
175

Chapter 6
Programming in
MATLAB

A computer program is a sequence of computer commands. In a simple pro-
gram the commands are executed one after the other in the order they are typed.
In this book, for example, all the programs that have been presented so far in
script files are simple programs. Many situations, however, require more sophis-
ticated programs in which commands are not necessarily executed in the order
they are typed, or different commands (or groups of commands) are executed
when the program runs with different input variables. For example, a computer
program that calculates the cost of mailing a package uses different mathemati-
cal expressions to calculate the cost depending on the weight and size of the
package, the content (books are less expensive to mail), and the type of service
(airmail, ground, etc.). In other situations there might be a need to repeat a
sequence of commands several times within a program. For example, programs
that solve equations numerically repeat a sequence of calculations until the error
in the answer is smaller than some measure.

MATLAB provides several tools that can be used to control the flow of a
program. Conditional statements (Section 6.2) and the switch structure (Sec-
tion 6.3) make it possible to skip commands or to execute specific groups of
commands in different situations. For loops and while loops (Section 6.4)
make it possible to repeat a sequence of commands several times.

It is obvious that changing the flow of a program requires some kind of
decision-making process within the program. The computer must decide
whether to execute the next command or to skip one or more commands and
continue at a different line in the program. The program makes these decisions
by comparing values of variables. This is done by using relational and logical
operators, which are explained in Section 6.1.
 It should also be noted that user-defined functions (introduced in Chapter
7) can be used in programming. A user-defined function can be used as a sub-
program. When the main program reaches the command line that has the user-
defined function, it provides input to the function and “waits” for the results.

176 Chapter 6: Programming in MATLAB

The user-defined function carries out the calculations and transfers the results
back to the main program, which then continues to the next command.

6.1 RELATIONAL AND LOGICAL OPERATORS

A relational operator compares two numbers by determining whether a compar-
ison statement (e.g., 5 < 8) is true or false. If the statement is true, it is assigned a
value of 1. If the statement is false, it is assigned a value of 0. A logical operator
examines true/false statements and produces a result that is true (1) or false (0)
according to the specific operator. For example, the logical AND operator gives
1 only if both statements are true. Relational and logical operators can be used
in mathematical expressions and, as will be shown in this chapter, are frequently
used in combination with other commands to make decisions that control the
flow of a computer program.

Relational operators:

Relational operators in MATLAB are:

Note that the “equal to” relational operator consists of two = signs (with no
space between them), since one = sign is the assignment operator. In other rela-
tional operators that consist of two characters, there also is no space between
the characters (<=, >=, ~=).

• Relational operators are used as arithmetic operators within a mathematical
expression. The result can be used in other mathematical operations, in address-
ing arrays, and together with other MATLAB commands (e.g., if) to control
the flow of a program.

• When two numbers are compared, the result is 1 (logical true) if the comparison,
according to the relational operator, is true, and 0 (logical false) if the compari-
son is false.

• If two scalars are compared, the result is a scalar 1 or 0. If two arrays are com-
pared (only arrays of the same size can be compared), the comparison is done
element-by-element, and the result is a logical array of the same size with 1s and
0s according to the outcome of the comparison at each address.

• If a scalar is compared with an array, the scalar is compared with every element

Relational operator Description

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

= = Equal to

~= Not Equal to

6.1 Relational and Logical Operators 177

of the array, and the result is a logical array with 1s and 0s according to the out-
come of the comparison of each element.

Some examples are:

>> 5>8

ans =
 0

>> a=5<10

a =
 1

>> y=(6<10)+(7>8)+(5*3= =60/4)

y =
 2

>> b=[15 6 9 4 11 7 14]; c=[8 20 9 2 19 7 10];

>> d=c>=b

d =
 0 1 1 0 1 1 0

>> b == c

ans =
 0 0 1 0 0 1 0

>> b~=c

ans =
 1 1 0 1 1 0 1

>> f=b-c>0

f =
 1 0 0 1 0 0 1

>> A=[2 9 4; -3 5 2; 6 7 -1]

A =
 2 9 4
 -3 5 2
 6 7 -1

>> B=A<=2

Checks if 5 is larger than 8.

Since the comparison is false (5 is
not larger than 8) the answer is 0.

Checks if 5 is smaller than 10, and assigns the answer to a.

Since the comparison is true (5 is smaller
than 10) the number 1 is assigned to a.

Using relational opera-
tors in math expression.

Equal to 1 since
6 is smaller than 10.

Equal to 0 since 7 is
not larger than 8.

Equal to 1 since 5*3
is equal to 60/4.

Define vec-
tors b and c.

Checks which c elements are larger than or equal to b elements.

Assigns 1 where an element of c is larger than or equal to an element of b.

Checks which b elements are equal to c elements.

Checks which b elements are not equal to c elements.

Subtracts c from b and then checks
which elements are larger than zero.

Define a matrix A.

Checks which elements in A are smaller than
or equal to 2. Assigns the results to matrix B.

178 Chapter 6: Programming in MATLAB

• The results of a relational operation with vectors, which are vectors with 0s and
1s, are called logical vectors and can be used for addressing vectors. When a log-
ical vector is used for addressing another vector, it extracts from that vector the
elements in the positions where the logical vector has 1s. For example:

• Numerical vectors and arrays with the numbers 0s and 1s are not the same as
logical vectors and arrays with 0s and 1s. Numerical vectors and arrays can not
be used for addressing. Logical vectors and arrays, however, can be used in arith-
metic operations. The first time a logical vector or an array is used in arithmetic
operations it is changed to a numerical vector or array.

• Order of precedence: In a mathematical expression that includes relational and
arithmetic operations, the arithmetic operations (+, –, *, /, \) have precedence
over relational operations. The relational operators themselves have equal prece-
dence and are evaluated from left to right. Parentheses can be used to alter the
order of precedence. Examples are:

B =
 1 0 0
 1 0 1
 0 0 1

>> r = [8 12 9 4 23 19 10]

r =
 8 12 9 4 23 19 10

>> s=r<=10

s =
 1 0 1 1 0 0 1

>> t=r(s)

t =
 8 9 4 10

>> w=r(r<=10)

w =
 8 9 4 10

>> 3+4<16/2

ans =
 1

>> 3+(4<16)/2

ans =
 3.5000

Define a vector r.

Checks which r elements are smaller than or equal to 10.

A logical vector s with 1s at positions where
elements of r are smaller than or equal to 10.

Use s for addresses in vector r to create vector t.

Vector t consists of elements of
r in positions where s has 1s.

The same procedure can be done in one step.

+ and / are executed first.

