentiality, integ-

rity, or availability). These levels are defined in FIPS PUB 199:

 ■ Low: The loss could be expected to have a limited adverse effect on organi-

zational operations, organizational assets, or individuals. A limited adverse

effect means that, for example, the loss of confidentiality, integrity, or avail-

ability might (i) cause a degradation in mission capability to an extent and

duration that the organization is able to perform its primary functions, but the

effectiveness of the functions is noticeably reduced; (ii) result in minor dam-

age to organizational assets; (iii) result in minor financial loss; or (iv) result in

minor harm to individuals.

 ■ Moderate: The loss could be expected to have a serious adverse effect on

organizational operations, organizational assets, or individuals. A serious

adverse effect means that, for example, the loss might (i) cause a signifi-

cant degradation in mission capability to an extent and duration that the

organization is able to perform its primary functions, but the effectiveness

of the functions is significantly reduced; (ii) result in significant damage to

organizational assets; (iii) result in significant financial loss; or (iv) result in

significant harm to individuals that does not involve loss of life or serious,

life-threatening injuries.

 ■ High: The loss could be expected to have a severe or catastrophic adverse

effect on organizational operations, organizational assets, or individuals.

A severe or catastrophic adverse effect means that, for example, the loss

might (i) cause a severe degradation in or loss of mission capability to an

extent and duration that the organization is not able to perform one or more

of its primary functions; (ii) result in major damage to organizational assets;

(iii) result in major financial loss; or (iv) result in severe or catastrophic harm

to individuals involving loss of life or serious, life-threatening injuries.

2These examples are taken from a security policy document published by the Information Technology
Security and Privacy Office at Purdue University.

24 CHAPTER 1 / COMPUTER AND NETWORK SECURITY CONCEPTS

CONFIDENTIALITY Student grade information is an asset whose confidentiality is

considered to be highly important by students. In the United States, the release of

such information is regulated by the Family Educational Rights and Privacy Act

(FERPA). Grade information should only be available to students, their parents,

and employees that require the information to do their job. Student enrollment

information may have a moderate confidentiality rating. While still covered by

FERPA, this information is seen by more people on a daily basis, is less likely to be

targeted than grade information, and results in less damage if disclosed. Directory

information, such as lists of students or faculty or departmental lists, may be as-

signed a low confidentiality rating or indeed no rating. This information is typically

freely available to the public and published on a school’s Web site.

INTEGRITY Several aspects of integrity are illustrated by the example of a hospital

patient’s allergy information stored in a database. The doctor should be able to

trust that the information is correct and current. Now suppose that an employee

(e.g., a nurse) who is authorized to view and update this information deliberately

falsifies the data to cause harm to the hospital. The database needs to be restored

to a trusted basis quickly, and it should be possible to trace the error back to the

person responsible. Patient allergy information is an example of an asset with a high

requirement for integrity. Inaccurate information could result in serious harm or

death to a patient and expose the hospital to massive liability.

An example of an asset that may be assigned a moderate level of integrity

requirement is a Web site that offers a forum to registered users to discuss some

specific topic. Either a registered user or a hacker could falsify some entries or

deface the Web site. If the forum exists only for the enjoyment of the users, brings

in little or no advertising revenue, and is not used for something important such

as research, then potential damage is not severe. The Web master may experience

some data, financial, and time loss.

An example of a low integrity requirement is an anonymous online poll. Many

Web sites, such as news organizations, offer these polls to their users with very few

safeguards. However, the inaccuracy and unscientific nature of such polls is well

understood.

AVAILABILITY The more critical a component or service, the higher is the level of

availability required. Consider a system that provides authentication services for

critical systems, applications, and devices. An interruption of service results in the

inability for customers to access computing resources and staff to access the re-

sources they need to perform critical tasks. The loss of the service translates into a

large financial loss in lost employee productivity and potential customer loss.

An example of an asset that would typically be rated as having a moderate

availability requirement is a public Web site for a university; the Web site provides

information for current and prospective students and donors. Such a site is not a

critical component of the university’s information system, but its unavailability will

cause some embarrassment.

An online telephone directory lookup application would be classified as a low

availability requirement. Although the temporary loss of the application may be

an annoyance, there are other ways to access the information, such as a hardcopy

directory or the operator.

1.1 / COMPUTER SECURITY CONCEPTS 25

The Challenges of Computer Security

Computer and network security is both fascinating and complex. Some of the

 reasons follow:

1. Security is not as simple as it might first appear to the novice. The require-

ments seem to be straightforward; indeed, most of the major requirements for

security services can be given self-explanatory, one-word labels: confidential-

ity, authentication, nonrepudiation, or integrity. But the mechanisms used to

meet those requirements can be quite complex, and understanding them may

involve rather subtle reasoning.

2. In developing a particular security mechanism or algorithm, one must always

consider potential attacks on those security features. In many cases, successful

attacks are designed by looking at the problem in a completely different way,

therefore exploiting an unexpected weakness in the mechanism.

3. Because of point 2, the procedures used to provide particular services are

often counterintuitive. Typically, a security mechanism is complex, and it is not

obvious from the statement of a particular requirement that such elaborate

measures are needed. It is only when the various aspects of the threat are con-

sidered that elaborate security mechanisms make sense.

4. Having designed various security mechanisms, it is necessary to decide where

to use them. This is true both in terms of physical placement (e.g., at what points

in a network are certain security mechanisms needed) and in a logical sense

(e.g., at what layer or layers of an architecture such as TCP/IP [Transmission

Control Protocol/Internet Protocol] should mechanisms be placed).

5. Security mechanisms typically involve more than a particular algorithm or

protocol. They also require that participants be in possession of some secret in-

formation (e.g., an encryption key), which raises questions about the creation,

distribution, and protection of that secret information. There also may be a re-

liance on communications protocols whose behavior may complicate the task

of developing the security mechanism. For example, if the proper functioning

of the security mechanism requires setting time limits on the transit time of a

message from sender to receiver, then any protocol or network that introduces

variable, unpredictable delays may render such time limits meaningless.

6. Computer and network security is essentially a battle of wits between a per-

petrator who tries to find holes and the designer or administrator who tries to

close them. The great advantage that the attacker has is that he or she need

only find a single weakness, while the designer must find and eliminate all

weaknesses to achieve perfect security.

7. There is a natural tendency on the part of users and system managers to per-

ceive little benefit from security investment until a security failure occurs.

8. Security requires regular, even constant, monitoring, and this is difficult in

today’s short-term, overloaded environment.

9. Security is still too often an afterthought to be incorporated into a system

after the design is complete rather than being an integral part of the design

process.

26 CHAPTER 1 / COMPUTER AND NETWORK SECURITY CONCEPTS

10. Many users and even security administrators view strong security as an

impediment to efficient and user-friendly operation of an information system

or use of information.

The difficulties just enumerated will be encountered in numerous ways as we

examine the various security threats and mechanisms throughout this book.

 1.2 THE OSI SECURITY ARCHITECTURE

To assess effectively the security needs of an organization and to evaluate and

choose various security products and policies, the manager responsible for security

needs some systematic way of defining the requirements for security and character-

izing the approaches to satisfying those requirements. This is difficult enough in a

centralized data processing environment; with the use of local and wide area net-

works, the problems are compounded.

ITU-T3 Recommendation X.800, Security Architecture for OSI, defines such a

systematic approach.4 The OSI security architecture is useful to managers as a way

of organizing the task of providing security. Furthermore, because this architecture

was developed as an international standard, computer and communications vendors

have developed security features for their products and services that relate to this

structured definition of services and mechanisms.

For our purposes, the OSI security architecture provides a useful, if abstract,

overview of many of the concepts that this book deals with. The OSI security archi-

tecture focuses on security attacks, mechanisms, and services. These can be defined

briefly as

 ■ Security attack: Any action that compromises the security of information

owned by an organization.

 ■ Security mechanism: A process (or a device incorporating such a process)

that is designed to detect, prevent, or recover from a security attack.

 ■ Security service: A processing or communication service that enhances the

security of the data processing systems and the information transfers of an

organization. The services are intended to counter security attacks, and they

make use of one or more security mechanisms to provide the service.

In the literature, the terms threat and attack are commonly used to mean more

or less the same thing. Table 1.1 provides definitions taken from RFC 4949, Internet
Security Glossary.

3The International Telecommunication Union (ITU) Telecommunication Standardization Sector (ITU-T)
is a United Nations-sponsored agency that develops standards, called Recommendations, relating to tele-
communications and to open systems interconnection (OSI).
4The OSI security architecture was developed in the context of the OSI protocol architecture, which is
described in Appendix L. However, for our purposes in this chapter, an understanding of the OSI proto-
col architecture is not required.

1.3 / SECURITY ATTACKS 27

 1.3 SECURITY ATTACKS

A useful means of classifying security attacks, used both in X.800 and RFC 4949, is

in terms of passive attacks and active attacks (Figure 1.2). A passive attack attempts

to learn or make use of information from the system but does not affect system re-

sources. An active attack attempts to alter system resources or affect their operation.

Passive Attacks

Passive attacks (Figure 1.2a) are in the nature of eavesdropping on, or monitoring

of, transmissions. The goal of the opponent is to obtain information that is being

transmitted. Two types of passive attacks are the release of message contents and

traffic analysis.

The release of message contents is easily understood. A telephone conver-

sation, an electronic mail message, and a transferred file may contain sensitive or

confidential information. We would like to prevent an opponent from learning the

contents of these transmissions.

A second type of passive attack, traffic analysis, is subtler. Suppose that we

had a way of masking the contents of messages or other information traffic so that

opponents, even if they captured the message, could not extract the information

from the message. The common technique for masking contents is encryption. If we

had encryption protection in place, an opponent might still be able to observe the

pattern of these messages. The opponent could determine the location and identity

of communicating hosts and could observe the frequency and length of messages

being exchanged. This information might be useful in guessing the nature of the

communication that was taking place.

Passive attacks are very difficult to detect, because they do not involve any

alteration of the data. Typically, the message traffic is sent and received in an appar-

ently normal fashion, and neither the sender nor receiver is aware that a third party

has read the messages or observed the traffic pattern. However, it is feasible to pre-

vent the success of these attacks, usually by means of encryption. Thus, the empha-

sis in dealing with passive attacks is on prevention rather than detection.

Active Attacks

Active attacks (Figure 1.2b) involve some modification of the data stream or the

creation of a false stream and can be subdivided into four categories: masquerade,

replay, modification of messages, and denial of service.

Threat
A potential for violation of security, which exists when there is a circumstance, capability, action,

or event that could breach security and cause harm. That is, a threat is a possible danger that might

exploit a vulnerability.

Attack
An assault on system security that derives from an intelligent threat; that is, an intelligent act that

is a deliberate attempt (especially in the sense of a method or technique) to evade security services

and violate the security policy of a system.

Table 1.1 Threats and Attacks (RFC 4949)

28 CHAPTER 1 / COMPUTER AND NETWORK SECURITY CONCEPTS

A masquerade takes place when one entity pretends to be a different entity

(path 2 of Figure 1.2b is active). A masquerade attack usually includes one of the

other forms of active attack. For example, authentication sequences can be captured

and replayed after a valid authentication sequence has taken place, thus enabling an

authorized entity with few privileges to obtain extra privileges by impersonating an

entity that has those privileges.

Replay involves the passive capture of a data unit and its subsequent retrans-

mission to produce an unauthorized effect (paths 1, 2, and 3 active).

Modification of messages simply means that some portion of a legitimate mes-

sage is altered, or that messages are delayed or reordered, to produce an unauthor-

ized effect (paths 1 and 2 active). For example, a message meaning “Allow John

Smith to read confidential file accounts” is modified to mean “Allow Fred Brown to

read confidential file accounts.”

Figure 1.2 Security Attacks

(a) Passive attacks

Alice

(b) Active attacks

Bob

Darth

Bob

Darth

Alice

Internet or
other communications facility

Internet or
other communications facility

1 2
3

Hiva-Network.Com

http://www.hiva-network.com/

1.4 / SECURITY SERVICES 29

The denial of service prevents or inhibits the normal use or management of

communications facilities (path 3 active). This attack may have a specific target; for

example, an entity may suppress all messages directed to a particular destination

(e.g., the security audit service). Another form of service denial is the disruption of

an entire network, either by disabling the network or by overloading it with mes-

sages so as to degrade performance.

Active attacks present the opposite characteristics of passive attacks. Whereas

passive attacks are difficult to detect, measures are available to prevent their success.

On the other hand, it is quite difficult to prevent active attacks absolutely because

of the wide variety of potential physical, software, and network vulnerabilities.

Instead, the goal is to detect active attacks and to recover from any disruption or

delays caused by them. If the detection has a deterrent effect, it may also contribute

to prevention.

 1.4 SECURITY SERVICES

X.800 defines a security service as a service that is provided by a protocol layer of

communicating open systems and that ensures adequate security of the systems or

of data transfers. Perhaps a clearer definition is found in RFC 4949, which provides

the following definition: a processing or communication service that is provided by

a system to give a specific kind of protection to system resources; security services

implement security policies and are implemented by security mechanisms.

X.800 divides these services into five categories and fourteen specific services

(Table 1.2). We look at each category in turn.5

Authentication

The authentication service is concerned with assuring that a communication is au-

thentic. In the case of a single message, such as a warning or alarm signal, the function

of the authentication service is to assure the recipient that the message is from the

source that it claims to be from. In the case of an ongoing interaction, such as the con-

nection of a terminal to a host, two aspects are involved. First, at the time of connec-

tion initiation, the service assures that the two entities are authentic, that is, that each

is the entity that it claims to be. Second, the service must assure that the connection is

not interfered with in such a way that a third party can masquerade as one of the two

legitimate parties for the purposes of unauthorized transmission or reception.

Two specific authentication services are defined in X.800:

 ■ Peer entity authentication: Provides for the corroboration of the identity of a

peer entity in an association. Two entities are considered peers if they imple-

ment to same protocol in different systems; for example two TCP modules

in two communicating systems. Peer entity authentication is provided for

5There is no universal agreement about many of the terms used in the security literature. For example, the
term integrity is sometimes used to refer to all aspects of information security. The term authentication is
sometimes used to refer both to verification of identity and to the various functions listed under integrity
in this chapter. Our usage here agrees with both X.800 and RFC 4949.

30 CHAPTER 1 / COMPUTER AND NETWORK SECURITY CONCEPTS

AUTHENTICATION

The assurance that the communicating entity is the

one that it claims to be.

Peer Entity Authentication
Used in association with a logical connection to

provide confidence in the identity of the entities

 connected.

Data-Origin Authentication
In a connectionless transfer, provides assurance that

the source of received data is as claimed.

ACCESS CONTROL

The prevention of unauthorized use of a resource

(i.e., this service controls who can have access to a

resource, under what conditions access can occur,

and what those accessing the resource are allowed

to do).

DATA CONFIDENTIALITY

The protection of data from unauthorized

disclosure.

Connection Confidentiality
The protection of all user data on a connection.

Connectionless Confidentiality
The protection of all user data in a single data block.

Selective-Field Confidentiality
The confidentiality of selected fields within the user

data on a connection or in a single data block.

Traffic-Flow Confidentiality
The protection of the information that might be

derived from observation of traffic flows.

DATA INTEGRITY

The assurance that data received are exactly as

sent by an authorized entity (i.e., contain no modi-

fication, insertion, deletion, or replay).

Connection Integrity with Recovery
Provides for the integrity of all user data on a connec-

tion and detects any modification, insertion, deletion,

or replay of any data within an entire data sequence,

with recovery attempted.

Connection Integrity without Recovery
As above, but provides only detection without

 recovery.

Selective-Field Connection Integrity
Provides for the integrity of selected fields within the

user data of a data block transferred over a connec-

tion and takes the form of determination of whether

the selected fields have been modified, inserted,

deleted, or replayed.

Connectionless Integrity
Provides for the integrity of a single connectionless

data block and may take the form of detection of

data modification. Additionally, a limited form of

replay detection may be provided.

Selective-Field Connectionless Integrity
Provides for the integrity of selected fields within a

single connectionless data block; takes the form of

determination of whether the selected fields have

been modified.

NONREPUDIATION

Provides protection against denial by one of the

entities involved in a communication of having par-

ticipated in all or part of the communication.

Nonrepudiation, Origin
Proof that the message was sent by the specified

party.

Nonrepudiation, Destination
Proof that the message was received by the specified

party.

Table 1.2 Security Services (X.800)

use at the establishment of, or at times during the data transfer phase of, a

connection. It attempts to provide confidence that an entity is not performing

either a masquerade or an unauthorized replay of a previous connection.

 ■ Data origin authentication: Provides for the corroboration of the source of a

data unit. It does not provide protection against the duplication or modifica-

tion of data units. This type of service supports applications like electronic mail,

where there are no prior interactions between the communicating entities.

