3.2 Position of the Sun

To calculate the irradiance on any plane the position of the sun with respect to that plane (precisely: to the normal to that plane) must be known. The sun's position in the sky hemisphere can be completely described by two quantities (Fig. 3.5):

- solar altitude α (elevation above horizon)
- solar azimuth ψ

The sun's altitude is given by spherical trigonometry (with geographical latitude ϕ):

$$\sin \alpha = \sin \delta \sin \phi + \cos \delta \cos \phi \cos \omega$$
 (3.7)

The solar azimuth is given by:

$$\cos \psi = \frac{\sin \alpha \sin \phi - \sin \delta}{\cos \alpha \cos \phi} \tag{3.8}$$

The quantity describing the angle between the incoming solar beam radiation and the normal to the receiving surface is the angle of incidence θ (Fig. 3.5).

This angle depends on

geographical location (latitude)

Fig. 3.4. Commonly used terms of time and their relationship.

- time of year (declination), time of day (hour angle)
- orientation of the plane (slope β , surface azimuth γ):

$$\theta = f(\phi, \delta, \omega, \beta, \gamma). \tag{3.9}$$

For its calculation, two additional angles have to be introduced: The slope angle β between the collector plane and the horizontal surface which varies between 0° for a horizontal plane and 90° for a vertical plane. The surface azimuth angle γ as the deviation of the normal of the plane from the local meridian. γ is counted clockwise from N where its value is 0° (thus for S it is 180°) on both hemispheres. Note that in the literature often a value of 180° for an orientation towards the equator is used! Then it is:

$$\cos \theta = \sin \delta \left(\sin \phi \cos \beta + \cos \phi \sin \beta \cos \gamma \right) + \cos \delta \cos \omega \left(\cos \phi \cos \beta - \sin \phi \sin \beta \cos \gamma \right) - \cos \delta \sin \beta \sin \gamma \sin \omega$$
 (3.10)

In case of some special situations simplified expressions can be given:

• Horizontal surfaces:
$$\beta = 0^{\circ} (i.e., \cos \beta = 1, \sin \beta = 0)$$

$$\cos \theta = \sin \delta \sin \phi + \cos \delta \cos \phi \cos \omega \tag{3.11}$$

Fig. 3.5. Zenith angle θ_z , slope β , surface azimuth angle γ and solar azimuth angle ψ for a tilted surface.

For horizontal surfaces θ equals the zenith angle θ_z (see Fig.3.5).

The 90° complement of the zenith angle is the solar elevation angle α (solar altitude).

• Vertical surfaces facing towards the equator: $\beta = 90^{\circ}$, $\gamma = 180^{\circ}$ for the northern hemisphere and $\gamma = 0^{\circ}$ for the southern hemisphere

$$\cos \theta = -\sin \delta \cos \phi + \cos \delta \sin \phi \cos \omega \qquad (3.12)$$

Inclined surfaces facing towards the equator with a tilt angle equal to the absolute value of the latitude (northern hemisphere: β = φ, γ = 180°; southern hemisphere, β = -φ, γ = 0°):

$$\cos \theta = \cos \delta \cos \omega \tag{3.13}$$

For solar noon ($\omega = 0^{\circ}$) it is: $\theta = |\delta|$.

• Sunrise and sunset: $\theta_z = 90^\circ$

$$\sin \delta \sin \phi = -\cos \delta \cos \phi \cos \omega$$

In this case, the sunset hour angle ω_{ss} is:

$$\cos \omega_{ss} = -\frac{\sin \delta \sin \phi}{\cos \delta \cos \phi} = -\tan \delta \tan \phi$$

Example: Daylength for winter solstice (21 December) in Oldenburg, Germany:

$$\phi = +53.2^{\circ}, \delta = -23.45^{\circ}$$

 $\cos \omega_{ss} = -\tan(53.2^{\circ})\tan(-23.45^{\circ}) = +0.58$
 $\omega_{ss} = -54.56^{\circ}$

The angle between surrise and sunset then is $2|\omega_{ss}|=109.12^{\circ}$ resulting in a theoretical sunshine duration of $109.12^{\circ}/15^{\circ}=7.27$ hours for that particular day.

3.3 Example: Extraterrestrial Radiation on a Horizontal Surface

Instantaneous value:

$$G_o = G_{on} \cos \theta_z$$

$$\simeq G_{sc} \left\{ 1 + 0.033 \cdot \cos \left(\frac{360 \cdot n}{365} \right) \right\} \cos \theta_z$$
(3.14)

For a time period (t₁,t₂) with corresponding hour angles ω₁ and ω₂ Eq. 3.11 and integration gives:

$$\begin{split} I_o &= \int_{t_1}^{t_2} G_o dt = \int_{\omega_1}^{\omega_2} G_o \frac{12 \cdot 3600}{\pi} d\omega \\ &= \frac{12 \cdot 3600}{\pi} G_{sc} \left\{ 1 + 0.033 \cos \left(\frac{360 \cdot n}{365} \right) \right\} \cdot \\ &\cdot \left(\cos \phi \cos \delta (\sin \omega_2 - \sin \omega_1) + \frac{\pi(\omega_2 - \omega_1)}{180} \sin \phi \sin \delta \right), \end{split}$$

where $dt=(24{\rm h}/2\pi)d\omega$. I_o is in Jm $^{-2}$. • Similarly, the daily extraterrestrial radiation is given in Jm $^{-2}$:

$$\begin{split} H_o &= \int_{-\omega_{ss}}^{\omega_{ss}} G_o dt \\ &= \frac{24 \cdot 3600}{\pi} G_{sc} \left\{ 1 + 0.033 \cos \left(\frac{360 \cdot n}{365} \right) \right\} \cdot \\ &\cdot \left(\cos \phi \cos \delta \sin \omega_{ss} + \frac{\pi \omega_{ss}}{180} \sin \phi \sin \delta \right) \end{split}$$

where n is again the number of the day in the year and ω_{ss} is in degrees.