The answer is 1 since 7 < 8 is true.

4 < 16 is executed first, and is equal to 1, since it is true.

3.5 is obtained from 3 + 1/2.

6.1 Relational and Logical Operators 179

Logical operators:

Logical operators in MATLAB are:

• Logical operators have numbers as operands. A nonzero number is true, and a
zero number is false.

• Logical operators (like relational operators) are used as arithmetic operators
within a mathematical expression. The result can be used in other mathematical
operations, in addressing arrays, and together with other MATLAB commands
(e.g., if) to control the flow of a program.

• Logical operators (like relational operators) can be used with scalars and arrays.

• The logical operations AND and OR can have both operands as scalars, both as
arrays, or one as an array and one as a scalar. If both are scalars, the result is a
scalar 0 or 1. If both are arrays, they must be of the same size and the logical
operation is done element-by-element. The result is an array of the same size with
1s and 0s according to the outcome of the operation at each position. If one
operand is a scalar and the other is an array, the logical operation is done
between the scalar and each of the elements in the array and the outcome is an
array of the same size with 1s and 0s.

• The logical operation NOT has one operand. When it is used with a scalar, the
outcome is a scalar 0 or 1. When it is used with an array, the outcome is an array
of the same size with 0s in positions where the array has nonzero numbers and
1s in positions where the array has 0s.

Following are some examples:

Logical operator Name Description

&
Example: A&B

AND Operates on two operands (A and B). If
both are true, the result is true (1); other-
wise the result is false (0).

|

Example: A|B

OR Operates on two operands (A and B). If
either one, or both, are true, the result is
true (1); otherwise (both are false) the result
is false (0).

~

Example: ~A

NOT Operates on one operand (A). Gives the
opposite of the operand; true (1) if the oper-
and is false, and false (0) if the operand is
true.

>> 3&7

ans =
 1

3 AND 7.

3 and 7 are both true (nonzero), so the outcome is 1.

180 Chapter 6: Programming in MATLAB

Order of precedence:

Arithmetic, relational, and logical operators can be combined in mathematical
expressions. When an expression has such a combination, the result depends on
the order in which the operations are carried out. The following is the order
used by MATLAB:

>> a=5|0

a =
 1

>> ~25

ans =
 0

>> t=25*((12&0)+(~0)+(0|5))

t =
 50

>> x=[9 3 0 11 0 15]; y=[2 0 13 -11 0 4];

>> x&y
ans =
 1 0 0 1 0 1

>> z=x|y
z =
 1 1 1 1 0 1

>> ~(x+y)
ans =
 0 0 0 1 1 0

Precedence Operation

1 (highest) Parentheses (if nested parentheses exist, inner ones have
precedence)

2 Exponentiation

3 Logical NOT (~)

4 Multiplication, division

5 Addition, subtraction

6 Relational operators (>, <, >=, <=, = =, ~=)

7 Logical AND (&)

8 (lowest) Logical OR (|)

5 OR 0 (assign to variable a).

1 is assigned to a since at least one number is true (nonzero).

NOT 25.

The outcome is 0 since 25 is true
(nonzero) and the opposite is false.

Using logical operators in a math expression.

Define two vec-
tors x and y.

The outcome is a vector with 1 in every position where
both x and y are true (nonzero elements), and 0s otherwise.

The outcome is a vector with 1 in every position where either
or both x and y are true (nonzero elements), and 0s otherwise.

The outcome is a vector with 0 in every position where
the vector x + y is true (nonzero elements), and 1 in
every position where x + y is false (zero elements).

6.1 Relational and Logical Operators 181

If two or more operations have the same precedence, the expression is executed
in order from left to right.

It should be pointed out here that the order shown above is the one used
since MATLAB 6. Previous versions of MATLAB used a slightly different order
(& did not have precedence over |), so the user must be careful. Compatibility
problems between different versions of MATLAB can be avoided by using
parentheses even when they are not required.

The following are examples of expressions that include arithmetic, rela-
tional, and logical operators:

Built-in logical functions:

MATLAB has built-in functions that are equivalent to the logical operators.
These functions are:

and(A,B) equivalent to A&B
or(A,B) equivalent to A|B
not(A) equivalent to ~A

>> x=-2; y=5;

>> -5<x<-1
ans =
 0

>> -5<x & x<-1
ans =
 1

>> ~(y<7)
ans =
 0

>> ~y<7
ans =
 1

>> ~((y>=8)|(x<-1))
ans =
 0

>> ~(y>=8)|(x<-1)
ans =
 1

Define variables x and y.
This inequality is correct mathematically. The answer,
however, is false since MATLAB executes from left to
right. –5 < x is true (=1) and then 1 < –1 is false (0).

The mathematically correct statement is obtained by
using the logical operator &. The inequalities are
executed first. Since both are true (1), the answer is 1.

y < 7 is executed first, it is true (1), and ~1 is 0.

~y is executed first, y is true (1) (since y
is nonzero), ~1 is 0, and 0 < 7 is true (1).

y >= 8 (false), and x < –1 (true) are exe-
cuted first. OR is executed next (true). ~
is executed last, and gives false (0).

y >= 8 (false), and x < –1 (true) are executed
first. NOT of (y >= 8) is executed next (true).
OR is executed last, and gives true (1).

182 Chapter 6: Programming in MATLAB

In addition, MATLAB has other logical built-in functions, some of which are
described in the following table:

Function Description Example

xor(a,b) Exclusive or. Returns true (1) if
one operand is true and the
other is false.

>> xor(7,0)
ans =
 1
>> xor(7,-5)
ans =
 0

all(A) Returns 1 (true) if all elements
in a vector A are true (non-
zero). Returns 0 (false) if one
or more elements are false
(zero).
If A is a matrix, treats columns
of A as vectors, and returns a
vector with 1s and 0s.

>> A=[6 2 15 9 7
11];
>> all(A)
ans =
 1
>> B=[6 2 15 9 0
11];
>> all(B)
ans =
 0

any(A) Returns 1 (true) if any element
in a vector A is true (nonzero).
Returns 0 (false) if all elements
are false (zero).
If A is a matrix, treats columns
of A as vectors, and returns a
vector with 1s and 0s.

>> A=[6 0 15 0 0
11];
>> any(A)
ans =
 1
>> B = [0 0 0 0 0
0];
>> any(B)
ans =
 0

find(A)

find(A>d)

If A is a vector, returns the indi-
ces of the nonzero elements.

If A is a vector, returns the
address of the elements that
are larger than d (any rela-
tional operator can be used).