1.4 / SECURITY SERVICES 31

Access Control

In the context of network security, access control is the ability to limit and control

the access to host systems and applications via communications links. To achieve

this, each entity trying to gain access must first be identified, or authenticated,

so that access rights can be tailored to the individual.

Data Confidentiality

Confidentiality is the protection of transmitted data from passive attacks. With re-

spect to the content of a data transmission, several levels of protection can be iden-

tified. The broadest service protects all user data transmitted between two users

over a period of time. For example, when a TCP connection is set up between two

systems, this broad protection prevents the release of any user data transmitted over

the TCP connection. Narrower forms of this service can also be defined, including

the protection of a single message or even specific fields within a message. These

refinements are less useful than the broad approach and may even be more complex

and expensive to implement.

The other aspect of confidentiality is the protection of traffic flow from

 analysis. This requires that an attacker not be able to observe the source and desti-

nation, frequency, length, or other characteristics of the traffic on a communications

facility.

Data Integrity

As with confidentiality, integrity can apply to a stream of messages, a single mes-

sage, or selected fields within a message. Again, the most useful and straightforward

approach is total stream protection.

A connection-oriented integrity service, one that deals with a stream of mes-

sages, assures that messages are received as sent with no duplication, insertion,

modification, reordering, or replays. The destruction of data is also covered under

this service. Thus, the connection-oriented integrity service addresses both mes-

sage stream modification and denial of service. On the other hand, a connection-

less integrity service, one that deals with individual messages without regard to any

larger context, generally provides protection against message modification only.

We can make a distinction between service with and without recovery. Because

the integrity service relates to active attacks, we are concerned with detection rather

than prevention. If a violation of integrity is detected, then the service may simply

report this violation, and some other portion of software or human intervention is

required to recover from the violation. Alternatively, there are mechanisms avail-

able to recover from the loss of integrity of data, as we will review subsequently. The

incorporation of automated recovery mechanisms is, in general, the more attractive

alternative.

Nonrepudiation

Nonrepudiation prevents either sender or receiver from denying a transmitted mes-

sage. Thus, when a message is sent, the receiver can prove that the alleged sender in

fact sent the message. Similarly, when a message is received, the sender can prove

that the alleged receiver in fact received the message.

32 CHAPTER 1 / COMPUTER AND NETWORK SECURITY CONCEPTS

Availability Service

Both X.800 and RFC 4949 define availability to be the property of a system or a

system resource being accessible and usable upon demand by an authorized system

entity, according to performance specifications for the system (i.e., a system is avail-

able if it provides services according to the system design whenever users request

them). A variety of attacks can result in the loss of or reduction in availability. Some

of these attacks are amenable to automated countermeasures, such as authentica-

tion and encryption, whereas others require some sort of physical action to prevent

or recover from loss of availability of elements of a distributed system.

X.800 treats availability as a property to be associated with various security

services. However, it makes sense to call out specifically an availability service. An

availability service is one that protects a system to ensure its availability. This ser-

vice addresses the security concerns raised by denial-of-service attacks. It depends

on proper management and control of system resources and thus depends on access

control service and other security services.

 1.5 SECURITY MECHANISMS

Table 1.3 lists the security mechanisms defined in X.800. The mechanisms are

 divided into those that are implemented in a specific protocol layer, such as TCP or

an application-layer protocol, and those that are not specific to any particular pro-

tocol layer or security service. These mechanisms will be covered in the appropriate

SPECIFIC SECURITY MECHANISMS
May be incorporated into the appropriate protocol

layer in order to provide some of the OSI security

services.

Encipherment
The use of mathematical algorithms to transform

data into a form that is not readily intelligible. The

transformation and subsequent recovery of the data

depend on an algorithm and zero or more encryption

keys.

Digital Signature
Data appended to, or a cryptographic transformation

of, a data unit that allows a recipient of the data unit

to prove the source and integrity of the data unit and

protect against forgery (e.g., by the recipient).

Access Control
A variety of mechanisms that enforce access rights to

resources.

Data Integrity
A variety of mechanisms used to assure the integrity

of a data unit or stream of data units.

PERVASIVE SECURITY MECHANISMS

Mechanisms that are not specific to any particular

OSI security service or protocol layer.

Trusted Functionality
That which is perceived to be correct with respect

to some criteria (e.g., as established by a security

policy).

Security Label
The marking bound to a resource (which may be a

data unit) that names or designates the security attri-

butes of that resource.

Event Detection
Detection of security-relevant events.

Security Audit Trail
Data collected and potentially used to facilitate a

security audit, which is an independent review and

examination of system records and activities.

Security Recovery
Deals with requests from mechanisms, such as event

handling and management functions, and takes

recovery actions.

Table 1.3 Security Mechanisms (X.800)

1.5 / SECURITY MECHANISMS 33

places in the book. So we do not elaborate now, except to comment on the defini-

tion of encipherment. X.800 distinguishes between reversible encipherment mech-

anisms and irreversible encipherment mechanisms. A reversible encipherment

mechanism is simply an encryption algorithm that allows data to be encrypted and

subsequently decrypted. Irreversible encipherment mechanisms include hash algo-

rithms and message authentication codes, which are used in digital signature and

message authentication applications.

Table 1.4, based on one in X.800, indicates the relationship between security

services and security mechanisms.

SPECIFIC SECURITY MECHANISMS

Authentication Exchange
A mechanism intended to ensure the identity of an

entity by means of information exchange.

Traffic Padding
The insertion of bits into gaps in a data stream to

frustrate traffic analysis attempts.

Routing Control
Enables selection of particular physically secure

routes for certain data and allows routing changes,

especially when a breach of security is suspected.

Notarization
The use of a trusted third party to assure certain

properties of a data exchange.

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Peer entity authentication

SERVICE

MECHANISM

Encip
herm

en
t

Digi
tal

 sig
natu

re

Acce
ss

co
ntro

l

Data
 in

teg
rit

y

Authen
tic

ati
on ex

ch
an

ge

Traffi
c p

ad
ding

Routin
g c

ontro
l

Notar
iza

tio
n

Data origin authentication

Access control

Confidentiality

Traffic flow confidentiality

Data integrity

Nonrepudiation

Availability

Table 1.4 Relationship Between Security Services and Mechanisms

34 CHAPTER 1 / COMPUTER AND NETWORK SECURITY CONCEPTS

 1.6 FUNDAMENTAL SECURITY DESIGN PRINCIPLES

Despite years of research and development, it has not been possible to develop

security design and implementation techniques that systematically exclude security

flaws and prevent all unauthorized actions. In the absence of such foolproof tech-

niques, it is useful to have a set of widely agreed design principles that can guide

the development of protection mechanisms. The National Centers of Academic

Excellence in Information Assurance/Cyber Defense, which is jointly sponsored by

the U.S. National Security Agency and the U.S. Department of Homeland Security,

list the following as fundamental security design principles [NCAE13]:

 ■ Economy of mechanism

 ■ Fail-safe defaults

 ■ Complete mediation

 ■ Open design

 ■ Separation of privilege

 ■ Least privilege

 ■ Least common mechanism

 ■ Psychological acceptability

 ■ Isolation

 ■ Encapsulation

 ■ Modularity

 ■ Layering

 ■ Least astonishment

The first eight listed principles were first proposed in [SALT75] and have withstood

the test of time. In this section, we briefly discuss each principle.

Economy of mechanism means that the design of security measures embod-

ied in both hardware and software should be as simple and small as possible.

The motivation for this principle is that relatively simple, small design is eas-

ier to test and verify thoroughly. With a complex design, there are many more

opportunities for an adversary to discover subtle weaknesses to exploit that may

be difficult to spot ahead of time. The more complex the mechanism, the more

likely it is to possess exploitable flaws. Simple mechanisms tend to have fewer

exploitable flaws and require less maintenance. Further, because configuration

management issues are simplified, updating or replacing a simple mechanism

becomes a less intensive process. In practice, this is perhaps the most difficult

principle to honor. There is a constant demand for new features in both hard-

ware and software, complicating the security design task. The best that can be

done is to keep this principle in mind during system design to try to eliminate

unnecessary complexity.

Fail-safe defaults means that access decisions should be based on permission

rather than exclusion. That is, the default situation is lack of access, and the protec-

tion scheme identifies conditions under which access is permitted. This approach

1.6 / FUNDAMENTAL SECURITY DESIGN PRINCIPLES 35

exhibits a better failure mode than the alternative approach, where the default is

to permit access. A design or implementation mistake in a mechanism that gives

explicit permission tends to fail by refusing permission, a safe situation that can

be quickly detected. On the other hand, a design or implementation mistake in a

mechanism that explicitly excludes access tends to fail by allowing access, a failure

that may long go unnoticed in normal use. Most file access systems and virtually all

protected services on client/server systems use fail-safe defaults.

Complete mediation means that every access must be checked against the

 access control mechanism. Systems should not rely on access decisions retrieved

from a cache. In a system designed to operate continuously, this principle requires

that, if access decisions are remembered for future use, careful consideration be

given to how changes in authority are propagated into such local memories. File

access systems appear to provide an example of a system that complies with this

principle. However, typically, once a user has opened a file, no check is made to see

if permissions change. To fully implement complete mediation, every time a user

reads a field or record in a file, or a data item in a database, the system must exercise

access control. This resource-intensive approach is rarely used.

Open design means that the design of a security mechanism should be open

rather than secret. For example, although encryption keys must be secret, encryption

algorithms should be open to public scrutiny. The algorithms can then be reviewed

by many experts, and users can therefore have high confidence in them. This is the

philosophy behind the National Institute of Standards and Technology (NIST)

 program of standardizing encryption and hash algorithms, and has led to the wide-

spread adoption of NIST-approved algorithms.

Separation of privilege is defined in [SALT75] as a practice in which mul-

tiple privilege attributes are required to achieve access to a restricted resource.

A good example of this is multifactor user authentication, which requires the use of

multiple techniques, such as a password and a smart card, to authorize a user. The

term is also now applied to any technique in which a program is divided into parts

that are limited to the specific privileges they require in order to perform a specific

task. This is used to mitigate the potential damage of a computer security attack.

One example of this latter interpretation of the principle is removing high privilege

 operations to another process and running that process with the higher privileges

required to perform its tasks. Day-to-day interfaces are executed in a lower privi-

leged process.

Least privilege means that every process and every user of the system should

operate using the least set of privileges necessary to perform the task. A good

example of the use of this principle is role-based access control. The system security

policy can identify and define the various roles of users or processes. Each role is

assigned only those permissions needed to perform its functions. Each permission

specifies a permitted access to a particular resource (such as read and write access

to a specified file or directory, connect access to a given host and port). Unless a

permission is granted explicitly, the user or process should not be able to access the

protected resource. More generally, any access control system should allow each

user only the privileges that are authorized for that user. There is also a temporal

aspect to the least privilege principle. For example, system programs or administra-

tors who have special privileges should have those privileges only when necessary;

36 CHAPTER 1 / COMPUTER AND NETWORK SECURITY CONCEPTS

when they are doing ordinary activities the privileges should be withdrawn. Leaving

them in place just opens the door to accidents.

Least common mechanism means that the design should minimize the func-

tions shared by different users, providing mutual security. This principle helps

reduce the number of unintended communication paths and reduces the amount of

hardware and software on which all users depend, thus making it easier to verify if

there are any undesirable security implications.

Psychological acceptability implies that the security mechanisms should not

interfere unduly with the work of users, while at the same time meeting the needs of

those who authorize access. If security mechanisms hinder the usability or accessibil-

ity of resources, then users may opt to turn off those mechanisms. Where possible,

security mechanisms should be transparent to the users of the system or at most

introduce minimal obstruction. In addition to not being intrusive or burdensome,

security procedures must reflect the user’s mental model of protection. If the protec-

tion procedures do not make sense to the user or if the user must translate his image

of protection into a substantially different protocol, the user is likely to make errors.

Isolation is a principle that applies in three contexts. First, public access sys-

tems should be isolated from critical resources (data, processes, etc.) to prevent dis-

closure or tampering. In cases where the sensitivity or criticality of the information

is high, organizations may want to limit the number of systems on which that data is

stored and isolate them, either physically or logically. Physical isolation may include

ensuring that no physical connection exists between an organization’s public access

information resources and an organization’s critical information. When implement-

ing logical isolation solutions, layers of security services and mechanisms should be

established between public systems and secure systems responsible for protecting

critical resources. Second, the processes and files of individual users should be iso-

lated from one another except where it is explicitly desired. All modern operating

systems provide facilities for such isolation, so that individual users have separate,

isolated process space, memory space, and file space, with protections for prevent-

ing unauthorized access. And finally, security mechanisms should be isolated in the

sense of preventing access to those mechanisms. For example, logical access control

may provide a means of isolating cryptographic software from other parts of the

host system and for protecting cryptographic software from tampering and the keys

from replacement or disclosure.

Encapsulation can be viewed as a specific form of isolation based on object-

oriented functionality. Protection is provided by encapsulating a collection of pro-

cedures and data objects in a domain of its own so that the internal structure of a

data object is accessible only to the procedures of the protected subsystem, and the

procedures may be called only at designated domain entry points.

Modularity in the context of security refers both to the development of security

functions as separate, protected modules and to the use of a modular architecture for

mechanism design and implementation. With respect to the use of separate security

modules, the design goal here is to provide common security functions and services,

such as cryptographic functions, as common modules. For example, numerous proto-

cols and applications make use of cryptographic functions. Rather than implement-

ing such functions in each protocol or application, a more secure design is provided

by developing a common cryptographic module that can be invoked by numerous

1.7 / ATTACK SURFACES AND ATTACK TREES 37

protocols and applications. The design and implementation effort can then focus on

the secure design and implementation of a single cryptographic module and includ-

ing mechanisms to protect the module from tampering. With respect to the use of a

modular architecture, each security mechanism should be able to support migration

to new technology or upgrade of new features without requiring an entire system

redesign. The security design should be modular so that individual parts of the secu-

rity design can be upgraded without the requirement to modify the entire system.

Layering refers to the use of multiple, overlapping protection approaches

addressing the people, technology, and operational aspects of information systems.

By using multiple, overlapping protection approaches, the failure or circumven-

tion of any individual protection approach will not leave the system unprotected.

We will see throughout this book that a layering approach is often used to provide

multiple barriers between an adversary and protected information or services. This

technique is often referred to as defense in depth.

Least astonishment means that a program or user interface should always

respond in the way that is least likely to astonish the user. For example, the mechanism

for authorization should be transparent enough to a user that the user has a good intui-

tive understanding of how the security goals map to the provided security mechanism.

 1.7 ATTACK SURFACES AND ATTACK TREES

In Section 1.3, we provided an overview of the spectrum of security threats and

attacks facing computer and network systems. Section 22.1 goes into more detail

about the nature of attacks and the types of adversaries that present security threats.

In this section, we elaborate on two concepts that are useful in evaluating and clas-

sifying threats: attack surfaces and attack trees.

Attack Surfaces

An attack surface consists of the reachable and exploitable vulnerabilities in a sys-

tem [MANA11, HOWA03]. Examples of attack surfaces are the following:

 ■ Open ports on outward facing Web and other servers, and code listening on

those ports

 ■ Services available on the inside of a firewall

 ■ Code that processes incoming data, email, XML, office documents, and indus-

try-specific custom data exchange formats

 ■ Interfaces, SQL, and Web forms

 ■ An employee with access to sensitive information vulnerable to a social

 engineering attack

Attack surfaces can be categorized as follows:

 ■ Network attack surface: This category refers to vulnerabilities over an enterprise

network, wide-area network, or the Internet. Included in this category are net-

work protocol vulnerabilities, such as those used for a denial-of-service attack,

disruption of communications links, and various forms of intruder attacks.

Hiva-Network.Com

http://www.hiva-network.com/

38 CHAPTER 1 / COMPUTER AND NETWORK SECURITY CONCEPTS

 ■ Software attack surface: This refers to vulnerabilities in application, utility,

or operating system code. A particular focus in this category is Web server

software.

 ■ Human attack surface: This category refers to vulnerabilities created by

personnel or outsiders, such as social engineering, human error, and trusted

insiders.

An attack surface analysis is a useful technique for assessing the scale and

severity of threats to a system. A systematic analysis of points of vulnerability

makes developers and security analysts aware of where security mechanisms are

required. Once an attack surface is defined, designers may be able to find ways to

make the surface smaller, thus making the task of the adversary more difficult. The

attack surface also provides guidance on setting priorities for testing, strengthening

security measures, and modifying the service or application.

As illustrated in Figure 1.3, the use of layering, or defense in depth, and attack

surface reduction complement each other in mitigating security risk.

Attack Trees

An attack tree is a branching, hierarchical data structure that represents a set of poten-

tial techniques for exploiting security vulnerabilities [MAUW05, MOOR01, SCHN99].