>> A=[0 9 4 3 7 0 0
1 8];
>> find(A)
ans =
 2 3 4
5 8 9
>> find(A>4)
ans =
 2 5 9

6.1 Relational and Logical Operators 183

The operations of the four logical operators, and, or, xor, and not can be
summarized in a truth table:

Sample Problem 6-1: Analysis of temperature data

The following were the daily maximum temperatures (in °F) in Washington,
DC, during the month of April 2002: 58 73 73 53 50 48 56 73 73 66 69 63 74 82
84 91 93 89 91 80 59 69 56 64 63 66 64 74 63 69 (data from the U.S. National
Oceanic and Atmospheric Administration). Use relational and logical opera-
tions to determine the following:
(a) The number of days the temperature was above 75°.
(b) The number of days the temperature was between 65° and 80°.
(c) The days of the month when the temperature was between 50° and 60°.

Solution

In the script file below the temperatures are entered in a vector. Relational and
logical expressions are then used to analyze the data.

INPUT OUTPUT

A B AND
A&B

OR
A|B

XOR
(A,B)

NOT
~A

NOT
~B

false false false false false true true

false true false true true true false

true false false true true false true

true true true true false false false

T=[58 73 73 53 50 48 56 73 73 66 69 63 74 82 84 ...

 91 93 89 91 80 59 69 56 64 63 66 64 74 63 69];

Tabove75=T>=75;

NdaysTabove75=sum(Tabove75)

Tbetween65and80=(T>=65)&(T<=80);

NdaysTbetween65and80=sum(Tbetween65and80)

datesTbetween50and60=find((T>=50)&(T<=60))

A vector with 1s at addresses where T >= 75.

Add all the 1s in the vector Tabove75.
A vector with 1s at addresses
where T >= 65 and T <= 80.

Add all the 1s in the vector Tbetween65and80.

The function find returns the address of the ele-
ments in T that have values between 50 and 60.

184 Chapter 6: Programming in MATLAB

The script file (saved as Exp6_1) is executed in the Command Window:

6.2 CONDITIONAL STATEMENTS

A conditional statement is a command that allows MATLAB to make a deci-
sion of whether to execute a group of commands that follow the conditional
statement, or to skip these commands. In a conditional statement, a conditional
expression is stated. If the expression is true, a group of commands that follow
the statement are executed. If the expression is false, the computer skips the
group. The basic form of a conditional statement is:

Examples:
if a < b
if c >= 5
if a == b
if a ~= 0
if (d<h)&(x>7)
if (x~=13)|(y<0)

• Conditional statements can be a part of a program written in a script file or a
user-defined function (Chapter 7).

• As shown below, for every if statement there is an end statement.

The if statement is commonly used in three structures, if-end, if-
else-end, and if-elseif-else-end, which are described next.

6.2.1 The if-end Structure

The if-end conditional statement is shown schematically in Figure 6-1. The
figure shows how the commands are typed in the program, and a flowchart that
symbolically shows the flow, or the sequence, in which the commands are exe-
cuted. As the program executes, it reaches the if statement. If the conditional
expression in the if statement is true (1), the program continues to execute the

>> Exp6_1

NdaysTabove75 =
 7

NdaysTbetween65and80 =
 12

datesTbetween50and60 =
 1 4 5 7 21 23

For 7 days the temp was above 75.

For 12 days the temp was between 65 and 80.

Dates of the month with
temp between 50 and 60.

if conditional expression consisting of relational and/or logical operators.

All the variables must
have assigned values.

6.2 Conditional Statements 185

commands that follow the if statement all the way down to the end statement.
If the conditional expression is false (0), the program skips the group of com-
mands between the if and the end, and continues with the commands that fol-
low the end.

The words if and end appear on the screen in blue, and the commands
between the if statement and the end statement are automatically indented
(they don’t have to be), which makes the program easier to read. An example
where the if-end statement is used in a script file is shown in Sample Problem
6-2.

Sample Problem 6-2: Calculating worker’s pay

A worker is paid according to his hourly wage up to 40 hours, and 50% more for
overtime. Write a program in a script file that calculates the pay to a worker. The
program asks the user to enter the number of hours and the hourly wage. The
program then displays the pay.

Solution

The program in a script file is shown below. The program first calculates the pay
by multiplying the number of hours by the hourly wage. Then an if statement
checks whether the number of hours is greater than 40. If so, the next line is exe-
cuted and the extra pay for the hours above 40 is added. If not, the program
skips to the end.

Figure 6-1: The structure of the if-end conditional statement.

t=input('Please enter the number of hours worked ');

h=input('Please enter the hourly wage in $ ');

Pay=t*h;

if t>40

if
statement

True

Commands

False

end

......

......

......
if conditional expression

........

........

........
end
......
......
......

A group of
MATLAB commands.

MATLAB program.

MATLAB program.

Flowchart

186 Chapter 6: Programming in MATLAB

Application of the program (in the Command Window) for two cases is shown
below (the file was saved as Workerpay):

6.2.2 The if-else-end Structure

The if-else-end structure provides a means for choosing one group of com-
mands, out of a possible two groups, for execution. The if-else-end struc-
ture is shown in Figure 6-2. The figure shows how the commands are typed in
the program, and includes a flowchart that illustrates the flow, or the sequence,

 Pay=Pay+(t-40)*0.5*h;

end

fprintf('The worker''s pay is $ %5.2f',Pay)

>> Workerpay

Please enter the number of hours worked 35

Please enter the hourly wage in $ 8

The worker’s pay is $ 280.00

>> Workerpay

Please enter the number of hours worked 50

Please enter the hourly wage in $ 10

The worker’s pay is $ 550.00

Figure 6-2: The structure of the if-else-end conditional statement.

if
statement

True

Commands
group 1

False

end

Commands
group 2

......

......

if conditional expression
........
........
........

else
........
........
........

end
......
......

Group 1 of
MATLAB commands.

MATLAB program.

MATLAB program.

Group 2 of
MATLAB commands.

Flowchart

6.2 Conditional Statements 187

in which the commands are executed. The first line is an if statement with a
conditional expression. If the conditional expression is true, the program exe-
cutes group 1 of commands between the if and the else statements and then
skips to the end. If the conditional expression is false, the program skips to the
else and then executes group 2 of commands between the else and the end.

6.2.3 The if-elseif-else-end Structure

The if-elseif-else-end structure is shown in Figure 6-3. The figure
shows how the commands are typed in the program, and gives a flowchart that
illustrates the flow, or the sequence, in which the commands are executed. This
structure includes two conditional statements (if and elseif) that make it
possible to select one out of three groups of commands for execution. The first
line is an if statement with a conditional expression. If the conditional expres-
sion is true, the program executes group 1 of commands between the if and the

elseif statements and then skips to the end. If the conditional expression in
the if statement is false, the program skips to the elseif statement. If the
conditional expression in the elseif statement is true, the program executes
group 2 of commands between the elseif and the else and then skips to the
end. If the conditional expression in the elseif statement is false, the pro-
gram skips to the else and executes group 3 of commands between the else
and the end.

It should be pointed out here that several elseif statements and associ-

Figure 6-3: The structure of the if-elseif-else-end conditional statement.

if
statement

True

Commands
group 1

False

end

Commands
group 2

Commands
group 3

elseif
statement

True

False

......

......

if conditional expression
........
........
........

elseif conditional expression
........
........
........

else
........
........
........

end
......
......

Group 1 of
MATLAB commands.

MATLAB program.

MATLAB program.

Group 2 of
MATLAB commands.

Flowchart

Group 3 of
MATLAB commands.

188 Chapter 6: Programming in MATLAB

ated groups of commands can be added. In this way more conditions can be
included. Also, the else statement is optional. This means that in the case of
several elseif statements and no else statement, if any of the conditional
statements is true the associated commands are executed; otherwise nothing is
executed.

The following example uses the if-elseif-else-end structure in a pro-
gram.

Sample Problem 6-3: Water level in water tower

The tank in a water tower has the geometry
shown in the figure (the lower part is a cylin-
der and the upper part is an inverted frustum
of a cone). Inside the tank there is a float that
indicates the level of the water. Write a MAT-
LAB program that determines the volume of
the water in the tank from the position
(height h) of the float. The program asks the
user to enter a value of h in m, and as output
displays the volume of the water in m3.

Solution

For m the volume of the water is given by the volume of a cylinder
with height h: .
For m the volume of the water is given by adding the volume of a cyl-
inder with m, and the volume of the water in the cone:

where .
The program is:

% The program calculates the volume of the water in the
water tower.

h=input('Please enter the height of the float in meter ');

if h > 33

 disp('ERROR. The height cannot be larger than 33 m.')

elseif h < 0
 disp('ERROR. The height cannot be a negative number.')

elseif h <= 19
 v = pi*12.5^2*h;

 fprintf('The volume of the water is %7.3f cubic meter.\n',v)

V 12.52h=

h 19=

6.3 The switch-case Statement 189

The following is the display in the Command Window when the program is used
with three different values of water height.

6.3 THE switch-case STATEMENT

The switch-case statement is another method that can be used to direct the
flow of a program. It provides a means for choosing one group of commands for
execution out of several possible groups. The structure of the statement is shown
in Figure 6-4.The first line is the switch command, which has the form:

The switch expression can be a scalar or a string. Usually it is a variable that has
an assigned scalar or a string. It can also be, however, a mathematical expression
that includes pre-assigned variables and can be evaluated.
• Following the switch command are one or several case commands. Each has

a value (can be a scalar or a string) next to it (value1, value2, etc.) and an associ-
ated group of commands below it.

• After the last case command there is an optional otherwise command fol-
lowed by a group of commands.

The last line must be an end statement.
How does the switch-case statement work?

The value of the switch expression in the switch command is compared with
the values that are next to each of the case statements. If a match is found, the
group of commands that follow the case statement with the match are exe-
cuted. (Only one group of commands—the one between the case that matches
and either the case, otherwise, or end statement that is next—is executed).
• If there is more than one match, only the first matching case is executed.

else

 rh=12.5+10.5*(h-19)/14;
 v=pi*12.5^2*19+pi*(h-19)*(12.5^2+12.5*rh+rh^2)/3;

 fprintf('The volume of the water is %7.3f cubic meter.\n',v)
end

Please enter the height of the float in meter 8
The volume of the water is 3926.991 cubic meter.

Please enter the height of the float in meter 25.7
The volume of the water is 14114.742 cubic meter.

Please enter the height of the float in meter 35
ERROR. The height cannot be larger than 33 m.

switch switch expression

190 Chapter 6: Programming in MATLAB

• If no match is found and the otherwise statement (which is optional) is pres-
ent, the group of commands between otherwise and end is executed.

• If no match is found and the otherwise statement is not present, none of the
command groups is executed.

• A case statement can have more than one value. This is done by typing the val-
ues in the form: {value1, value2, value3, ...}. (This form, which is
not covered in this book, is called a cell array.) The case is executed if at least one
of the values matches the value of switch expression.

A Note: In MATLAB only the first matching case is executed. After the group of
commands associated with the first matching case are executed, the program skips
to the end statement. This is different from the C language, where break state-
ments are required.

Sample Problem 6-4: Converting units of energy

Write a program in a script file that converts a quantity of energy (work) given
in units of either joule, ft-lb, cal, or eV to the equivalent quantity in different
units specified by the user. The program asks the user to enter the quantity of
energy, its current units, and the desired new units. The output is the quantity of

Figure 6-4: The structure of a switch-case statement.

......

......

switch switch expression
case value1
........
........
case value2
........
........
case value3
........
........
otherwise
........
........

end
......
......

Group 1 of commands.

MATLAB program.

MATLAB program.

Group 2 of commands.

Group 3 of commands.

Group 4 of commands.

6.3 The switch-case Statement 191

energy in the new units.

The conversion factors are: 1 ft-lb cal eV.
Use the program to:
(a) Convert 150 J to ft-lb.
(b) Convert 2,800 cal to J.
(c) Convert 2.7 eV to cal.

Solution

The program includes two sets of switch-case statements and one if-
else-end statement. The first switch-case statement is used to convert the
input quantity from its initial units to units of joules. The second is used to
convert the quantity from joules to the specified new units. The if-else-end
statement is used to generate an error message if units are entered incorrectly.

Ein=input('Enter the value of the energy (work) to be converted: ');

EinUnits=input('Enter the current units (J, ft-lb, cal, or eV): ','s');

EoutUnits=input('Enter the new units (J, ft-lb, cal, or eV): ','s');

error=0;

switch EinUnits

case 'J'

 EJ=Ein;

case 'ft-lb'

 EJ=Ein/0.738;

case 'cal'

 EJ=Ein/0.239;

case 'eV'

 EJ=Ein/6.24e18;

otherwise

 error=1;

end

switch EoutUnits

case 'J'

 Eout=EJ;

case 'ft-lb'

 Eout=EJ*0.738;

case 'cal'

 Eout=EJ*0.239;

case 'eV'

 Eout=EJ*6.24e18;

J 0.738= 0.239=

Assign 0 to variable error.
First switch statement. Switch expres-
sion is a string with initial units.