The security incident that is the goal of the attack is represented as the root node of

the tree, and the ways that an attacker could reach that goal are iteratively and incre-

mentally represented as branches and subnodes of the tree. Each subnode defines a

subgoal, and each subgoal may have its own set of further subgoals, and so on. The

final nodes on the paths outward from the root, that is, the leaf nodes, represent differ-

ent ways to initiate an attack. Each node other than a leaf is either an AND-node or an

OR-node. To achieve the goal represented by an AND-node, the subgoals represented

by all of that node’s subnodes must be achieved; and for an OR-node, at least one of

the subgoals must be achieved. Branches can be labeled with values representing dif-

ficulty, cost, or other attack attributes, so that alternative attacks can be compared.

Figure 1.3 Defense in Depth and Attack Surface

Attack surface

Medium
security risk

High
security risk

Low
security riskD

ee
p

L
ay

er
in

g

Sh
al

lo
w

Small Large

Medium
security risk

1.7 / ATTACK SURFACES AND ATTACK TREES 39

The motivation for the use of attack trees is to effectively exploit the infor-

mation available on attack patterns. Organizations such as CERT publish security

advisories that have enabled the development of a body of knowledge about both

general attack strategies and specific attack patterns. Security analysts can use the

attack tree to document security attacks in a structured form that reveals key vul-

nerabilities. The attack tree can guide both the design of systems and applications,

and the choice and strength of countermeasures.

Figure 1.4, based on a figure in [DIMI07], is an example of an attack tree

analysis for an Internet banking authentication application. The root of the tree is

the objective of the attacker, which is to compromise a user’s account. The shaded

boxes on the tree are the leaf nodes, which represent events that comprise the

attacks. Note that in this tree, all the nodes other than leaf nodes are OR-nodes.

The analysis to generate this tree considered the three components involved in

authentication:

Figure 1.4 An Attack Tree for Internet Banking Authentication

Bank account compromise

User credential compromise

User credential guessing

UT/U1a User surveillance

UT/U1b Theft of token and
handwritten notes

Malicious software
installation Vulnerability exploit

UT/U2a Hidden code

UT/U2b Worms

UT/U3a Smartcard analyzers

UT/U2c Emails with
malicious code

UT/U3b Smartcard reader
manipulator

UT/U3c Brute force attacks
with PIN calculators

CC2 Sniffing

UT/U4a Social engineering

IBS3 Web site manipulation

UT/U4b Web page
obfuscation

CC1 Pharming

Redirection of
communication toward
fraudulent site

CC3 Active man-in-the
middle attacks

IBS1 Brute force attacks

User communication
with attacker

Injection of commands

Use of known authenticated
session by attacker

Normal user authentication
with specified session ID

CC4 Pre-defined session
IDs (session hijacking)

IBS2 Security policy
violation

40 CHAPTER 1 / COMPUTER AND NETWORK SECURITY CONCEPTS

 ■ User terminal and user (UT/U): These attacks target the user equipment,

including the tokens that may be involved, such as smartcards or other pass-

word generators, as well as the actions of the user.

 ■ Communications channel (CC): This type of attack focuses on communica-

tion links.

 ■ Internet banking server (IBS): These types of attacks are offline attacks against

the servers that host the Internet banking application.

Five overall attack strategies can be identified, each of which exploits one or

more of the three components. The five strategies are as follows:

 ■ User credential compromise: This strategy can be used against many ele-

ments of the attack surface. There are procedural attacks, such as monitoring

a user’s action to observe a PIN or other credential, or theft of the user’s

token or handwritten notes. An adversary may also compromise token

information using a variety of token attack tools, such as hacking the smart-

card or using a brute force approach to guess the PIN. Another possible

strategy is to embed malicious software to compromise the user’s login and

password. An adversary may also attempt to obtain credential information

via the communication channel (sniffing). Finally, an adversary may use

 various means to engage in communication with the target user, as shown

in Figure 1.4.

 ■ Injection of commands: In this type of attack, the attacker is able to intercept

communication between the UT and the IBS. Various schemes can be used

to be able to impersonate the valid user and so gain access to the banking

system.

 ■ User credential guessing: It is reported in [HILT06] that brute force attacks

against some banking authentication schemes are feasible by sending ran-

dom usernames and passwords. The attack mechanism is based on distributed

zombie personal computers, hosting automated programs for username- or

password-based calculation.

 ■ Security policy violation: For example, violating the bank’s security policy

in combination with weak access control and logging mechanisms, an em-

ployee may cause an internal security incident and expose a customer’s

account.

 ■ Use of known authenticated session: This type of attack persuades or forces

the user to connect to the IBS with a preset session ID. Once the user authen-

ticates to the server, the attacker may utilize the known session ID to send

packets to the IBS, spoofing the user’s identity.

Figure 1.4 provides a thorough view of the different types of attacks on an

Internet banking authentication application. Using this tree as a starting point, secu-

rity analysts can assess the risk of each attack and, using the design principles out-

lined in the preceding section, design a comprehensive security facility. [DIMO07]

provides a good account of the results of this design effort.

1.8 / A MODEL FOR NETWORK SECURITY 41

 1.8 A MODEL FOR NETWORK SECURITY

A model for much of what we will be discussing is captured, in very general terms, in

Figure 1.5. A message is to be transferred from one party to another across some sort

of Internet service. The two parties, who are the principals in this transaction, must

cooperate for the exchange to take place. A logical information channel is established

by defining a route through the Internet from source to destination and by the coop-

erative use of communication protocols (e.g., TCP/IP) by the two principals.

Security aspects come into play when it is necessary or desirable to protect the

information transmission from an opponent who may present a threat to confidentiality,

authenticity, and so on. All the techniques for providing security have two components:

 ■ A security-related transformation on the information to be sent. Examples

include the encryption of the message, which scrambles the message so that it

is unreadable by the opponent, and the addition of a code based on the con-

tents of the message, which can be used to verify the identity of the sender.

 ■ Some secret information shared by the two principals and, it is hoped,

 unknown to the opponent. An example is an encryption key used in conjunc-

tion with the transformation to scramble the message before transmission

and unscramble it on reception.6

A trusted third party may be needed to achieve secure transmission. For

example, a third party may be responsible for distributing the secret information

6Part Two discusses a form of encryption, known as a symmetric encryption, in which only one of the two
principals needs to have the secret information.

Figure 1.5 Model for Network Security

Information
channelSecurity-related

transformation

Sender

Secret
information

M
es

sa
ge

M
es

sa
ge

Se
cu

re
m

es
sa

ge

Se
cu

re
m

es
sa

ge

Recipient

Opponent

Trusted third party
(e.g., arbiter, distributer
of secret information)

Security-related
transformation

Secret
information

42 CHAPTER 1 / COMPUTER AND NETWORK SECURITY CONCEPTS

to the two principals while keeping it from any opponent. Or a third party may be

needed to arbitrate disputes between the two principals concerning the authenticity

of a message transmission.

This general model shows that there are four basic tasks in designing a par-

ticular security service:

1. Design an algorithm for performing the security-related transformation. The

algorithm should be such that an opponent cannot defeat its purpose.

2. Generate the secret information to be used with the algorithm.

3. Develop methods for the distribution and sharing of the secret information.

4. Specify a protocol to be used by the two principals that makes use of the

 security algorithm and the secret information to achieve a particular security

service.

Parts One through Five of this book concentrate on the types of security

mechanisms and services that fit into the model shown in Figure 1.5. However,

there are other security-related situations of interest that do not neatly fit this

model but are considered in this book. A general model of these other situations

is illustrated in Figure 1.6, which reflects a concern for protecting an information

system from unwanted access. Most readers are familiar with the concerns caused

by the existence of hackers, who attempt to penetrate systems that can be accessed

over a network. The hacker can be someone who, with no malign intent, simply gets

satisfaction from breaking and entering a computer system. The intruder can be a

disgruntled employee who wishes to do damage or a criminal who seeks to exploit

computer assets for financial gain (e.g., obtaining credit card numbers or perform-

ing illegal money transfers).

Another type of unwanted access is the placement in a computer system of

logic that exploits vulnerabilities in the system and that can affect application pro-

grams as well as utility programs, such as editors and compilers. Programs can pres-

ent two kinds of threats:

 ■ Information access threats: Intercept or modify data on behalf of users who

should not have access to that data.

 ■ Service threats: Exploit service flaws in computers to inhibit use by legitimate

users.

Figure 1.6 Network Access Security Model

Computing resources
 (processor, memory, I/O)

Data

Processes

Software

Internal security controls

Information system

Gatekeeper
function

Opponent
—human (e.g., hacker)
—software
 (e.g., virus, worm)

Access channel

1.9 / STANDARDS 43

Viruses and worms are two examples of software attacks. Such attacks can be

introduced into a system by means of a disk that contains the unwanted logic con-

cealed in otherwise useful software. They can also be inserted into a system across a

network; this latter mechanism is of more concern in network security.

The security mechanisms needed to cope with unwanted access fall into two

broad categories (see Figure 1.6). The first category might be termed a gatekeeper

function. It includes password-based login procedures that are designed to deny

access to all but authorized users and screening logic that is designed to detect and

reject worms, viruses, and other similar attacks. Once either an unwanted user

or unwanted software gains access, the second line of defense consists of a vari-

ety of internal controls that monitor activity and analyze stored information in an

attempt to detect the presence of unwanted intruders. These issues are explored

in Part Six.

 1.9 STANDARDS

Many of the security techniques and applications described in this book have been

specified as standards. Additionally, standards have been developed to cover man-

agement practices and the overall architecture of security mechanisms and services.

Throughout this book, we describe the most important standards in use or that are

being developed for various aspects of cryptography and network security. Various

organizations have been involved in the development or promotion of these stan-

dards. The most important (in the current context) of these organizations are as

follows:

 ■ National Institute of Standards and Technology: NIST is a U.S. federal agency

that deals with measurement science, standards, and technology related to

U.S. government use and to the promotion of U.S. private-sector innovation.

Despite its national scope, NIST Federal Information Processing Standards

(FIPS) and Special Publications (SP) have a worldwide impact.

 ■ Internet Society: ISOC is a professional membership society with world-

wide organizational and individual membership. It provides leadership in

addressing issues that confront the future of the Internet and is the organiza-

tion home for the groups responsible for Internet infrastructure standards,

including the Internet Engineering Task Force (IETF) and the Internet

Architecture Board (IAB). These organizations develop Internet stan-

dards and related specifications, all of which are published as Requests for

Comments (RFCs).

 ■ ITU-T: The International Telecommunication Union (ITU) is an interna-

tional organization within the United Nations System in which governments

and the private sector coordinate global telecom networks and services. The

ITU Telecommunication Standardization Sector (ITU-T) is one of the three

sectors of the ITU. ITU-T’s mission is the development of technical standards

covering all fields of telecommunications. ITU-T standards are referred to as

Recommendations.

44 CHAPTER 1 / COMPUTER AND NETWORK SECURITY CONCEPTS

 ■ ISO: The International Organization for Standardization (ISO)7 is a world-

wide federation of national standards bodies from more than 140 countries,

one from each country. ISO is a nongovernmental organization that promotes

the development of standardization and related activities with a view to fa-

cilitating the international exchange of goods and services and to developing

cooperation in the spheres of intellectual, scientific, technological, and eco-

nomic activity. ISO’s work results in international agreements that are pub-

lished as International Standards.

A more detailed discussion of these organizations is contained in Appendix D.

 1.10 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

7ISO is not an acronym (in which case it would be IOS), but it is a word, derived from the Greek, mean-
ing equal.

Key Terms

access control

active attack

authentication

authenticity

availability

data confidentiality

data integrity

denial of service

encryption

integrity

intruder

masquerade

nonrepudiation

OSI security architecture

passive attack

replay

security attacks

security mechanisms

security services

traffic analysis

Review Questions

 1.1 What is the OSI security architecture?

 1.2 List and briefly define the three key objectives of computer security.

 1.3 List and briefly define categories of passive and active security attacks.

 1.4 List and briefly define categories of security services.

 1.5 List and briefly define categories of security mechanisms.

 1.6 List and briefly define the fundamental security design principles.

 1.7 Explain the difference between an attack surface and an attack tree.

Problems

 1.1 Consider an automated cash deposit machine in which users provide a card or an ac-
count number to deposit cash. Give examples of confidentiality, integrity, and avail-
ability requirements associated with the system, and, in each case, indicate the degree
of importance of the requirement.

 1.2 Repeat Problem 1.1 for a payment gateway system where a user pays for an item
using their account via the payment gateway.

1.10 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 45

 1.3 Consider a financial report publishing system used to produce reports for various
organizations.
a. Give an example of a type of publication in which confidentiality of the stored

data is the most important requirement.
b. Give an example of a type of publication in which data integrity is the most im-

portant requirement.
c. Give an example in which system availability is the most important requirement.

 1.4 For each of the following assets, assign a low, moderate, or high impact level for the
loss of confidentiality, availability, and integrity, respectively. Justify your answers.
a. A student maintaining a blog to post public information.
b. An examination section of a university that is managing sensitive information

about exam papers.
c. An information system in a pathological laboratory maintaining the patient’s data.
d. A student information system used for maintaining student data in a university

that contains both personal, academic information and routine administrative in-
formation (not privacy related). Assess the impact for the two data sets separately
and the information system as a whole.

e. A University library contains a library management system which controls the
distribution of books amongst the students of various departments. The library
management system contains both the student data and the book data. Assess the
impact for the two data sets separately and the information system as a whole.

 1.5 Draw a matrix similar to Table 1.4 that shows the relationship between security ser-
vices and attacks.

 1.6 Draw a matrix similar to Table 1.4 that shows the relationship between security
mechanisms and attacks.

 1.7 Develop an attack tree for gaining access to the contents of a physical safe.

 1.8 Consider a company whose operations are housed in two buildings on the same prop-
erty; one building is headquarters, the other building contains network and computer
services. The property is physically protected by a fence around the perimeter, and
the only entrance to the property is through this fenced perimeter. In addition to
the perimeter fence, physical security consists of a guarded front gate. The local net-
works are split between the Headquarters’ LAN and the Network Services’ LAN.
Internet users connect to the Web server through a firewall. Dial-up users get access
to a particular server on the Network Services’ LAN. Develop an attack tree in which
the root node represents disclosure of proprietary secrets. Include physical, social
engineering, and technical attacks. The tree may contain both AND and OR nodes.
Develop a tree that has at least 15 leaf nodes.

 1.9 Read all of the classic papers cited in the Recommended Reading section for this
chapter, available at the Author Web site at WilliamStallings.com/Cryptography. The
papers are available at box.com/Crypto7e. Compose a 500–1000 word paper (or 8–12
slide PowerPoint presentation) that summarizes the key concepts that emerge from
these papers, emphasizing concepts that are common to most or all of the papers.

4646

2.1 Divisibility and The Division Algorithm
Divisibility

The Division Algorithm

2.2 The Euclidean Algorithm
Greatest Common Divisor

Finding the Greatest Common Divisor

2.3 Modular Arithmetic
The Modulus

Properties of Congruences

Modular Arithmetic Operations

Properties of Modular Arithmetic

Euclidean Algorithm Revisited

The Extended Euclidean Algorithm

2.4 Prime Numbers

2.5 Fermat’s and Euler’s Theorems

Fermat’s Theorem

Euler’s Totient Function

Euler’s Theorem

2.6 Testing for Primality

Miller–Rabin Algorithm

A Deterministic Primality Algorithm

Distribution of Primes

2.7 The Chinese Remainder Theorem

2.8 Discrete Logarithms

The Powers of an Integer, Modulo n
Logarithms for Modular Arithmetic

Calculation of Discrete Logarithms

2.9 Key Terms, Review Questions, and Problems

Appendix 2A The Meaning of Mod

CHAPTER

Introduction to Number Theory

Hiva-Network.Com

http://www.hiva-network.com/

2.1 / DIVISIBILITY AND THE DIVISION ALGORITHM 47

Number theory is pervasive in cryptographic algorithms. This chapter provides

 sufficient breadth and depth of coverage of relevant number theory topics for under-

standing the wide range of applications in cryptography. The reader familiar with these

topics can safely skip this chapter.

The first three sections introduce basic concepts from number theory that are

needed for understanding finite fields; these include divisibility, the Euclidian algo-

rithm, and modular arithmetic. The reader may study these sections now or wait until

ready to tackle Chapter 5 on finite fields.

Sections 2.4 through 2.8 discuss aspects of number theory related to prime num-

bers and discrete logarithms. These topics are fundamental to the design of asymmetric

(public-key) cryptographic algorithms. The reader may study these sections now or

wait until ready to read Part Three.

The concepts and techniques of number theory are quite abstract, and it is often

difficult to grasp them intuitively without examples. Accordingly, this chapter includes

a number of examples, each of which is highlighted in a shaded box.