Each of the four case statements
has a value (string) that corresponds
to one of the initial units, and a com-
mand that converts Ein to units of J.
(Assign the value to EJ.)

Assign 1 to error if no match is found. Possi-
ble only if initial units were typed incorrectly.

Second switch statement. Switch
expression is a string with new units.

Each of the four case statements
has a value (string) that corresponds
to one of the new units, and a com-
mand that converts EJ to the new
units. (Assign the value to Eout.)

192 Chapter 6: Programming in MATLAB

As an example, the script file (saved as EnergyConversion) is used next in the
Command Window to make the conversion in part (b) of the problem state-
ment.

6.4 LOOPS

A loop is another method to alter the flow of a computer program. In a loop,
the execution of a command, or a group of commands, is repeated several times
consecutively. Each round of execution is called a pass. In each pass at least one
variable, but usually more than one, or even all the variables that are defined
within the loop, are assigned new values. MATLAB has two kinds of loops. In
for-end loops (Section 6.4.1) the number of passes is specified when the loop
starts. In while-end loops (Section 6.4.2) the number of passes is not known
ahead of time, and the looping process continues until a specified condition is
satisfied. Both kinds of loops can be terminated at any time with the break
command (see Section 6.6).

6.4.1 for-end Loops

In for-end loops the execution of a command, or a group of commands, is
repeated a predetermined number of times. The form of a loop is shown in Fig-
ure 6-5.
• The loop index variable can have any variable name (usually i, j, k, m, and n

are used, but i and j should not be used if MATLAB is used with complex
numbers).

otherwise
 error=1;

end

if error

 disp('ERROR current or new units are typed incorrectly.')

else

 fprintf('E = %g %s',Eout,EoutUnits)

end

>> EnergyConversion

Enter the value of the energy (work) to be converted: 2800

Enter the current units (J, ft-lb, cal, or eV): cal

Enter the new units (J, ft-lb, cal, or eV): J

E = 11715.5 J

Assign 1 to error if no match is found. Pos-
sible only if new units were typed incorrectly.

If-else-end statement.

If error is true (nonzero),
display an error message.

If error is false (zero), display converted energy.

6.4 Loops 193

• In the first pass k = f and the computer executes the commands between the
for and end commands. Then, the program goes back to the for command
for the second pass. k obtains a new value equal to k = f + s, and the com-
mands between the for and end commands are executed with the new value of
k. The process repeats itself until the last pass, where k = t. Then the program
does not go back to the for, but continues with the commands that follow the
end command. For example, if k = 1:2:9, there are five passes, and the corre-
sponding values of k are 1, 3, 5, 7, and 9.

• The increment s can be negative (i.e.; k = 25:–5:10 produces four passes with
k = 25, 20, 15, 10).

• If the increment value s is omitted, the value is 1 (default) (i.e.; k = 3:7 produces
five passes with k = 3, 4, 5, 6, 7).

• If f = t, the loop is executed once.

• If f > t and s > 0, or if f < t and s < 0, the loop is not executed.

• If the values of k, s, and t are such that k cannot be equal to t, then if s is pos-
itive, the last pass is the one where k has the largest value that is smaller than t
(i.e., k = 8:10:50 produces five passes with k = 8, 18, 28, 38, 48). If s is negative,
the last pass is the one where k has the smallest value that is larger than t.

• In the for command k can also be assigned a specific value (typed as a vector).
Example: for k = [7 9 –1 3 3 5].

• The value of k should not be redefined within the loop.

• Each for command in a program must have an end command.

• The value of the loop index variable (k) is not displayed automatically. It is pos-
sible to display the value in each pass (which is sometimes useful for debugging)
by typing k as one of the commands in the loop.

• When the loop ends, the loop index variable (k) has the value that was last
assigned to it.

Figure 6-5: The structure of a for-end loop.

for k = f:s:t

end

A group of
MATLAB commands.

Loop index
variable.

The value of k
in the first pass.

The increment in
k after each pass.

The value of k
in the last pass.

194 Chapter 6: Programming in MATLAB

A simple example of a for-end loop (in a script file) is:

When this program is executed, the loop is executed four times. The value of k in
the four passes is k = 1, 4, 7, and 10, which means that the values that are
assigned to x in the passes are x = 1, 16, 49, and 100, respectively. Since a semi-
colon is not typed at the end of the second line, the value of x is displayed in the
Command Window at each pass. When the script file is executed, the display in
the Command Window is:

Sample Problem 6-5: Sum of a series

(a) Use a for-end loop in a script file to calculate the sum of the first n terms

of the series: . Execute the script file for n = 4 and n = 20.

(b) The function sin(x) can be written as a Taylor series by:

Write a user-defined function file that calculates sin(x) by using the Taylor series.
For the function name and arguments use y = Tsin(x,n). The input argu-
ments are the angle x in degrees and n the number of terms in the series. Use the
function to calculate sin() using three and seven terms.

Solution

(a) A script file that calculates the sum of the first n terms of the series is shown
in the following.

for k=1:3:10

 x = k^2

end

>> x =
 1

x =
 16

x =
 49

x =
 100

k 1=

n

xsin
k 0=

=

6.4 Loops 195

The summation is done with a loop. In each pass one term of the series is calcu-
lated (in the first pass the first term, in the second pass the second term, and so
on) and is added to the sum of the previous elements. The file is saved as
Exp6_5a and then executed twice in the Command Window:

(b) A user-defined function file that calculates sin(x) by adding n terms of a Tay-
lor series is shown below.

The first element corresponds to k = 0, which means that in order to add n terms
of the series, in the last loop k = n – 1. The function is used in the Command
Window to calculate sin() using three and seven terms:

n=input('Enter the number of terms ');

S=0;

for k=1:n

 S=S+(-1)^k*k/2^k;

end

fprintf('The sum of the series is: %f',S)

>> Exp6_5a

Enter the number of terms 4

The sum of the series is: -0.125000

>> Exp7_5a

Enter the number of terms 20

The sum of the series is: -0.222216

function y = Tsin(x,n)

% Tsin calculates the sin using Taylor formula.

% Input arguments:

% x The angle in degrees, n number of terms.

xr=x*pi/180;

y=0;

for k=0:n-1

 y=y+(-1)^k*xr^(2*k+1)/factorial(2*k+1);

end

>> Tsin(150,3)

ans =
 0.6523

Setting the sum to zero.
In each pass one element of the
series is calculated and is added
to the sum of the elements from
the previous passes.

for-end
loop.