 2.1 DIVISIBILITY AND THE DIVISION ALGORITHM

Divisibility

We say that a nonzero b divides a if a = mb for some m, where a, b, and m are

integers. That is, b divides a if there is no remainder on division. The notation b � a

is commonly used to mean b divides a. Also, if b � a, we say that b is a divisor of a.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

 ◆ Understand the concept of divisibility and the division algorithm.

 ◆ Understand how to use the Euclidean algorithm to find the greatest com-

mon divisor.

 ◆ Present an overview of the concepts of modular arithmetic.

 ◆ Explain the operation of the extended Euclidean algorithm.

 ◆ Discuss key concepts relating to prime numbers.

 ◆ Understand Fermat’s theorem.

 ◆ Understand Euler’s theorem.

 ◆ Define Euler’s totient function.

 ◆ Make a presentation on the topic of testing for primality.

 ◆ Explain the Chinese remainder theorem.

 ◆ Define discrete logarithms.

48 CHAPTER 2 / INTRODUCTION TO NUMBER THEORY

Subsequently, we will need some simple properties of divisibility for integers,

which are as follows:

 ■ If a � 1, then a = {1.

 ■ If a �b and b � a, then a = {b.

 ■ Any b ≠ 0 divides 0.

 ■ If a �b and b � c, then a � c:

 The positive divisors of 24 are 1, 2, 3, 4, 6, 8, 12, and 24.

13 � 182; -5 � 30; 17 � 289; -3 � 33; 17 � 0

11 � 66 and 66 � 198 1 11 � 198

 b = 7; g = 14; h = 63; m = 3; n = 2

7 � 14 and 7 � 63.

To show 7 � (3 * 14 + 2 * 63),

we have (3 * 14 + 2 * 63) = 7(3 * 2 + 2 * 9),

and it is obvious that 7 � (7(3 * 2 + 2 * 9)).

 ■ If b � g and b �h, then b � (mg + nh) for arbitrary integers m and n.

To see this last point, note that

 ■ If b � g, then g is of the form g = b * g1 for some integer g1.

 ■ If b �h, then h is of the form h = b * h1 for some integer h1.

So

mg + nh = mbg1 + nbh1 = b * (mg1 + nh1)

and therefore b divides mg + nh.

The Division Algorithm

Given any positive integer n and any nonnegative integer a, if we divide a by n,

we get an integer quotient q and an integer remainder r that obey the following

relationship:

 a = qn + r 0 … r 6 n; q = :a/n; (2.1)

where :x; is the largest integer less than or equal to x. Equation (2.1) is referred to

as the division algorithm.1

1Equation (2.1) expresses a theorem rather than an algorithm, but by tradition, this is referred to as the
division algorithm.

2.2 / THE EUCLIDEAN ALGORITHM 49

Figure 2.1a demonstrates that, given a and positive n, it is always possible to

find q and r that satisfy the preceding relationship. Represent the integers on the

number line; a will fall somewhere on that line (positive a is shown, a similar dem-

onstration can be made for negative a). Starting at 0, proceed to n, 2n, up to qn, such

that qn … a and (q + 1)n 7 a. The distance from qn to a is r, and we have found

the unique values of q and r. The remainder r is often referred to as a residue.

a = 11; n = 7; 11 = 1 * 7 + 4; r = 4 q = 1

a = -11; n = 7; -11 = (-2) * 7 + 3; r = 3 q = -2

Figure 2.1b provides another example.

Figure 2.1 The Relationship a = qn + r; 0 … r 6 n

0

n 2n 3n qn (q + 1)na

n

r(a) General relationship

0 15

15

10

30
= 2 × 15

70

(b) Example: 70 = (4 × 15) + 10

45
= 3 × 15

60
= 4 × 15

75
= 5 × 15

 2.2 THE EUCLIDEAN ALGORITHM

One of the basic techniques of number theory is the Euclidean algorithm, which

is a simple procedure for determining the greatest common divisor of two positive

integers. First, we need a simple definition: Two integers are relatively prime if and

only if their only common positive integer factor is 1.

Greatest Common Divisor

Recall that nonzero b is defined to be a divisor of a if a = mb for some m, where

a, b, and m are integers. We will use the notation gcd(a, b) to mean the greatest
 common divisor of a and b. The greatest common divisor of a and b is the largest

integer that divides both a and b. We also define gcd(0, 0) = 0.

50 CHAPTER 2 / INTRODUCTION TO NUMBER THEORY

More formally, the positive integer c is said to be the greatest common divisor

of a and b if

1. c is a divisor of a and of b.

2. any divisor of a and b is a divisor of c.

An equivalent definition is the following:

gcd(a, b) = max[k, such that k � a and k �b]

Because we require that the greatest common divisor be positive, gcd(a, b) =
gcd(a, -b) = gcd(-a, b) = gcd(-a, -b). In general, gcd(a, b) = gcd(� a � , �b �).

gcd(60, 24) = gcd(60, -24) = 12

8 and 15 are relatively prime because the positive divisors of 8 are 1, 2, 4, and 8, and

the positive divisors of 15 are 1, 3, 5, and 15. So 1 is the only integer on both lists.

Also, because all nonzero integers divide 0, we have gcd(a, 0) = � a � .
We stated that two integers a and b are relatively prime if and only if their

only common positive integer factor is 1. This is equivalent to saying that a and b are

relatively prime if gcd(a, b) = 1.

Finding the Greatest Common Divisor

We now describe an algorithm credited to Euclid for easily finding the greatest

common divisor of two integers (Figure 2.2). This algorithm has broad significance

in cryptography. The explanation of the algorithm can be broken down into the fol-

lowing points:

1. Suppose we wish to determine the greatest common divisor d of the integers

a and b; that is determine d = gcd(a, b). Because gcd(� a � , �b �) = gcd(a, b),

there is no harm in assuming a Ú b 7 0.

2. Dividing a by b and applying the division algorithm, we can state:

 a = q1b + r1 0 … r1 6 b (2.2)

3. First consider the case in which r1 = 0. Therefore b divides a and clearly no

larger number divides both b and a, because that number would be larger

than b. So we have d = gcd(a, b) = b.

4. The other possibility from Equation (2.2) is r1 ≠ 0. For this case, we can state

that d � r1. This is due to the basic properties of divisibility: the relations d � a

and d �b together imply that d � (a - q1b), which is the same as d � r1.

5. Before proceeding with the Euclidian algorithm, we need to answer the ques-

tion: What is the gcd(b, r1)? We know that d �b and d � r1. Now take any arbi-

trary integer c that divides both b and r1. Therefore, c � (q1b + r1) = a. Because

c divides both a and b, we must have c … d, which is the greatest common

 divisor of a and b. Therefore d = gcd(b, r1).

2.2 / THE EUCLIDEAN ALGORITHM 51

Let us now return to Equation (2.2) and assume that r1 ≠ 0. Because b 7 r1,

we can divide b by r1 and apply the division algorithm to obtain:

b = q2r1 + r2 0 … r2 6 r1

As before, if r2 = 0, then d = r1 and if r2 ≠ 0, then d = gcd(r1, r2). Note that the

remainders form a descending series of nonnegative values and so must terminate

when the remainder is zero. This happens, say, at the (n + 1)th stage where rn - 1 is

divided by rn. The result is the following system of equations:

a = q1b + r1 0 6 r1 6 b
b = q2r1 + r2 0 6 r2 6 r1

r1 = q3r2 + r3 0 6 r3 6 r2

~ ~

 ~ ~

~ ~

rn - 2 = qnrn - 1 + rn 0 6 rn 6 rn - 1

rn - 1 = qn + 1rn + 0

d = gcd(a, b) = rn

w (2.3)

At each iteration, we have d = gcd(ri, ri+ 1) until finally d = gcd(rn, 0) = rn.

Thus, we can find the greatest common divisor of two integers by repetitive appli-

cation of the division algorithm. This scheme is known as the Euclidean algorithm.

Figure 2.3 illustrates a simple example.

We have essentially argued from the top down that the final result is the

gcd(a, b). We can also argue from the bottom up. The first step is to show that rn

divides a and b. It follows from the last division in Equation (2.3) that rn divides

rn - 1. The next to last division shows that rn divides rn - 2 because it divides both

Figure 2.2 Euclidean Algorithm

No

No Yes
a > b?

r > 0?
Swap

a and b

Replace
b with r

Replace
a with b

Divide a by b,
calling the

remainder r

GCD is
the final

value of b

START

END Figure 2.3 Euclidean
Algorithm Example:
gcd(710, 310)

710 = 2 × 310 + 90

310 = 3 × 90 + 40

90 = 2 × 40 + 10

40 = 4 × 10

GCDGCD

Same GCD

52 CHAPTER 2 / INTRODUCTION TO NUMBER THEORY

terms on the right. Successively, one sees that rn divides all ri>s and finally a and b.

It remains to show that rn is the largest divisor that divides a and b. If we take any

arbitrary integer that divides a and b, it must also divide r1, as explained previously.

We can follow the sequence of equations in Equation (2.3) down and show that c

must divide all ri>s. Therefore c must divide rn, so that rn = gcd(a, b).

Let us now look at an example with relatively large numbers to see the power

of this algorithm:

To find d = gcd(a, b) = gcd(1160718174, 316258250)

a = q1b + r1 1160718174 = 3 * 316258250 + 211943424 d = gcd(316258250, 211943424)

b = q2r1 + r2 316258250 = 1 * 211943424 + 104314826 d = gcd(211943424, 104314826)

r1 = q3r2 + r3 211943424 = 2 * 104314826 + 3313772 d = gcd(104314826, 3313772)

r2 = q4r3 + r4 104314826 = 31 * 3313772 + 1587894 d = gcd(3313772, 1587894)

r3 = q5r4 + r5 3313772 = 2 * 1587894 + 137984 d = gcd(1587894, 137984)

r4 = q6r5 + r6 1587894 = 11 * 137984 + 70070 d = gcd(137984, 70070)

r5 = q7r6 + r7 137984 = 1 * 70070 + 67914 d = gcd(70070, 67914)

r6 = q8r7 + r8 70070 = 1 * 67914 + 2156 d = gcd(67914, 2156)

r7 = q9r8 + r9 67914 = 31 * 2156 + 1078 d = gcd(2156, 1078)

r8 = q10r9 + r10 2156 = 2 * 1078 + 0 d = gcd(1078, 0) = 1078

Therefore, d = gcd(1160718174, 316258250) = 1078

In this example, we begin by dividing 1160718174 by 316258250, which gives 3

with a remainder of 211943424. Next we take 316258250 and divide it by 211943424.

The process continues until we get a remainder of 0, yielding a result of 1078.

It will be helpful in what follows to recast the above computation in tabular

form. For every step of the iteration, we have ri- 2 = qiri- 1 + ri, where ri- 2 is the

dividend, ri- 1 is the divisor, qi is the quotient, and ri is the remainder. Table 2.1 sum-

marizes the results.

Dividend Divisor Quotient Remainder

a = 1160718174 b = 316258250 q1 = 3 r1 = 211943424

b = 316258250 r1 = 211943434 q2 = 1 r2 = 104314826

r1 = 211943424 r2 = 104314826 q3 = 2 r3 = 3313772

r2 = 104314826 r3 = 3313772 q4 = 31 r4 = 1587894

r3 = 3313772 r4 = 1587894 q5 = 2 r5 = 137984

r4 = 1587894 r5 = 137984 q6 = 11 r6 = 70070

r5 = 137984 r6 = 70070 q7 = 1 r7 = 67914

r6 = 70070 r7 = 67914 q8 = 1 r8 = 2156

r7 = 67914 r8 = 2156 q9 = 31 r9 = 1078

r8 = 2156 r9 = 1078 q10 = 2 r10 = 0

Table 2.1 Euclidean Algorithm Example

2.3 / MODULAR ARITHMETIC 53

 2.3 MODULAR ARITHMETIC

The Modulus

If a is an integer and n is a positive integer, we define a mod n to be the remainder

when a is divided by n. The integer n is called the modulus. Thus, for any integer a,

we can rewrite Equation (2.1) as follows:

 a = qn + r 0 … r 6 n; q = :a/n;
 a = :a/n; * n + (a mod n)

11 mod 7 = 4; -11 mod 7 = 3

73 K 4 (mod 23); 21 K -9 (mod 10)

Two integers a and b are said to be congruent modulo n, if (a mod n) =
(b mod n). This is written as a K b (mod n).2

2We have just used the operator mod in two different ways: first as a binary operator that produces a re-
mainder, as in the expression a mod b; second as a congruence relation that shows the equivalence of two
integers, as in the expression a K b (mod n). See Appendix 2A for a discussion.

Note that if a K 0 (mod n), then n � a.

Properties of Congruences

Congruences have the following properties:

1. a K b (mod n) if n � (a - b).

2. a K b (mod n) implies b K a (mod n).

3. a K b (mod n) and b K c (mod n) imply a K c (mod n).

To demonstrate the first point, if n � (a - b), then (a - b) = kn for some k.

So we can write a = b + kn. Therefore, (a mod n) = (remainder when b +
kn is divided by n) = (remainder when b is divided by n) = (b mod n).

23 K 8 (mod 5) because 23 - 8 = 15 = 5 * 3

-11 K 5 (mod 8) because -11 - 5 = -16 = 8 * (-2)

81 K 0 (mod 27) because 81 - 0 = 81 = 27 * 3

The remaining points are as easily proved.

54 CHAPTER 2 / INTRODUCTION TO NUMBER THEORY

Modular Arithmetic Operations

Note that, by definition (Figure 2.1), the (mod n) operator maps all integers into

the set of integers {0, 1, c , (n - 1)}. This suggests the question: Can we perform

arithmetic operations within the confines of this set? It turns out that we can; this

technique is known as modular arithmetic.

Modular arithmetic exhibits the following properties:

1. [(a mod n) + (b mod n)] mod n = (a + b) mod n

2. [(a mod n) - (b mod n)] mod n = (a - b) mod n

3. [(a mod n) * (b mod n)] mod n = (a * b) mod n

We demonstrate the first property. Define (a mod n) = ra and (b mod n) = rb.

Then we can write a = ra + jn for some integer j and b = rb + kn for some integer k.

Then

 (a + b) mod n = (ra + jn + rb + kn) mod n

 = (ra + rb + (k + j)n) mod n

 = (ra + rb) mod n

 = [(a mod n) + (b mod n)] mod n

The remaining properties are proven as easily. Here are examples of the three

properties:

11 mod 8 = 3; 15 mod 8 = 7

[(11 mod 8) + (15 mod 8)] mod 8 = 10 mod 8 = 2

(11 + 15) mod 8 = 26 mod 8 = 2

[(11 mod 8) - (15 mod 8)] mod 8 = -4 mod 8 = 4

(11 - 15) mod 8 = -4 mod 8 = 4

[(11 mod 8) * (15 mod 8)] mod 8 = 21 mod 8 = 5

(11 * 15) mod 8 = 165 mod 8 = 5

To find 117 mod 13, we can proceed as follows:

 112 = 121 K 4 (mod 13)

 114 = (112)2 K 42 K 3 (mod 13)

 117 = 11 * 112 * 114

 117 K 11 * 4 * 3 K 132 K 2 (mod 13)

Exponentiation is performed by repeated multiplication, as in ordinary

arithmetic.

Thus, the rules for ordinary arithmetic involving addition, subtraction, and

multiplication carry over into modular arithmetic.

2.3 / MODULAR ARITHMETIC 55

Table 2.2 provides an illustration of modular addition and multiplication

modulo 8. Looking at addition, the results are straightforward, and there is a reg-

ular pattern to the matrix. Both matrices are symmetric about the main diagonal

in conformance to the commutative property of addition and multiplication. As in

ordinary addition, there is an additive inverse, or negative, to each integer in modu-

lar arithmetic. In this case, the negative of an integer x is the integer y such that

(x + y) mod 8 = 0. To find the additive inverse of an integer in the left-hand col-

umn, scan across the corresponding row of the matrix to find the value 0; the integer

at the top of that column is the additive inverse; thus, (2 + 6) mod 8 = 0. Similarly,

the entries in the multiplication table are straightforward. In modular arithmetic mod

8, the multiplicative inverse of x is the integer y such that (x * y) mod 8 = 1 mod 8.

Now, to find the multiplicative inverse of an integer from the multiplication table,

scan across the matrix in the row for that integer to find the value 1; the integer at

the top of that column is the multiplicative inverse; thus, (3 * 3) mod 8 = 1. Note

that not all integers mod 8 have a multiplicative inverse; more about that later.