Converting the angle from degrees to radians.

for-end
loop.

Calculating sin(150) with three terms of Taylor series.

196 Chapter 6: Programming in MATLAB

A note about for-end loops and element-by-element operations:

In some situations the same end result can be obtained by either using for-
end loops or using element-by-element operations. Sample Problem 6-5 illus-
trates how the for-end loop works, but the problem can also be solved by
using element-by-element operations (see Problems 7 and 8 in Section 3.9). Ele-
ment-by-element operations with arrays are one of the superior features of
MATLAB that provide the means for computing in circumstances that other-
wise require loops. In general, element-by-element operations are faster than
loops and are recommended when either method can be used.

Sample Problem 6-6: Modify vector elements

A vector is given by V = [5, 17, –3, 8, 0, –7, 12, 15, 20, –6, 6, 4, –7, 16]. Write a
program as a script file that doubles the elements that are positive and are divis-
ible by 3 or 5, and, raises to the power of 3 the elements that are negative but
greater than –5.

Solution

The problem is solved by using a for-end loop that has an if-elseif-end
conditional statement inside. The number of passes is equal to the number of
elements in the vector. In each pass one element is checked by the conditional
statement. The element is changed if it satisfies the conditions in the problem
statement. A program in a script file that carries out the required operations is:

>> Tsin(150,7)
ans =
 0.5000

V=[5, 17, -3, 8, 0, -7, 12, 15, 20 -6, 6, 4, -2, 16];

n=length(V);

for k=1:n

 if V(k)>0 & (rem(V(k),3) = = 0 | rem(V(k),5) = = 0)

 V(k)=2*V(k);

 elseif V(k) < 0 & V(k) > -5

 V(k)=V(k)^3;

 end

end

V

Calculating sin(150°) with seven terms of Taylor series.

The exact value is 0.5.

Setting n to be equal to the number of elements in V.

if-
elseif-
end
statement.

for-end
loop.

6.4 Loops 197

The file is saved as Exp6_6 and then executed in the Command Window:

6.4.2 while-end Loops

while-end loops are used in situations when looping is needed but the num-
ber of passes is not known in advance. In while-end loops the number of
passes is not specified when the looping process starts. Instead, the looping pro-
cess continues as long as a stated condition is satisfied. The structure of a
while-end loop is shown in Figure 6-6.

The first line is a while statement that includes a conditional expression.
When the program reaches this line the conditional expression is checked. If it is
false (0), MATLAB skips to the end statement and continues with the program.
If the conditional expression is true (1), MATLAB executes the group of com-
mands that follow between the while and end commands. Then MATLAB
jumps back to the while command and checks the conditional expression.
This looping process continues until the conditional expression is false.

For a while-end loop to execute properly:

• The conditional expression in the while command must include at least one
variable.

• The variables in the conditional expression must have assigned values when
MATLAB executes the while command for the first time.

• At least one of the variables in the conditional expression must be assigned a
new value in the commands that are between the while and the end. Other-
wise, once the looping starts it will never stop, since the conditional expression
will remain true.

An example of a simple while-end loop is shown in the following program. In
this program a variable x with an initial value of 1 is doubled in each pass as

>> Exp6_6

V =
 10 17 -27 8 0 -7 24 30 40 -6 12 4
-8 16

Figure 6-6: The structure of a while-end loop.

while conditional expression

end

A group of
MATLAB commands.

198 Chapter 6: Programming in MATLAB

long as its value is equal to or smaller than 15.

When this program is executed the display in the Command Window is:

Important note:

When writing a while-end loop, the programmer has to be sure that the vari-
able (or variables) that are in the conditional expression and are assigned new
values during the looping process will eventually be assigned values that make
the conditional expression in the while command false. Otherwise the looping
will continue indefinitely (indefinite loop). In the example above if the condi-
tional expression is changed to x >= 0.5, the looping will continue indefinitely.
Such a situation can be avoided by counting the passes and stopping the looping
if the number of passes exceeds some large value. This can be done by adding
the maximum number of passes to the conditional expression, or by using the
break command (Section 6.6).

Since no one is free from making mistakes, a situation of indefinite looping
can occur in spite of careful programming. If this happens, the user can stop the
execution of an indefinite loop by pressing the Ctrl + C or Ctrl + Break keys.

Sample Problem 6-7: Taylor series representation of a function

The function can be represented in a Taylor series by .

Write a program in a script file that determines by using the Taylor series
representation. The program calculates by adding terms of the series and
stopping when the absolute value of the term that was added last is smaller than
0.0001. Use a while-end loop, but limit the number of passes to 30. If in the

x=1

while x<=15

 x=2*x

end

x =
 1

x =
 2

x =
 4

x =
 8

x =
 16

Initial value of x is 1.

The next command is executed only if x <= 15.

In each pass x doubles.

Initial value of x.

In each pass x doubles.

When x = 16, the conditional expression in the
while command is false and the looping stops.

f x ex= ex

n 0=

=

ex

ex

6.4 Loops 199

30th pass the value of the term that is added is not smaller than 0.0001, the pro-
gram stops and displays a message that more than 30 terms are needed.

Use the program to calculate , , and .

Solution

The first few terms of the Taylor series are:

A program that uses the series to calculate the function is shown next. The
program asks the user to enter the value of x. Then the first term, an, is
assigned the number 1, and an is assigned to the sum S. Then, from the second
term on, the program uses a while loop to calculate the nth term of the series
and add it to the sum. The program also counts the number of terms n. The
conditional expression in the while command is true as long as the absolute
value of the nth an term is larger than 0.0001, and the number of passes n is
smaller than 30. This means that if the 30th term is not smaller than 0.0001, the
looping stops.

The program uses an if-else-end statement to display the results. If the
looping stopped because the 30th term is not smaller than 0.0001, it displays a
message indicating this. If the value of the function is calculated successfully, it
displays the value of the function and the number of terms used. When the pro-
gram executes, the number of passes depends on the value of x. The program

(saved as expox) is used to calculate , , and :

x=input('Enter x ');

n=1; an=1; S=an;

while abs(an) >= 0.0001 & n <= 30

 an=x^n/factorial(n);

 S=S+an;

 n=n+1;

end

if n >= 30

 disp('More than 30 terms are needed')

else

fprintf('exp(%f) = %f',x,S)

fprintf('\nThe number of terms used is: %i',n)

end

>> expox

Enter x 2

Start of the while loop.

Calculating the nth term.

Adding the nth term to the sum.

Counting the number of passes.

End of the while loop.

if-else-end loop.

Calculating exp(2).

200 Chapter 6: Programming in MATLAB

6.5 NESTED LOOPS AND NESTED CONDITIONAL
STATEMENTS

Loops and conditional statements can be nested within other loops or condi-
tional statements. This means that a loop and/or a conditional statement can
start (and end) within another loop or conditional statement. There is no limit
to the number of loops and conditional statements that can be nested. It must
be remembered, however, that each if, case, for, and while statement must
have a corresponding end statement. Figure 6-7 shows the structure of a nested

for-end loop within another for-end loop. In the loops shown in this figure,
if, for example, n = 3 and m = 4, then first k = 1 and the nested loop executes
four times with h = 1, 2, 3, 4. Next k = 2 and the nested loop executes again four
times with h = 1, 2, 3, 4. Finally k = 3 and the nested loop executes again four
times. Every time a nested loop is typed, MATLAB automatically indents the
new loop relative to the outside loop. Nested loops and conditional statements
are demonstrated in the following sample problem.

exp(2.000000) = 7.389046

The number of terms used is: 12

>> expox

Enter x -4

exp(-4.000000) = 0.018307

The number of terms used is: 18

>> expox

Enter x 21

More than 30 terms are needed

Figure 6-7: Structure of nested loops.

12 terms used.

Calculating exp(–4).

18 terms used.

Trying to calculate exp(21).

for k = 1:n
for h = 1:m

end
end

A group of
commands.

Nested
loop

Loop

Every time k
increases by 1, the
nested loop exe-
cutes m times. Over-
all, the group of
commands are exe-
cuted n m times.

6.5 Nested Loops and Nested Conditional Statements 201

Sample Problem 6-8: Creating a matrix with a loop

Write a program in a script file that creates an n m matrix with elements that
have the following values. The value of each element in the first row is the num-
ber of the column. The value of each element in the first column is the number
of the row. The rest of the elements each has a value equal to the sum of the ele-
ment above it and the element to the left. When executed, the program asks the
user to enter values for n and m.

Solution

The program, shown below, has two loops (one nested) and a nested if-
elseif-else-end structure. The elements in the matrix are assigned values
row by row. The loop index variable of the first loop, k, is the address of the row,
and the loop index variable of the second loop, h, is the address of the column.

The program is executed in the Command Window to create a matrix.

n=input('Enter the number of rows ');

m=input('Enter the number of columns ');

A=[];

for k=1:n

 for h=1:m

 if k==1

 A(k,h)=h;

 elseif h==1

 A(k,h)=k;

 else

 A(k,h)=A(k,h-1)+A(k-1,h);

 end

 end

end

A

>> Chap6_exp8

Enter the number of rows 4

Enter the number of columns 5

Define an empty matrix A.

Start of the first for-end loop.

Start of the second for-end loop.

Start of the conditional statement.

Assign values to the elements of the first row.

Assign values to the elements of the first column.

Assign values to other elements.

end of the if statement.

end of the nested for-end loop.

end of the first for-end loop.

202 Chapter 6: Programming in MATLAB

6.6 THE break AND continue COMMANDS

The break command:

• When inside a loop (for or while), the break command terminates the exe-
cution of the loop (the whole loop, not just the last pass). When the break
command appears in a loop, MATLAB jumps to the end command of the loop
and continues with the next command (it does not go back to the for command
of that loop).

• If the break command is inside a nested loop, only the nested loop is termi-
nated.

• When a break command appears outside a loop in a script or function file, it
terminates the execution of the file.

• The break command is usually used within a conditional statement. In loops it
provides a method to terminate the looping process if some condition is met —
for example, if the number of loops exceeds a predetermined value, or an error in
some numerical procedure is smaller than a predetermined value. When typed
outside a loop, the break command provides a means to terminate the execu-
tion of a file, such as when data transferred into a function file is not consistent
with what is expected.

The continue command:

• The continue command can be used inside a loop (for or while) to stop
the present pass and start the next pass in the looping process.

• The continue command is usually a part of a conditional statement. When
MATLAB reaches the continue command, it does not execute the remaining
commands in the loop, but skips to the end command of the loop and then
starts a new pass.

A =
 1 2 3 4 5
 2 4 7 11 16
 3 7 14 25 41
 4 11 25 50 91

6.7 Examples of MATLAB Applications 203

6.7 EXAMPLES OF MATLAB APPLICATIONS

Sample Problem 6-9: Withdrawing from a retirement account.

A person in retirement is depositing $300,000 in a saving account that pays 5%
interest per year. The person plans to withdraw money from the account once a
year. He starts by withdrawing $25,000 after the first year, and in future years he
increases the amount he withdraws according to the inflation rate. For example,
if the inflation rate is 3%, he withdraws $25,750 after the second year. Calculate
the number of years the money in the account will last assuming a constant
yearly inflation rate of 2%. Make a plot that shows the yearly withdrawals and
the balance of the account over the years.

Solution

The problem is solved by using a loop (a while loop since the number of passes
is not known before the loop starts). In each pass the amount to be withdrawn
and the account balance are calculated. The looping continues as long as the
account balance is larger than or equal to the amount to be withdrawn. The fol-
lowing is a program in a script file that solves the problem. In the program,
year is a vector in which each element is a year number, W is a vector with the
amount withdrawn each year, and AB is a vector with the account balance each
year.

rate=0.05; inf=0.02;

clear W AB year

year(1)=0;

W(1)=0;

AB(1)=300000;

Wnext=25000;

ABnext=300000*(1 + rate);

n=2;

 while ABnext >= Wnext

 year(n)=n-1;

 W(n)=Wnext;

 AB(n)=ABnext-W(n);

 ABnext=AB(n)*(1+rate);

 Wnext=W(n)*(1+inf);

 n=n+1;

 end

fprintf('The money will last for %f years',year(n-1))

bar(year,[AB' W'],2.0)

First element is year 0.

Initial withdrawal amount.

Initial account balance.

The amount to be withdrawn after a year.

The account balance after a year.

while checks if the next balance is
larger than the next withdrawal.

Amount withdrawn in year n – 1.

Account balance in year n – 1 after withdrawal.
The account balance after additional year.

The amount to be withdrawn
after an additional year.

204 Chapter 6: Programming in MATLAB

The program is executed in the following Command Window:

The program also generates the following figure (axis labels and legend were
added to the plot by using the Plot Editor).

Sample Problem 6-10: Creating a random list

Six singers—John, Mary, Tracy, Mike, Katie, and David—are performing in a
competition. Write a MATLAB program that generates a list of a random order
in which the singers will perform.