Properties of Modular Arithmetic

Define the set Zn as the set of nonnegative integers less than n:

Zn = {0, 1, c , (n - 1)}

Table 2.2 Arithmetic Modulo 8

+ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7 0

2 2 3 4 5 6 7 0 1

3 3 4 5 6 7 0 1 2

4 4 5 6 7 0 1 2 3

5 5 6 7 0 1 2 3 4

6 6 7 0 1 2 3 4 5

7 7 0 1 2 3 4 5 6

(a) Addition modulo 8

* 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7

2 0 2 4 6 0 2 4 6

3 0 3 6 1 4 7 2 5

4 0 4 0 4 0 4 0 4

5 0 5 2 7 4 1 6 3

6 0 6 4 2 0 6 4 2

7 0 7 6 5 4 3 2 1

(b) Multiplication modulo 8

w -w w-1

0 0 —

1 7 1

2 6 —

3 5 3

4 4 —

5 3 5

6 2 —

7 1 7

(c) Additive and multiplicative

inverse modulo 8

Hiva-Network.Com

http://www.hiva-network.com/

56 CHAPTER 2 / INTRODUCTION TO NUMBER THEORY

This is referred to as the set of residues, or residue classes (mod n). To be more pre-

cise, each integer in Zn represents a residue class. We can label the residue classes

(mod n) as [0], [1], [2], c , [n - 1], where

[r] = {a: a is an integer, a K r (mod n)}

The residue classes (mod 4) are

 [0] = {c , -16, -12, -8, -4, 0, 4, 8, 12, 16, c }

 [1] = {c , -15, -11, -7, -3, 1, 5, 9, 13, 17, c }

 [2] = {c , -14, -10, -6, -2, 2, 6, 10, 14, 18, c }

 [3] = {c , -13, -9, -5, -1, 3, 7, 11, 15, 19, c }

Property Expression

Commutative Laws
(w + x) mod n = (x + w) mod n
(w * x) mod n = (x * w) mod n

Associative Laws
[(w + x) + y] mod n = [w + (x + y)] mod n
[(w * x) * y] mod n = [w * (x * y)] mod n

Distributive Law [w * (x + y)] mod n = [(w * x) + (w * y)] mod n

Identities
(0 + w) mod n = w mod n
(1 * w) mod n = w mod n

Additive Inverse (-w) For each w∈ Zn, there exists a z such that w + z K 0 mod n

Table 2.3 Properties of Modular Arithmetic for Integers in Zn

Of all the integers in a residue class, the smallest nonnegative integer is the

one used to represent the residue class. Finding the smallest nonnegative integer to

which k is congruent modulo n is called reducing k modulo n.

If we perform modular arithmetic within Zn, the properties shown in Table 2.3

hold for integers in Zn. We show in the next section that this implies that Zn is a

commutative ring with a multiplicative identity element.

There is one peculiarity of modular arithmetic that sets it apart from ordinary

arithmetic. First, observe that (as in ordinary arithmetic) we can write the following:

 if (a + b) K (a + c) (mod n) then b K c (mod n) (2.4)

(5 + 23) K (5 + 7)(mod 8); 23 K 7(mod 8)

Equation (2.4) is consistent with the existence of an additive inverse. Adding

the additive inverse of a to both sides of Equation (2.4), we have

 ((-a) + a + b) K ((-a) + a + c)(mod n)

 b K c (mod n)

2.3 / MODULAR ARITHMETIC 57

However, the following statement is true only with the attached condition:

 if (a * b) K (a * c)(mod n) then b K c(mod n) if a is relatively prime to n (2.5)

Recall that two integers are relatively prime if their only common positive integer

factor is 1. Similar to the case of Equation (2.4), we can say that Equation (2.5) is

consistent with the existence of a multiplicative inverse. Applying the multiplicative

inverse of a to both sides of Equation (2.5), we have

 ((a-1)ab) K ((a-1)ac)(mod n)

 b K c(mod n)

To see this, consider an example in which the condition of Equation (2.5) does not

hold. The integers 6 and 8 are not relatively prime, since they have the common

factor 2. We have the following:

 6 * 3 = 18 K 2(mod 8)

 6 * 7 = 42 K 2(mod 8)

Yet 3 [7 (mod 8).

The reason for this strange result is that for any general modulus n, a multi-

plier a that is applied in turn to the integers 0 through (n - 1) will fail to produce a

complete set of residues if a and n have any factors in common.

With a = 6 and n = 8,

Z8 0 1 2 3 4 5 6 7

Multiply by 6 0 6 12 18 24 30 36 42

Residues 0 6 4 2 0 6 4 2

Because we do not have a complete set of residues when multiplying by

6, more than one integer in Z8 maps into the same residue. Specifically,

6 * 0 mod 8 = 6 * 4 mod 8; 6 * 1 mod 8 = 6 * 5 mod 8; and so on. Because

this is a many-to-one mapping, there is not a unique inverse to the multiply

 operation.

However, if we take a = 5 and n = 8, whose only common factor is 1,

Z8 0 1 2 3 4 5 6 7

Multiply by 5 0 5 10 15 20 25 30 35

Residues 0 5 2 7 4 1 6 3

The line of residues contains all the integers in Z8, in a different order.

58 CHAPTER 2 / INTRODUCTION TO NUMBER THEORY

In general, an integer has a multiplicative inverse in Zn if and only if that inte-

ger is relatively prime to n. Table 2.2c shows that the integers 1, 3, 5, and 7 have a

multiplicative inverse in Z8; but 2, 4, and 6 do not.

Euclidean Algorithm Revisited

The Euclidean algorithm can be based on the following theorem: For any integers

a, b, with a Ú b Ú 0,

 gcd(a, b) = gcd(b, a mod b) (2.6)

gcd(55, 22) = gcd(22, 55 mod 22) = gcd(22, 11) = 11

 gcd(18, 12) = gcd(12, 6) = gcd(6, 0) = 6

 gcd(11, 10) = gcd(10, 1) = gcd(1, 0) = 1

To see that Equation (2.6) works, let d = gcd(a, b). Then, by the definition of

gcd, d � a and d �b. For any positive integer b, we can express a as

a = kb + r K r (mod b)

a mod b = r

with k, r integers. Therefore, (a mod b) = a - kb for some integer k. But because

d �b, it also divides kb. We also have d � a. Therefore, d � (a mod b). This shows that

d is a common divisor of b and (a mod b). Conversely, if d is a common divisor of b

and (a mod b), then d �kb and thus d � [kb + (a mod b)], which is equivalent to d � a.

Thus, the set of common divisors of a and b is equal to the set of common divisors

of b and (a mod b). Therefore, the gcd of one pair is the same as the gcd of the other

pair, proving the theorem.

Equation (2.6) can be used repetitively to determine the greatest common divisor.

This is the same scheme shown in Equation (2.3), which can be rewritten in

the following way.

Euclidean Algorithm

Calculate Which satisfies

r1 = a mod b a = q1b + r1

r2 = b mod r1 b = q2r1 + r2

r3 = r1 mod r2 r1 = q3r2 + r3

~

~

~

~

~

~

rn = rn - 2 mod rn - 1 rn - 2 = qnrn - 1 + rn

rn + 1 = rn - 1 mod rn = 0 rn - 1 = qn + 1rn + 0

d = gcd(a, b) = rn

We can define the Euclidean algorithm concisely as the following recursive

function.

2.3 / MODULAR ARITHMETIC 59

Euclid(a,b)
if (b=0) then return a;
else return Euclid(b, a mod b);

The Extended Euclidean Algorithm

We now proceed to look at an extension to the Euclidean algorithm that will be

important for later computations in the area of finite fields and in encryption algo-

rithms, such as RSA. For given integers a and b, the extended Euclidean algorithm

not only calculates the greatest common divisor d but also two additional integers x

and y that satisfy the following equation.

 ax + by = d = gcd(a, b) (2.7)

It should be clear that x and y will have opposite signs. Before examining the

algorithm, let us look at some of the values of x and y when a = 42 and b = 30.

Note that gcd(42, 30) = 6. Here is a partial table of values3 for 42x + 30y.

x − 3 − 2 − 1 0 1 2 3

y

-3 -216 -174 -132 -90 -48 -6 36

-2 -186 -144 -102 -60 -18 24 66

-1 -156 -114 -72 -30 12 54 96

0 -126 -84 -42 0 42 84 126

1 -96 -54 -12 30 72 114 156

2 -66 -24 18 60 102 144 186

3 -36 6 48 90 132 174 216

Observe that all of the entries are divisible by 6. This is not surpris-

ing, because both 42 and 30 are divisible by 6, so every number of the form

42x + 30y = 6(7x + 5y) is a multiple of 6. Note also that gcd(42, 30) = 6 appears

in the table. In general, it can be shown that for given integers a and b, the smallest

positive value of ax + by is equal to gcd(a, b).

Now let us show how to extend the Euclidean algorithm to determine (x, y, d)

given a and b. We again go through the sequence of divisions indicated in Equation

(2.3), and we assume that at each step i we can find integers xi and yi that satisfy

ri = axi + byi. We end up with the following sequence.

a = q1b + r1 r1 = ax1 + by1

b = q2r1 + r2 r2 = ax2 + by2

r1 = q3r2 + r3 r3 = ax3 + by3

f f
rn - 2 = qnrn - 1 + rn rn = axn + byn

rn - 1 = qn + 1rn + 0

3This example is taken from [SILV06].

60 CHAPTER 2 / INTRODUCTION TO NUMBER THEORY

Now, observe that we can rearrange terms to write

 ri = ri- 2 - ri- 1qi (2.8)

Also, in rows i - 1 and i - 2, we find the values

ri- 2 = axi- 2 + byi- 2 and ri- 1 = axi- 1 + byi- 1

Substituting into Equation (2.8), we have

 ri = (axi- 2 + byi- 2) - (axi- 1 + byi- 1)qi

 = a(xi- 2 - qixi- 1) + b(yi- 2 - qiyi- 1)

But we have already assumed that ri = axi + byi. Therefore,

xi = xi- 2 - qixi- 1 and yi = yi- 2 - qiyi- 1

We now summarize the calculations:

Extended Euclidean Algorithm

Calculate Which satisfies Calculate Which satisfies

r-1 = a x-1 = 1; y-1 = 0 a = ax-1 + by-1

r0 = b x0 = 0; y0 = 1 b = ax0 + by0

r1 = a mod b
q1 = :a/b; a = q1b + r1 x1 = x-1 - q1x0 = 1

y1 = y-1 - q1y0 = -q1

r1 = ax1 + by1

r2 = b mod r1

q2 = :b/r1;
b = q2r1 + r2 x2 = x0 - q2x1

y2 = y0 - q2y1

r2 = ax2 + by2

r3 = r1 mod r2

q3 = :r1/r2;
r1 = q3r2 + r3 x3 = x1 - q3x2

y3 = y1 - q3y2

r3 = ax3 + by3

~

~

~

~

~

~

~

~

~

~

~

~

rn = rn - 2 mod rn - 1

qn = :rn - 2/rn - 1;
rn - 2 = qnrn - 1 + rn xn = xn - 2 - qnxn - 1

yn = yn - 2 - qnyn - 1

rn = axn + byn

rn + 1 = rn - 1 mod rn = 0

qn + 1 = :rn - 1/rn;
rn - 1 = qn + 1rn + 0 d = gcd(a, b) = rn

x = xn; y = yn

We need to make several additional comments here. In each row, we calculate

a new remainder ri based on the remainders of the previous two rows, namely ri- 1

and ri- 2. To start the algorithm, we need values for r0 and r-1, which are just a and b.

It is then straightforward to determine the required values for x-1, y-1, x0, and y0.

We know from the original Euclidean algorithm that the process ends

with a remainder of zero and that the greatest common divisor of a and b is

d = gcd(a, b) = rn. But we also have determined that d = rn = axn + byn.

Therefore, in Equation (2.7), x = xn and y = yn.

As an example, let us use a = 1759 and b = 550 and solve for

1759x + 550y = gcd(1759, 550). The results are shown in Table 2.4. Thus, we have

1759 * (-111) + 550 * 355 = -195249 + 195250 = 1.

2.4 / PRIME NUMBERS 61

 2.4 PRIME NUMBERS4

A central concern of number theory is the study of prime numbers. Indeed, whole

books have been written on the subject (e.g., [CRAN01], [RIBE96]). In this section,

we provide an overview relevant to the concerns of this book.

An integer p 7 1 is a prime number if and only if its only divisors5 are {1 and

{p. Prime numbers play a critical role in number theory and in the techniques dis-

cussed in this chapter. Table 2.5 shows the primes less than 2000. Note the way the

primes are distributed. In particular, note the number of primes in each range of

100 numbers.

Any integer a 7 1 can be factored in a unique way as

 a = p1
a1 * p2

a2 * g * pt
at (2.9)

where p1 6 p2 6 c 6 pt are prime numbers and where each ai is a positive inte-

ger. This is known as the fundamental theorem of arithmetic; a proof can be found

in any text on number theory.

4In this section, unless otherwise noted, we deal only with the nonnegative integers. The use of negative
integers would introduce no essential differences.
5Recall from Section 2.1 that integer a is said to be a divisor of integer b if there is no remainder on
 division. Equivalently, we say that a divides b.

i ri qi xi yi

-1 1759 1 0

0 550 0 1

1 109 3 1 -3

2 5 5 -5 16

3 4 21 106 -339

4 1 1 -111 355

5 0 4

Result: d = 1; x = -111; y = 355

Table 2.4 Extended Euclidean Algorithm Example

 91 = 7 * 13

 3600 = 24 * 32 * 52

 11011 = 7 * 112 * 13

It is useful for what follows to express this another way. If P is the set of

all prime numbers, then any positive integer a can be written uniquely in the

 following form:

a = q
p∈P

pap where each ap Ú 0

62 CHAPTER 2 / INTRODUCTION TO NUMBER THEORY

2
1
0
1

2
1
1

3
0
7

4
0
1

5
0
3

6
0
1

7
0
1

8
0
9

9
0
7

1
0
0
9

1
1
0
3

1
2
0
1

1
3
0
1

1
4
0
9

1
5
1
1

1
6
0
1

1
7
0
9

1
8
0
1

1
9
0
1

3
1

0
3

2
2
3

3
1
1

4
0
9

5
0
9

6
0
7

7
0
9

8
1
1

9
1
1

1
0
1
3

1
1
0
9

1
2
1
3

1
3
0
3

1
4
2
3

1
5
2
3

1
6
0
7

1
7
2
1

1
8
1
1

1
9
0
7

5
1
0
7

2
2
7

3
1
3

4
1
9

5
2
1

6
1
3

7
1
9

8
2
1

9
1
9

1
0
1
9

1
1
1
7

1
2
1
7

1
3
0
7

1
4
2
7

1
5
3
1

1
6
0
9

1
7
2
3

1
8
2
3

1
9
1
3

7
1

0
9

2
2
9

3
1
7

4
2
1

5
2
3

6
1
7

7
2
7

8
2
3

9
2
9

1
0
2
1

1
1
2
3

1
2
2
3

1
3
1
9

1
4
2
9

1
5
4
3

1
6
1
3

1
7
3
3

1
8
3
1

1
9
3
1

1
1

1
1
3

2
3
3

3
3
1

4
3
1

5
4
1

6
1
9

7
3
3

8
2
7

9
3
7

1
0
3
1

1
1
2
9

1
2
2
9

1
3
2
1

1
4
3
3

1
5
4
9

1
6
1
9

1
7
4
1

1
8
4
7

1
9
3
3

1
3

1
2
7

2
3
9

3
3
7

4
3
3

5
4
7

6
3
1

7
3
9

8
2
9

9
4
1

1
0
3
3

1
1
5
1

1
2
3
1

1
3
2
7

1
4
3
9

1
5
5
3

1
6
2
1

1
7
4
7

1
8
6
1

1
9
4
9

1
7

1
3
1

2
4
1

3
4
7

4
3
9

5
5
7

6
4
1

7
4
3

8
3
9

9
4
7

1
0
3
9

1
1
5
3

1
2
3
7

1
3
6
1

1
4
4
7

1
5
5
9

1
6
2
7

1
7
5
3

1
8
6
7

1
9
5
1

1
9

1
3
7

2
5
1

3
4
9

4
4
3

5
6
3

6
4
3

7
5
1

8
5
3

9
5
3

1
0
4
9

1
1
6
3

1
2
4
9

1
3
6
7

1
4
5
1

1
5
6
7

1
6
3
7

1
7
5
9

1
8
7
1

1
9
7
3

2
3

1
3
9

2
5
7

3
5
3

4
4
9

5
6
9

6
4
7

7
5
7

8
5
7

9
6
7

1
0
5
1

1
1
7
1

1
2
5
9

1
3
7
3

1
4
5
3

1
5
7
1

1
6
5
7

1
7
7
7

1
8
7
3

1
9
7
9

2
9

1
4
9

2
6
3

3
5
9

4
5
7

5
7
1

6
5
3

7
6
1

8
5
9

9
7
1

1
0
6
1

1
1
8
1

1
2
7
7

1
3
8
1

1
4
5
9

1
5
7
9

1
6
6
3

1
7
8
3

1
8
7
7

1
9
8
7

3
1

1
5
1

2
6
9

3
6
7

4
6
1

5
7
7

6
5
9

7
6
9

8
6
3

9
7
7

1
0
6
3

1
1
8
7

1
2
7
9

1
3
9
9

1
4
7
1

1
5
8
3

1
6
6
7

1
7
8
7

1
8
7
9

1
9
9
3

3
7

1
5
7

2
7
1

3
7
3

4
6
3

5
8
7

6
6
1

7
7
3

8
7
7

9
8
3

1
0
6
9

1
1
9
3

1
2
8
3

1
4
8
1

1
5
9
7

1
6
6
9

1
7
8
9

1
8
8
9

1
9
9
7

4
1

1
6
3

2
7
7

3
7
9

4
6
7

5
9
3

6
7
3

7
8
7

8
8
1

9
9
1

1
0
8
7

1
2
8
9

1
4
8
3

1
6
9
3

1
9
9
9

4
3

1
6
7

2
8
1

3
8
3

4
7
9

5
9
9

6
7
7

7
9
7

8
8
3

9
9
7

1
0
9
1

1
2
9
1

1
4
8
7

1
6
9
7

4
7

1
7
3

2
8
3

3
8
9

4
8
7

6
8
3

8
8
7

1
0
9
3

1
2
9
7

1
4
8
9

1
6
9
9

5
3

1
7
9

2
9
3

3
9
7

4
9
1

6
9
1

1
0
9
7

1
4
9
3

5
9

1
8
1

4
9
9

1
4
9
9

6
1

1
9
1

6
7

1
9
3

7
1

1
9
7

7
3

1
9
9

7
9

8
3

8
9

9
7

T
ab

le
 2

.5

P
ri

m
e
s

U
n

d
e
r

2
0

0
0

2.4 / PRIME NUMBERS 63

The right-hand side is the product over all possible prime numbers p; for any par-

ticular value of a, most of the exponents ap will be 0.

The value of any given positive integer can be specified by simply listing all the

nonzero exponents in the foregoing formulation.

The integer 12 is represented by {a2 = 2, a3 = 1}.

The integer 18 is represented by {a2 = 1, a3 = 2}.

The integer 91 is represented by {a7 = 1, a13 = 1}.

Multiplication of two numbers is equivalent to adding the corresponding

exponents. Given a = q
p∈P

pap, b = q
p∈P

pbp. Define k = ab. We know that the inte-

ger k can be expressed as the product of powers of primes: k = q
p∈P

pkp. It follows

that kp = ap + bp for all p ∈ P.

 k = 12 * 18 = (22 * 3) * (2 * 32) = 216

 k2 = 2 + 1 = 3; k3 = 1 + 2 = 3

 216 = 23 * 33 = 8 * 27

 a = 12; b = 36; 12 � 36

 12 = 22 * 3; 36 = 22 * 32

 a2 = 2 = b2

 a3 = 1 … 2 = b3

 Thus, the inequality ap … bp is satisfied for all prime numbers.

What does it mean, in terms of the prime factors of a and b, to say that a divides b?

Any integer of the form pn can be divided only by an integer that is of a lesser

or equal power of the same prime number, pj with j … n. Thus, we can say the

following.

Given

a = q
p∈P

pap, b = q
p∈P

pbp

If a �b, then ap … bp for all p.

It is easy to determine the greatest common divisor of two positive integers if

we express each integer as the product of primes.

64 CHAPTER 2 / INTRODUCTION TO NUMBER THEORY

The following relationship always holds:

If k = gcd(a, b), then kp = min(ap, bp) for all p.

Determining the prime factors of a large number is no easy task, so the pre-

ceding relationship does not directly lead to a practical method of calculating the

greatest common divisor.

 2.5 FERMAT’S AND EULER’S THEOREMS

Two theorems that play important roles in public-key cryptography are Fermat’s

theorem and Euler’s theorem.

Fermat’s Theorem6

Fermat’s theorem states the following: If p is prime and a is a positive integer not

divisible by p, then

 ap - 1 K 1 (mod p) (2.10)

Proof: Consider the set of positive integers less than p: {1, 2, c , p - 1} and mul-

tiply each element by a, modulo p, to get the set X = {a mod p, 2a mod p, c ,

(p - 1)a mod p}. None of the elements of X is equal to zero because p does not

divide a. Furthermore, no two of the integers in X are equal. To see this, assume that

ja K ka(mod p)), where 1 … j 6 k … p - 1. Because a is relatively prime7 to p, we

can eliminate a from both sides of the equation [see Equation (2.3)] resulting in

j K k(mod p). This last equality is impossible, because j and k are both positive inte-

gers less than p. Therefore, we know that the (p - 1) elements of X are all positive

integers with no two elements equal. We can conclude the X consists of the set of

integers {1, 2, c , p - 1} in some order. Multiplying the numbers in both sets

(p and X) and taking the result mod p yields

 a * 2a * g * (p - 1)a K [(1 * 2 * g * (p - 1)](mod p)

 ap - 1(p - 1)! K (p - 1)! (mod p)

We can cancel the (p - 1)! term because it is relatively prime to p [see Equation

(2.5)]. This yields Equation (2.10), which completes the proof.

6This is sometimes referred to as Fermat’s little theorem.
7Recall from Section 2.2 that two numbers are relatively prime if they have no prime factors in common;
that is, their only common divisor is 1. This is equivalent to saying that two numbers are relatively prime
if their greatest common divisor is 1.

 300 = 22 * 31 * 52

 18 = 21 * 32

 gcd(18,300) = 21 * 31 * 50 = 6

Hiva-Network.Com

http://www.hiva-network.com/

2.5 / FERMAT’S AND EULER’S THEOREMS 65

An alternative form of Fermat’s theorem is also useful: If p is prime and a is a

positive integer, then

 ap K a(mod p) (2.11)

Note that the first form of the theorem [Equation (2.10)] requires that a be rela-

tively prime to p, but this form does not.

a = 7, p = 19

72 = 49 K 11 (mod 19)

74 K 121 K 7 (mod 19)

78 K 49 K 11 (mod 19)

716 K 121 K 7 (mod 19)

ap - 1 = 718 = 716 * 72 K 7 * 11 K 1 (mod 19)

 p = 5, a = 3 ap = 35 = 243 K 3(mod 5) = a(mod p)

 p = 5, a = 10 ap = 105 = 100000 K 10(mod 5) K 0(mod 5) = a(mod p)

Euler’s Totient Function

Before presenting Euler’s theorem, we need to introduce an important quantity in

number theory, referred to as Euler’s totient function. This function, written f(n),

is defined as the number of positive integers less than n and relatively prime to n.

By convention, f(1) = 1.

Determine f(37) and f(35).

Because 37 is prime, all of the positive integers from 1 through 36 are relatively

prime to 37. Thus f(37) = 36.

To determine f(35), we list all of the positive integers less than 35 that are

 relatively prime to it:

1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 16, 17, 18

19, 22, 23, 24, 26, 27, 29, 31, 32, 33, 34

There are 24 numbers on the list, so f(35) = 24.

Table 2.6 lists the first 30 values of f(n). The value f(1) is without meaning

but is defined to have the value 1.

It should be clear that, for a prime number p,

f(p) = p - 1

Now suppose that we have two prime numbers p and q with p ≠ q. Then we can

show that, for n = pq,

66 CHAPTER 2 / INTRODUCTION TO NUMBER THEORY

f(n) = f(pq) = f(p) * f(q) = (p - 1) * (q - 1)

To see that f(n) = f(p) * f(q), consider that the set of positive integers less than

n is the set {1, c , (pq - 1)}. The integers in this set that are not relatively prime

to n are the set {p, 2p, c , (q - 1)p} and the set {q, 2q, c , (p - 1)q}. To see

this, consider that any integer that divides n must divide either of the prime num-

bers p or q. Therefore, any integer that does not contain either p or q as a factor is

relatively prime to n. Further note that the two sets just listed are non-overlapping:

Because p and q are prime, we can state that none of the integers in the first set can

be written as a multiple of q, and none of the integers in the second set can be writ-

ten as a multiple of p. Thus the total number of unique integers in the two sets is

(q - 1) + (p - 1). Accordingly,

 f(n) = (pq - 1) - [(q - 1) + (p - 1)]

 = pq - (p + q) + 1

 = (p - 1) * (q - 1)

 = f(p) * f(q)

f(21) = f(3) * f(7) = (3 - 1) * (7 - 1) = 2 * 6 = 12

where the 12 integers are {1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20}.

Table 2.6 Some Values of Euler’s Totient Function f(n)

n f(n)

1 1

2 1

3 2

4 2

5 4

6 2

7 6

8 4

9 6

10 4

n f(n)

11 10

12 4

13 12

14 6

15 8

16 8

17 16

18 6

19 18

20 8

n f(n)

21 12

22 10

23 22

24 8

25 20

26 12

27 18

28 12

29 28

30 8

Euler’s Theorem

Euler’s theorem states that for every a and n that are relatively prime:

 af(n) K 1(mod n) (2.12)

Proof: Equation (2.12) is true if n is prime, because in that case, f(n) = (n - 1)

and Fermat’s theorem holds. However, it also holds for any integer n. Recall that

2.5 / FERMAT’S AND EULER’S THEOREMS 67

f(n) is the number of positive integers less than n that are relatively prime to n.

Consider the set of such integers, labeled as

R = {x1, x2, c , xf(n)}

That is, each element xi of R is a unique positive integer less than n with gcd(xi, n) = 1.

Now multiply each element by a, modulo n:

S = {(ax1 mod n), (ax2 mod n), c , (axf(n) mod n)}

The set S is a permutation8 of R , by the following line of reasoning:

1. Because a is relatively prime to n and xi is relatively prime to n, axi must also

be relatively prime to n. Thus, all the members of S are integers that are less

than n and that are relatively prime to n.

2. There are no duplicates in S. Refer to Equation (2.5). If axi mod n= axj

mod n, then xi = xj.

Therefore,

 q
f(n)

i=1

(axi mod n) = q
f(n)

i=1

xi

 q
f(n)

i=1

axi K q
f(n)

i=1

xi (mod n)

 af(n) * Jqf(n)

i=1

xiR K q
f(n)

i=1

xi (mod n)

 af(n) K 1 (mod n)

which completes the proof. This is the same line of reasoning applied to the proof

of Fermat’s theorem.

8A permutation of a finite set of elements S is an ordered sequence of all the elements of S, with each
element appearing exactly once.

 a = 3; n = 10; f(10) = 4; af(n) = 34 = 81 = 1(mod 10) = 1(mod n)

 a = 2; n = 11; f(11) = 10; af(n) = 210 = 1024 = 1(mod 11) = 1(mod n)

As is the case for Fermat’s theorem, an alternative form of the theorem is also

useful:

 af(n) + 1 K a(mod n) (2.13)

Again, similar to the case with Fermat’s theorem, the first form of Euler’s theorem

[Equation (2.12)] requires that a be relatively prime to n, but this form does not.

68 CHAPTER 2 / INTRODUCTION TO NUMBER THEORY

 2.6 TESTING FOR PRIMALITY

For many cryptographic algorithms, it is necessary to select one or more very large

prime numbers at random. Thus, we are faced with the task of determining whether

a given large number is prime. There is no simple yet efficient means of accomplish-

ing this task.

In this section, we present one attractive and popular algorithm. You may be

surprised to learn that this algorithm yields a number that is not necessarily a prime.

However, the algorithm can yield a number that is almost certainly a prime. This will

be explained presently. We also make reference to a deterministic algorithm for find-

ing primes. The section closes with a discussion concerning the distribution of primes.

Miller–Rabin Algorithm9

The algorithm due to Miller and Rabin [MILL75, RABI80] is typically used to test

a large number for primality. Before explaining the algorithm, we need some back-

ground. First, any positive odd integer n Ú 3 can be expressed as

n - 1 = 2kq with k 7 0, q odd

To see this, note that n - 1 is an even integer. Then, divide (n - 1) by 2 until the

result is an odd number q, for a total of k divisions. If n is expressed as a binary

number, then the result is achieved by shifting the number to the right until the

rightmost digit is a 1, for a total of k shifts. We now develop two properties of prime

numbers that we will need.

TWO PROPERTIES OF PRIME NUMBERS The first property is stated as follows: If p is

prime and a is a positive integer less than p, then a2 mod p = 1 if and only if either

a mod p = 1 or a mod p = -1 mod p = p - 1. By the rules of modular arithmetic

(a mod p) (a mod p) = a2 mod p. Thus, if either a mod p = 1 or a mod p = -1,

then a2 mod p = 1. Conversely, if a2 mod p = 1, then (a mod p)2 = 1, which is true

only for a mod p = 1 or a mod p = -1.

The second property is stated as follows: Let p be a prime number greater

than 2. We can then write p - 1 = 2kq with k 7 0, q odd. Let a be any integer in

the range 1 6 a 6 p - 1. Then one of the two following conditions is true.

1. aq is congruent to 1 modulo p. That is, aq mod p = 1, or equivalently,

aq K 1(mod p).

2. One of the numbers aq, a2q, a4q, c , a2k - 1q is congruent to -1 mod-

ulo p. That is, there is some number j in the range (1 … j … k) such that

a2j - 1q mod p = -1 mod p = p - 1 or equivalently, a2j - 1q K - 1(mod p).

Proof: Fermat’s theorem [Equation (2.10)] states that an - 1 K 1(mod n) if n is

prime. We have p - 1 = 2kq. Thus, we know that ap - 1 mod p = a2kq mod p = 1.

Thus, if we look at the sequence of numbers

 aq mod p, a2q mod p, a4q mod p, c , a2k - 1q mod p, a2kq mod p (2.14)

9Also referred to in the literature as the Rabin-Miller algorithm, or the Rabin-Miller test, or the Miller–
Rabin test.

2.6 / TESTING FOR PRIMALITY 69

we know that the last number in the list has value 1. Further, each number in the list

is the square of the previous number. Therefore, one of the following possibilities

must be true.

1. The first number on the list, and therefore all subsequent numbers on the list,

equals 1.

2. Some number on the list does not equal 1, but its square mod p does equal 1.

By virtue of the first property of prime numbers defined above, we know that

the only number that satisfies this condition is p - 1. So, in this case, the list

contains an element equal to p - 1.

This completes the proof.

DETAILS OF THE ALGORITHM These considerations lead to the conclusion that,

if n is prime, then either the first element in the list of residues, or remainders,

(aq, a2q, c , a2k - 1q, a2kq) modulo n equals 1; or some element in the list equals

(n - 1); otherwise n is composite (i.e., not a prime). On the other hand, if the

condition is met, that does not necessarily mean that n is prime. For example, if

n = 2047 = 23 * 89, then n - 1 = 2 * 1023. We compute 21023 mod 2047 = 1, so

that 2047 meets the condition but is not prime.

We can use the preceding property to devise a test for primality. The procedure

TEST takes a candidate integer n as input and returns the result composite if n is

definitely not a prime, and the result inconclusive if n may or may not be a prime.

TEST (n)
1. Find integers k, q, with k > 0, q odd, so that

(n − 1 = 2k q);
2. Select a random integer a, 1 < a < n - 1;
3. if aq mod n = 1 then return(”inconclusive”);
4. for j = 0 to k - 1 do
5. if a2

j
qmod n = n - 1 then return(”inconclusive”);

6. return(”composite”);

 Let us apply the test to the prime number n = 29. We have (n - 1) = 28 =
22(7) = 2kq. First, let us try a = 10. We compute 107 mod 29 = 17, which is neither

1 nor 28, so we continue the test. The next calculation finds that (107)2 mod 29 = 28,

and the test returns inconclusive (i.e., 29 may be prime). Let’s try again with

a = 2. We have the following calculations: 27 mod 29 = 12; 214 mod 29 = 28; and

the test again returns inconclusive. If we perform the test for all integers a in

the range 1 through 28, we get the same inconclusive result, which is compatible

with n being a prime number.

Now let us apply the test to the composite number n = 13 * 17 = 221. Then

(n - 1) = 220 = 22(55) = 2kq. Let us try a = 5. Then we have 555 mod 221 = 112,

which is neither 1 nor 220(555)2 mod 221 = 168. Because we have used all values of j
(i.e., j = 0 and j = 1) in line 4 of the TEST algorithm, the test returns composite, indi-

cating that 221 is definitely a composite number. But suppose we had selected a = 21.

Then we have 2155 mod 221 = 200; (2155)2 mod 221 = 220; and the test returns

inconclusive, indicating that 221 may be prime. In fact, of the 218 integers from 2

through 219, four of these will return an inconclusive result, namely 21, 47, 174, and 200.

70 CHAPTER 2 / INTRODUCTION TO NUMBER THEORY

REPEATED USE OF THE MILLER–RABIN ALGORITHM How can we use the Miller–Rabin

algorithm to determine with a high degree of confidence whether or not an integer

is prime? It can be shown [KNUT98] that given an odd number n that is not prime

and a randomly chosen integer, a with 1 6 a 6 n - 1, the probability that TEST

will return inconclusive (i.e., fail to detect that n is not prime) is less than 1/4.

Thus, if t different values of a are chosen, the probability that all of them will pass

TEST (return inconclusive) for n is less than (1/4)t. For example, for t = 10, the

probability that a nonprime number will pass all ten tests is less than 10-6. Thus,

for a sufficiently large value of t , we can be confident that n is prime if Miller’s test

always returns inconclusive.

This gives us a basis for determining whether an odd integer n is prime with

a reasonable degree of confidence. The procedure is as follows: Repeatedly invoke

TEST (n) using randomly chosen values for a. If, at any point, TEST returns

 composite, then n is determined to be nonprime. If TEST continues to return

inconclusive for t tests, then for a sufficiently large value of t, assume that n

is prime.

A Deterministic Primality Algorithm

Prior to 2002, there was no known method of efficiently proving the primality of

very large numbers. All of the algorithms in use, including the most popular (Miller–

Rabin), produced a probabilistic result. In 2002 (announced in 2002, published

in 2004), Agrawal, Kayal, and Saxena [AGRA04] developed a relatively simple

deterministic algorithm that efficiently determines whether a given large number

is a prime. The algorithm, known as the AKS algorithm, does not appear to be as

efficient as the Miller–Rabin algorithm. Thus far, it has not supplanted this older,

probabilistic technique.

Distribution of Primes

It is worth noting how many numbers are likely to be rejected before a prime num-

ber is found using the Miller–Rabin test, or any other test for primality. A result

from number theory, known as the prime number theorem, states that the primes

near n are spaced on the average one every ln (n) integers. Thus, on average, one

would have to test on the order of ln(n) integers before a prime is found. Because

all even integers can be immediately rejected, the correct figure is 0.5 ln(n). For

example, if a prime on the order of magnitude of 2200 were sought, then about

0.5 ln(2200) = 69 trials would be needed to find a prime. However, this figure is just

an average. In some places along the number line, primes are closely packed, and in

other places there are large gaps.

The two consecutive odd integers 1,000,000,000,061 and 1,000,000,000,063

are both prime. On the other hand, 1001! + 2, 1001! + 3, c , 1001! + 1000,

1001! + 1001 is a sequence of 1000 consecutive composite integers.

2.7 / THE CHINESE REMAINDER THEOREM 71

 2.7 THE CHINESE REMAINDER THEOREM

One of the most useful results of number theory is the Chinese remainder theorem

(CRT).10 In essence, the CRT says it is possible to reconstruct integers in a certain

range from their residues modulo a set of pairwise relatively prime moduli.

10The CRT is so called because it is believed to have been discovered by the Chinese mathematician
 Sun-Tsu in around 100 A.D.

The 10 integers in Z10, that is the integers 0 through 9, can be reconstructed from

their two residues modulo 2 and 5 (the relatively prime factors of 10). Say the

known residues of a decimal digit x are r2 = 0 and r5 = 3; that is, x mod 2 = 0

and x mod 5 = 3. Therefore, x is an even integer in Z10 whose remainder, on divi-

sion by 5, is 3. The unique solution is x = 8.

The CRT can be stated in several ways. We present here a formulation that is most

useful from the point of view of this text. An alternative formulation is explored in

Problem 2.33. Let

M = q
k

i=1

mi

where the mi are pairwise relatively prime; that is, gcd(mi, mj) = 1 for 1 … i, j … k,

and i ≠ j. We can represent any integer A in ZM by a k-tuple whose elements are in

Zmi
 using the following correspondence:

 A 4 (a1, a2, c , ak) (2.15)

where A ∈ ZM, ai∈ Zmi
, and ai = A mod mi for 1 … i … k. The CRT makes two

assertions.

1. The mapping of Equation (2.15) is a one-to-one correspondence (called a

 bijection) between ZM and the Cartesian product Zm1
* Zm2

* c * Zmk
.

That is, for every integer A such that 0 … A 6 M, there is a unique k- tuple

(a1, a2, c , ak) with 0 … ai 6 mi that represents it, and for every such

k- tuple (a1, a2, c , ak), there is a unique integer A in ZM.

2. Operations performed on the elements of ZM can be equivalently performed

on the corresponding k-tuples by performing the operation independently in

each coordinate position in the appropriate system.

Let us demonstrate the first assertion. The transformation from A to

(a1, a2, c , ak), is obviously unique; that is, each ai is uniquely calculated as

ai = A mod mi. Computing A from (a1, a2, c , ak) can be done as follows. Let

72 CHAPTER 2 / INTRODUCTION TO NUMBER THEORY

Mi = M/mi for 1 … i … k. Note that Mi = m1 * m2 * c * mi- 1 * mi+ 1 * c

* mk, so that Mi K 0 (mod mj) for all j ≠ i. Then let

 ci = Mi * (Mi
-1 mod mi) for 1 … i … k (2.16)

By the definition of Mi, it is relatively prime to mi and therefore has a unique multi-

plicative inverse mod mi. So Equation (2.16) is well defined and produces a unique

value ci. We can now compute

 A K ¢ ak
i=1

aici≤(mod M) (2.17)

To show that the value of A produced by Equation (2.17) is correct, we must

show that ai = A mod mi for 1 … i … k. Note that cj K Mj K 0 (mod mi) if j ≠ i,
and that ci K 1 (mod mi). It follows that ai = A mod mi.

The second assertion of the CRT, concerning arithmetic operations, follows

from the rules for modular arithmetic. That is, the second assertion can be stated as

follows: If

A 4 (a1, a2, c , ak)

B 4 (b1, b2, c , bk)

then

(A + B) mod M 4 ((a1 + b1) mod m1, c , (ak + bk) mod mk)

(A - B) mod M 4 ((a1 - b1) mod m1, c , (ak - bk) mod mk)

(A * B) mod M 4 ((a1 * b1) mod m1, c , (ak * bk) mod mk)

One of the useful features of the Chinese remainder theorem is that it provides

a way to manipulate (potentially very large) numbers mod M in terms of tuples of

smaller numbers. This can be useful when M is 150 digits or more. However, note

that it is necessary to know beforehand the factorization of M.

 To represent 973 mod 1813 as a pair of numbers mod 37 and 49, define

 m1 = 37

 m2 = 49

 M = 1813

 A = 973

We also have M1 = 49 and M2 = 37. Using the extended Euclidean algorithm,

we compute M1
-1 = 34 mod m1 and M2

-1 = 4 mod m2. (Note that we only need

to compute each Mi and each Mi
-1 once.) Taking residues modulo 37 and 49, our

representation of 973 is (11, 42), because 973 mod 37 = 11 and 973 mod 49 = 42.

Now suppose we want to add 678 to 973. What do we do to (11, 42)? First

we compute (678) 4 (678 mod 37, 678 mod 49) = (12, 41). Then we add the

tuples element-wise and reduce (11 + 12 mod 37, 42 + 41 mod 49) = (23, 34).

To verify that this has the correct effect, we compute

2.8 / DISCRETE LOGARITHMS 73

 2.8 DISCRETE LOGARITHMS

Discrete logarithms are fundamental to a number of public-key algorithms, includ-

ing Diffie–Hellman key exchange and the digital signature algorithm (DSA). This

section provides a brief overview of discrete logarithms. For the interested reader,

more detailed developments of this topic can be found in [ORE67] and [LEVE90].

The Powers of an Integer, Modulo n

Recall from Euler’s theorem [Equation (2.12)] that, for every a and n that are rela-

tively prime,

af(n) K 1 (mod n)

where f(n), Euler’s totient function, is the number of positive integers less than n

and relatively prime to n. Now consider the more general expression:

 am K 1 (mod n) (2.18)

If a and n are relatively prime, then there is at least one integer m that satisfies

Equation (2.18), namely, m = f(n). The least positive exponent m for which

Equation (2.18) holds is referred to in several ways:

 ■ The order of a (mod n)

 ■ The exponent to which a belongs (mod n)

 ■ The length of the period generated by a

 (23, 34) 4 a1M1M1
-1 + a2M2M2

-1 mod M

 = [(23)(49)(34) + (34)(37)(4)] mod 1813

 = 43350 mod 1813

 = 1651

and check that it is equal to (973 + 678) mod 1813 = 1651. Remember that in

the above derivation, Mi
-1 is the multiplicative inverse of M1 modulo m1 and M2

-1

is the multiplicative inverse of M2 modulo m2.

Suppose we want to multiply 1651 (mod 1813) by 73. We multiply (23, 34)

by 73 and reduce to get (23 * 73 mod 37, 34 * 73 mod 49) = (14, 32). It is eas-

ily verified that

 (14, 32) 4 [(14)(49)(34) + (32)(37)(4)] mod 1813

 = 865

 = 1651 * 73 mod 1813

Hiva-Network.Com

http://www.hiva-network.com/

74 CHAPTER 2 / INTRODUCTION TO NUMBER THEORY

Table 2.7 shows all the powers of a, modulo 19 for all positive a 6 19. The

length of the sequence for each base value is indicated by shading. Note the

following:

1. All sequences end in 1. This is consistent with the reasoning of the preceding

few paragraphs.

2. The length of a sequence divides f(19) = 18. That is, an integral number of

sequences occur in each row of the table.

3. Some of the sequences are of length 18. In this case, it is said that the base inte-

ger a generates (via powers) the set of nonzero integers modulo 19. Each such

integer is called a primitive root of the modulus 19.

More generally, we can say that the highest possible exponent to which a num-

ber can belong (mod n) is f(n). If a number is of this order, it is referred to as a

primitive root of n. The importance of this notion is that if a is a primitive root of n,

then its powers

a, a2, c , af(n)

are distinct (mod n) and are all relatively prime to n. In particular, for a prime num-

ber p, if a is a primitive root of p, then

a, a2, c , ap - 1

are distinct (mod p). For the prime number 19, its primitive roots are 2, 3, 10, 13, 14,

and 15.

Not all integers have primitive roots. In fact, the only integers with primitive

roots are those of the form 2, 4, pa, and 2pa, where p is any odd prime and a is a

positive integer. The proof is not simple but can be found in many number theory

books, including [ORE76].

To see this last point, consider the powers of 7, modulo 19:

71 K 7 (mod 19)

72 = 49 = 2 * 19 + 11 K 11 (mod 19)

73 = 343 = 18 * 19 + 1 K 1 (mod 19)

74 = 2401 = 126 * 19 + 7 K 7 (mod 19)

75 = 16807 = 884 * 19 + 11 K 11 (mod 19)

There is no point in continuing because the sequence is repeating. This can be

proven by noting that 73 K 1(mod 19), and therefore, 73 + j K 737j K 7j(mod 19),

and hence, any two powers of 7 whose exponents differ by 3 (or a multiple of 3)

are congruent to each other (mod 19). In other words, the sequence is periodic,

and the length of the period is the smallest positive exponent m such that

7m K 1(mod 19).

2.8 / DISCRETE LOGARITHMS 75

Logarithms for Modular Arithmetic

With ordinary positive real numbers, the logarithm function is the inverse of expo-

nentiation. An analogous function exists for modular arithmetic.

Let us briefly review the properties of ordinary logarithms. The logarithm of a

number is defined to be the power to which some positive base (except 1) must be

raised in order to equal the number. That is, for base x and for a value y,

y = xlogx(y)

The properties of logarithms include

 logx(1) = 0

 logx(x) = 1

 logx(yz) = logx(y) + logx(z) (2.19)

 logx(yr) = r * logx(y) (2.20)

Consider a primitive root a for some prime number p (the argument can

be developed for nonprimes as well). Then we know that the powers of a from

a a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 4 8 16 13 7 14 9 18 17 15 11 3 6 12 5 10 1

3 9 8 5 15 7 2 6 18 16 10 11 14 4 12 17 13 1

4 16 7 9 17 11 6 5 1 4 16 7 9 17 11 6 5 1

5 6 11 17 9 7 16 4 1 5 6 11 17 9 7 16 4 1

6 17 7 4 5 11 9 16 1 6 17 7 4 5 11 9 16 1

7 11 1 7 11 1 7 11 1 7 11 1 7 11 1 7 11 1

8 7 18 11 12 1 8 7 18 11 12 1 8 7 18 11 12 1

9 5 7 6 16 11 4 17 1 9 5 7 6 16 11 4 17 1

10 5 12 6 3 11 15 17 18 9 14 7 13 16 8 4 2 1

11 7 1 11 7 1 11 7 1 11 7 1 11 7 1 11 7 1

12 11 18 7 8 1 12 11 18 7 8 1 12 11 18 7 8 1

13 17 12 4 14 11 10 16 18 6 2 7 15 5 8 9 3 1

14 6 8 17 10 7 3 4 18 5 13 11 2 9 12 16 15 1

15 16 12 9 2 11 13 5 18 4 3 7 10 17 8 6 14 1

16 9 11 5 4 7 17 6 1 16 9 11 5 4 7 17 6 1

17 4 11 16 6 7 5 9 1 17 4 11 16 6 7 5 9 1

18 1 18 1 18 1 18 1 18 1 18 1 18 1 18 1 18 1

Table 2.7 Powers of Integers, Modulo 19

76 CHAPTER 2 / INTRODUCTION TO NUMBER THEORY

1 through (p - 1) produce each integer from 1 through (p - 1) exactly once. We

also know that any integer b satisfies

b K r (mod p) for some r, where 0 … r … (p - 1)

by the definition of modular arithmetic. It follows that for any integer b and a primi-

tive root a of prime number p, we can find a unique exponent i such that

b K ai(mod p) where 0 … i … (p - 1)

This exponent i is referred to as the discrete logarithm of the number b for the base

a (mod p). We denote this value as dloga,p(b).11

Note the following:

 dloga,p(1) = 0 because a0 mod p = 1 mod p = 1 (2.21)

 dloga,p(a) = 1 because a1 mod p = a (2.22)

11Many texts refer to the discrete logarithm as the index. There is no generally agreed notation for this
concept, much less an agreed name.

Here is an example using a nonprime modulus, n = 9. Here f(n) = 6 and a = 2

is a primitive root. We compute the various powers of a and find

20 = 1 24 K 7 (mod 9)

21 = 2 25 K 5 (mod 9)

22 = 4 26 K 1 (mod 9)

23 = 8

This gives us the following table of the numbers with given discrete logarithms

(mod 9) for the root a = 2:

Logarithm 0 1 2 3 4 5

Number 1 2 4 8 7 5

To make it easy to obtain the discrete logarithms of a given number, we rearrange

the table:

Number 1 2 4 5 7 8

Logarithm 0 1 2 5 4 3

Now consider

x = adloga, p(x) mod p y = adloga, p(y) mod p
xy = adloga, p(xy) mod p

2.8 / DISCRETE LOGARITHMS 77

Using the rules of modular multiplication,

 xy mod p = [(x mod p)(y mod p)] mod p

 adloga, p(xy) mod p = [(adloga, p(x) mod p)(adloga, p(y) mod p)] mod p

 = (adloga, p(x) + dloga, p(y)) mod p

But now consider Euler’s theorem, which states that, for every a and n that are

relatively prime,

af(n) K 1(mod n)

Any positive integer z can be expressed in the form z = q + kf(n), with

0 … q 6 f(n). Therefore, by Euler’s theorem,

az K aq(mod n) if z K q mod f(n)

Applying this to the foregoing equality, we have

dloga, p(xy) K [dloga, p(x) + dloga, p(y)](mod f(p))

and generalizing,

dloga, p(yr) K [r * dloga, p(y)](mod f(p))

This demonstrates the analogy between true logarithms and discrete logarithms.

Keep in mind that unique discrete logarithms mod m to some base a exist only

if a is a primitive root of m.

Table 2.8, which is directly derived from Table 2.7, shows the sets of discrete

logarithms that can be defined for modulus 19.

Calculation of Discrete Logarithms

Consider the equation

y = gx mod p

Given g, x, and p, it is a straightforward matter to calculate y. At the worst, we must

perform x repeated multiplications, and algorithms exist for achieving greater effi-

ciency (see Chapter 9).

However, given y, g, and p, it is, in general, very difficult to calculate x (take

the discrete logarithm). The difficulty seems to be on the same order of magnitude

as that of factoring primes required for RSA. At the time of this writing, the asymp-

totically fastest known algorithm for taking discrete logarithms modulo a prime

number is on the order of [BETH91]:

e((ln p)1/3(ln(ln p))2/3)

which is not feasible for large primes.

78 CHAPTER 2 / INTRODUCTION TO NUMBER THEORY

 2.9 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

(a) Discrete logarithms to the base 2, modulo 19

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

log2,19(a) 18 1 13 2 16 14 6 3 8 17 12 15 5 7 11 4 10 9

(b) Discrete logarithms to the base 3, modulo 19

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

log3,19(a) 18 7 1 14 4 8 6 3 2 11 12 15 17 13 5 10 16 9

(c) Discrete logarithms to the base 10, modulo 19

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

log10,19(a) 18 17 5 16 2 4 12 15 10 1 6 3 13 11 7 14 8 9

(d) Discrete logarithms to the base 13, modulo 19

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

log13,19(a) 18 11 17 4 14 10 12 15 16 7 6 3 1 5 13 8 2 9

(e) Discrete logarithms to the base 14, modulo 19

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

log14,19(a) 18 13 7 8 10 2 6 3 14 5 12 15 11 1 17 16 4 9

(f) Discrete logarithms to the base 15, modulo 19

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

log15,19(a) 18 5 11 10 8 16 12 15 4 13 6 3 7 17 1 2 14 9

Table 2.8 Tables of Discrete Logarithms, Modulo 19

Key Terms

bijection

composite number

commutative

Chinese remainder theorem

discrete logarithm

divisor

Euclidean algorithm

Euler’s theorem

Euler’s totient function

Fermat’s theorem

greatest common divisor

identity element

index

modular arithmetic

modulus

order

prime number

primitive root

relatively prime

residue

2.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 79

Review Questions

 2.1 What does it mean to say that b is a divisor of a?

 2.2 What is the meaning of the expression a divides b?

 2.3 What is the difference between modular arithmetic and ordinary arithmetic?

 2.4 What is a prime number?

 2.5 What is Euler’s totient function?

 2.6 The Miller–Rabin test can determine if a number is not prime but cannot determine
if a number is prime. How can such an algorithm be used to test for primality?

 2.7 What is a primitive root of a number?

 2.8 What is the difference between an index and a discrete logarithm?

Problems

 2.1 Reformulate Equation (2.1), removing the restriction that a is a nonnegative integer.
That is, let a be any integer.

 2.2 Draw a figure similar to Figure 2.1 for a 6 0.

 2.3 For each of the following equations, find an integer x that satisfies the equation.
a. 4 x K 2 (mod 3)
b. 7 x K 4 (mod 9)
c. 5 x K 3 (mod 1 1)

 2.4 In this text, we assume that the modulus is a positive integer. But the definition of the
expression a mod n also makes perfect sense if n is negative. Determine the following:
a. 7 mod 4
b. 7 mod -4
c. -7 mod 4
d. -7 mod -4

 2.5 A modulus of 0 does not fit the definition but is defined by convention as follows:
a mod 0 = a. With this definition in mind, what does the following expression mean:
a K b (mod 0)?

 2.6 In Section 2.3, we define the congruence relationship as follows: Two integers a and
b are said to be congruent modulo n if (a mod n) = (b mod n). We then proved that
a K b (mod n) if n � (a - b). Some texts on number theory use this latter relation-
ship as the definition of congruence: Two integers a and b are said to be congruent
modulo n if n � (a - b). Using this latter definition as the starting point, prove that, if
(a mod n) = (b mod n), then n divides (a - b).

 2.7 What is the smallest positive integer that has exactly k divisors? Provide answers for
values for 1 … k … 8.

 2.8 Prove the following:
a. a K b (mod n) implies b K a (mod n)
b. a K b (mod n) and b K c (mod n) imply a K c (mod n)

 2.9 Prove the following:
a. [(a mod n) - (b mod n)] mod n = (a - b) mod n
b. [(a mod n) * (b mod n)] mod n = (a * b) mod n

 2.10 Find the multiplicative inverse of each nonzero element in Z5.

 2.11 Show that an integer N is congruent modulo 9 to the sum of its decimal digits. For
example, 7 2 3 K 7 + 2 + 3 K 1 2 K 1 + 2 K 3 (mod 9). This is the basis for the
familiar procedure of “casting out 9’s” when checking computations in arithmetic.

80 CHAPTER 2 / INTRODUCTION TO NUMBER THEORY

 2.12 a. Determine gcd(72345, 43215)
b. Determine gcd(3486, 10292)

 2.13 The purpose of this problem is to set an upper bound on the number of iterations of
the Euclidean algorithm.
a. Suppose that m = qn + r with q 7 0 and 0 … r 6 n. Show that m/2 7 r.
b. Let Ai be the value of A in the Euclidean algorithm after the ith iteration. Show that

Ai+ 2 6
Ai

2

c. Show that if m, n, and N are integers with (1 … m, n, … 2N), then the Euclidean
algorithm takes at most 2N steps to find gcd(m, n).

 2.14 The Euclidean algorithm has been known for over 2000 years and has always been
a favorite among number theorists. After these many years, there is now a potential
competitor, invented by J. Stein in 1961. Stein’s algorithms is as follows: Determine
gcd(A, B) with A, B Ú 1.

STEP 1 Set A1 = A, B1 = B, C1 = 1

STEP 2 For n > 1, (1) If An = Bn, stop. gcd(A, B) = AnCn

 (2) If An and Bn are both even, set An + 1 = An/2, Bn + 1 = Bn/2,

Cn + 1 = 2Cn

 (3) If An is even and Bn is odd, set An + 1 = An/2, Bn + 1 = Bn,

Cn + 1 = Cn

 (4) If An is odd and Bn is even, set An + 1 = An, Bn + 1 = Bn/2,

 Cn + 1 = Cn

 (5) If An and Bn are both odd, set An + 1 = �An - Bn � , Bn + 1 =

min (Bn, An), Cn + 1 = Cn

 Continue to step n + 1.
a. To get a feel for the two algorithms, compute gcd(6150, 704) using both the Euclid-

ean and Stein’s algorithm.
b. What is the apparent advantage of Stein’s algorithm over the Euclidean algorithm?

 2.15 a. Show that if Stein’s algorithm does not stop before the nth step, then

Cn + 1 * gcd(An + 1, Bn + 1) = Cn * gcd(An, Bn)

b. Show that if the algorithm does not stop before step (n - 1), then

An + 2Bn + 2 …
AnBn

2

c. Show that if 1 … A, B … 2N, then Stein’s algorithm takes at most 4N steps to find
gcd(m, n). Thus, Stein’s algorithm works in roughly the same number of steps as
the Euclidean algorithm.

d. Demonstrate that Stein’s algorithm does indeed return gcd(A, B).

 2.16 Using the extended Euclidean algorithm, find the multiplicative inverse of
a. 135 mod 61
b. 7465 mod 2464
c. 42828 mod 6407

 2.17 The purpose of this problem is to determine how many prime numbers there
are. Suppose there are a total of n prime numbers, and we list these in order:
p1 = 2 6 p2 = 3 6 p3 = 5 6 c 6 pn.
a. Define X = 1 + p1p2 c pn. That is, X is equal to one plus the product of all the

primes. Can we find a prime number Pm that divides X?
b. What can you say about m?
c. Deduce that the total number of primes cannot be finite.
d. Show that Pn + 1 … 1 + p1p2 c pn.

2.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 81

 2.18 The purpose of this problem is to demonstrate that the probability that two random
numbers are relatively prime is about 0.6.
a. Let P = Pr[gcd(a, b) = 1]. Show that P = Pr[gcd(a, b) = d] = P/d2. Hint:

 Consider the quantity gcd aa
d

,
b
d
b .

b. The sum of the result of part (a) over all possible values of d is 1. That is
Σd Ú1Pr[gcd(a, b) = d] = 1. Use this equality to determine the value of P. Hint:

Use the identity a
∞

i=1

1

i2
=
p2

6
.

 2.19 Why is gcd(n, n + 1) = 1 for two consecutive integers n and n + 1?

 2.20 Using Fermat’s theorem, find 4 2 2 5 mod 13.

 2.21 Use Fermat’s theorem to find a number a between 0 and 92 with a congruent to 71013
modulo 93.

 2.22 Use Fermat’s theorem to find a number x between 0 and 37 with x 7 3 congruent to 4
modulo 37. (You should not need to use any brute-force searching.)

 2.23 Use Euler’s theorem to find a number a between 0 and 9 such that a is congruent to
9 1 0 1 modulo 10. (Note: This is the same as the last digit of the decimal expansion of
9 1 0 0.)

 2.24 Use Euler’s theorem to find a number x between 0 and 14 with x 6 1 congruent to 7
 modulo 15. (You should not need to use any brute-force searching.)

 2.25 Notice in Table 2.6 that f(n) is even for n 7 2. This is true for all n 7 2. Give a con-
cise argument why this is so.

 2.26 Prove the following: If p is prime, then f(pi) = pi - pi- 1. Hint: What numbers have
a factor in common with pi?

 2.27 It can be shown (see any book on number theory) that if gcd(m, n) = 1 then
f(mn) = f(m)f(n). Using this property, the property developed in the preceding
problem, and the property that f(p) = p - 1 for p prime, it is straightforward to
determine the value of f(n) for any n. Determine the following:
a. f(29) b. f(51) c. f(455) d. f(616)

 2.28 It can also be shown that for arbitrary positive integer a, f(a) is given by

f(a) = q
t

i=1

[pi
ai - 1(pi - 1)]

 where a is given by Equation (2.9), namely: a = P1
a1P2

a2 c Pt
at. Demonstrate this result.

 2.29 Consider the function: f(n) = number of elements in the set {a: 0 … a 6 n and
gcd(a, n) = 1}. What is this function?

 2.30 Although ancient Chinese mathematicians did good work coming up with their
remainder theorem, they did not always get it right. They had a test for primality. The
test said that n is prime if and only if n divides (2n - 2).
a. Give an example that satisfies the condition using an odd prime.
b. The condition is obviously true for n = 2. Prove that the condition is true if n is an

odd prime (proving the if condition).
c. Give an example of an odd n that is not prime and that does not satisfy the condi-

tion. You can do this with nonprime numbers up to a very large value. This misled
the Chinese mathematicians into thinking that if the condition is true then n is prime.

d. Unfortunately, the ancient Chinese never tried n = 341, which is nonprime
(341 = 11 * 31), yet 341 divides 2341 - 2 without remainder. Demonstrate that
2341 K 2 (mod 341) (disproving the only if condition). Hint: It is not necessary to
calculate 2341; play around with the congruences instead.

82 CHAPTER 2 / INTRODUCTION TO NUMBER THEORY

 2.31 Show that, if n is an odd composite integer, then the Miller–Rabin test will return
inconclusive for a = 1 and a = (n - 1).

 2.32 If n is composite and passes the Miller–Rabin test for the base a, then n is called
a strong pseudoprime to the base a. Show that 2047 is a strong pseudoprime to the
base 2.

 2.33 A common formulation of the Chinese remainder theorem (CRT) is as follows: Let
m1, c , mk be integers that are pairwise relatively prime for 1 … i, j … k, and i ≠ j.
Define M to be the product of all the mi>s. Let a1, c , ak be integers. Then the set of
congruences:

 x K a1(mod m1)

 x K a2(mod m2)
~

~

~

 x K ak(mod mk)

 has a unique solution modulo M. Show that the theorem stated in this form is true.

 2.34 The example used by Sun-Tsu to illustrate the CRT was

 x K 2 (mod 3); x K 3 (mod 5); x K 2 (mod 7)

 Solve for x.

 2.35 Six professors begin courses on Monday, Tuesday, Wednesday, Thursday, Friday,
and Saturday, respectively, and announce their intentions of lecturing at intervals of
3, 2, 5, 6, 1, and 4 days, respectively. The regulations of the university forbid Sunday
lectures (so that a Sunday lecture must be omitted). When first will all six professors
find themselves compelled to omit a lecture? Hint: Use the CRT.

 2.36 Find all primitive roots of 37.

 2.37 Given 5 as a primitive root of 23, construct a table of discrete logarithms, and use it to
solve the following congruences.
a. 3x5 K 2 (mod 23)
b. 7x10 + 1 K 0 (mod 23)
c. 5x K 6 (mod 23)

Programming Problems

 2.1 Write a computer program that implements fast exponentiation (successive squaring)
modulo n.

 2.2 Write a computer program that implements the Miller–Rabin algorithm for a user-
specified n. The program should allow the user two choices: (1) specify a possible
witness a to test using the Witness procedure or (2) specify a number s of random
witnesses for the Miller–Rabin test to check.

 APPENDIX 2A THE MEANING OF MOD

The operator mod is used in this book and in the literature in two different ways: as

a binary operator and as a congruence relation. This appendix explains the distinc-

tion and precisely defines the notation used in this book regarding parentheses. This

notation is common but, unfortunately, not universal.

Hiva-Network.Com

http://www.hiva-network.com/

APPENDIX 2A / THE MEANING OF MOD 83

The Binary Operator mod

If a is an integer and n is a positive integer, we define a mod n to be the remainder

when a is divided by n. The integer n is called the modulus, and the remainder is

called the residue. Thus, for any integer a, we can always write

 a = :a/n; * n + (a mod n)

Formally, we define the operator mod as

 a mod n = a - :a/n; * n for n ≠ 0

As a binary operation, mod takes two integer arguments and returns the re-

mainder. For example, 7 mod 3 = 1. The arguments may be integers, integer vari-

ables, or integer variable expressions. For example, all of the following are valid,

with the obvious meanings:

7 mod 3

7 mod m

x mod 3

x mod m

(x2 + y + 1) mod (2m + n)

where all of the variables are integers. In each case, the left-hand term is divided by

the right-hand term, and the resulting value is the remainder. Note that if either the

left- or right-hand argument is an expression, the expression is parenthesized. The

operator mod is not inside parentheses.

In fact, the mod operation also works if the two arguments are arbitrary real num-

bers, not just integers. In this book, we are concerned only with the integer operation.

The Congruence Relation mod

As a congruence relation, mod expresses that two arguments have the same remain-

der with respect to a given modulus. For example, 7 K 4 (mod 3) expresses the

fact that both 7 and 4 have a remainder of 1 when divided by 3. The following two

expressions are equivalent:

 a K b (mod m) 3 a mod m = b mod m

Another way of expressing it is to say that the expression a K b (mod m) is the

same as saying that a - b is an integral multiple of m. Again, all the arguments may

be integers, integer variables, or integer variable expressions. For example, all of

the following are valid, with the obvious meanings:

7 K 4 (mod 3)

x K y (mod m)

(x2 + y + 1) K (a + 1)(mod [m + n])

where all of the variables are integers. Two conventions are used. The congruence

sign is K . The modulus for the relation is defined by placing the mod operator fol-

lowed by the modulus in parentheses.

84 CHAPTER 2 / INTRODUCTION TO NUMBER THEORY

The congruence relation is used to define residue classes. Those numbers that

have the same remainder r when divided by m form a residue class (mod m). There

are m residue classes (mod m). For a given remainder r, the residue class to which it

belongs consists of the numbers

 r, r { m, r { 2m, c

According to our definition, the congruence

 a K b (mod m)

signifies that the numbers a and b differ by a multiple of m. Consequently, the con-

gruence can also be expressed in the terms that a and b belong to the same residue

class (mod m).

	About the Author
	Part One: Background
	Chapter 1 Computer and Network Security Concepts
	1.1 Computer Security Concepts
	1.2 The OSI Security Architecture
	1.3 Security Attacks
	1.4 Security Services
	1.5 Security Mechanisms
	1.6 Fundamental Security Design Principles
	1.7 Attack Surfaces and Attack Trees
	1.8 A Model for Network Security
	1.9 Standards
	1.10 Key Terms, Review Questions, and Problems

	Chapter 2 Introduction to Number Theory
	2.1 Divisibility and the Division Algorithm
	2.2 The Euclidean Algorithm
	2.3 Modular Arithmetic
	2.4 Prime Numbers
	2.5 Fermat's and Euler's Theorems
	2.6 Testing for Primality
	2.7 The Chinese Remainder Theorem
	2.8 Discrete Logarithms
	2.9 Key Terms, Review Questions, and Problems
	Appendix 2A The Meaning of Mod

	Chapter 3 Classical Encryption Techniques
	Chapter 4 Block Ciphers and the Data Encryption Standard
	Chapter 5 Finite Fields
	Chapter 6 Advanced Encryption Standard
	6.7 Key Terms, Review Questions, and Problems

	Chapter 7 Block Cipher Operation
	Chapter 8 Random Bit Generation and Stream Ciphers
	Chapter 9 Public-Key Cryptography and RSA
	Chapter 10 Other Public-Key Cryptosystems
	Chapter 11 Cryptographic Hash Functions
	Chapter 12 Message Authentication Codes
	Chapter 13 Digital Signatures
	Chapter 14 Key Management and Distribution
	Chapter 15 User Authentication
	Chapter 16 Network Access Control and Cloud Security
	Chapter 17 Transport-Level Security
	Chapter 18 Wireless Network Security
	Chapter 19 Electronic Mail Security
	Chapter 20 IP Security
	APPENDICES 696