Solution

An integer (1 through 6) is assigned to each name (1 to John, 2 to Mary, 3 to
Tracy, 4 to Mike, 5 to Katie, and 6 to David). The program, shown below, first
creates a list of the integers 1 through 6 in a random order. The integers are
made the elements of six-element vector. This is done by using MATLAB’s
built-in function randi (see Section 3.7) for assigning integers to the elements
of the vector. To make sure that all the integers of the elements are different
from each other, the integers are assigned one by one. Each integer that is sug-
gested by the randi function is compared with all the integers that have been
assigned to previous elements. If a match is found, the integer is not assigned,
and randi is used for suggesting a new integer. Since each singer name is asso-
ciated with an integer, once the integer list is complete the switch-case state-
ment is used to create the corresponding name list.

>> Chap6_exp9

The money will last for 15 years.

clear, clc

n=6;

6.7 Examples of MATLAB Applications 205

The while loop checks that every new integer (element) that is to be added to
the vector L is not equal any of the integers in elements already in the vector L.
If a match is found, it keeps generating new integers until the new integer is dif-
ferent from all the integers that are already in x.

When the program is executed, the following is displayed in the Command
Window. Obviously, a list in a different order will be displayed every time the
program is executed.

L(1)=randi(n);

for p=2:n

 L(p)=randi(n);

 r=0;

 while r==0

 r=1;

 for k=1:p-1

 if L(k)==L(p)

 L(p)=randi(n);

 r=0;

 break

 end

 end

 end

end

for i=1:n
 switch L(i)
 case 1
 disp('John')
 case 2
 disp('Mary')
 case 3
 disp('Tracy')
 case 4
 disp('Mike')
 case 5
 disp('Katie')
 case 6
 disp('David')
 end
end

The performing order is:

Assign the first integer to L(1).

Assign the next integer to L(p).

Set r to zero.

See explanation below.

Set r to 1.

for loop compares the integer assigned to L(p)to the
integers that have been assigned to previous elements.

If a match if found, a
new integer is
assigned to L(p)
and r is set to zero.

The nested for loop is stopped. The pro-
gram goes back to the while loop. Since r
= 0, the nested loop inside the while loop
starts again and checks if the new integer
that is assigned to L(p) is equal to an inte-
ger that is already in the vector L.

The switch-case state-
ment lists the names
according to the values of
the integers in the ele-
ments of L.

206 Chapter 6: Programming in MATLAB

Sample Problem 6-11: Flight of a model rocket

The flight of a model rocket can be modeled as follows.
During the first 0.15s the rocket is propelled upward by the
rocket engine with a force of 16 N. The rocket then flies up
while slowing down under the force of gravity. After it
reaches the apex, the rocket starts to fall back down. When
its downward velocity reaches 20 m/s, a parachute opens
(assumed to open instantly), and the rocket continues to
drop at a constant speed of 20 m/s until it hits the ground.
Write a program that calculates and plots the speed and
altitude of the rocket as a function of time during the flight.

Solution

The rocket is assumed to be a particle that moves along a
straight line in the vertical plane. For motion with constant
acceleration along a straight line, the velocity and position as a function of time
are given by:

 and

where and are the initial velocity and position, respectively. In the com-
puter program the flight of the rocket is divided into three segments. Each seg-
ment is calculated in a while loop. In every pass the time increases by an
increment.

Segment 1: The first 0.15s when the rocket engine is on.
During this period, the rocket moves up with a constant
acceleration. The acceleration is determined by drawing
a free body and a mass acceleration diagram (shown on
the right). From Newton’s second law, the sum of the
forces in the vertical direction is equal to the mass times
the acceleration (equilibrium equation):

 +
Solving the equation for the acceleration gives:

Katie

Tracy

David

Mary

John

Mike

v t v0 at+=

v0 s0

F =

6.7 Examples of MATLAB Applications 207

The velocity and height as a function of time are:

 and

where the initial velocity and initial position are both zero. In the computer pro-
gram this segment starts at t = 0, and the looping continues as long as s.
The time, velocity, and height at the end of this segment are , , and .

Segment 2: The motion from when the engine stops until the parachute opens.
In this segment the rocket moves with a constant deceleration g. The speed and
height of the rocket as functions of time are given by:

 and

In this segment the looping continues until the velocity of the rocket is –20 m/s
(negative since the rocket moves down). The time and height at the end of this
segment are and .

Segment 3: The motion from when the parachute opens until the rocket hits the
ground. In this segment the rocket moves with constant velocity (zero accelera-
tion). The height as a function of time is given by , where

 is the constant velocity after the parachute opens. In this segment the
looping continues as long as the height is greater than zero.

A program in a script file that carries out the calculations is shown below.

m=0.05; g=9.81; tEngine=0.15; Force=16; vChute=-20;
Dt=0.01;

clear t v h

n=1;

t(n)=0; v(n)=0; h(n)=0;

% Segment 1

a1=(Force-m*g)/m;

while t(n) < tEngine & n < 50000

 n=n+1;

 t(n)=t(n-1)+Dt;

 v(n)=a1*t(n);

 h(n)=0.5*a1*t(n)^2;

end

v1=v(n); h1=h(n); t1=t(n);

% Segment 2

while v(n) >= vChute & n < 50000

 n=n+1;

 t(n)=t(n-1)+Dt;

v t 0 at+=

t1 v1 h1

t2 h2

vchute

The first while loop.

The second while loop.

208 Chapter 6: Programming in MATLAB

The accuracy of the results depends on the magnitude of the time increment
Dt. An increment of 0.01 s appears to give good results. The conditional expres-
sion in the while commands also includes a condition for n (if n is larger than
50,000 the loop stops). This is done as a precaution to avoid an infinite loop in
case there is an error in an of the statements inside the loop. The plots generated
by the program are shown below (axis labels and text were added to the plots
using the Plot Editor).

Note: The problem can be solved and programmed in different ways. The solu-
tion shown here is one option. For example, instead of using while loops, the
times when the parachute opens and when the rocket hits the ground can be cal-
culated first, and then for-end loops can be used instead of the while loop. If
the times are determined first, it is possible also to use element-by-element cal-
culations instead of loops.

 v(n)=v1-g*(t(n)-t1);

 h(n)=h1+v1*(t(n)-t1)-0.5*g*(t(n)-t1)^2;

end

v2=v(n); h2=h(n); t2=t(n);

% Segment 3

while h(n) > 0 & n < 50000

 n=n+1;

 t(n)=t(n-1)+Dt;

 v(n)=vChute;

 h(n)=h2+vChute*(t(n)-t2);

end

subplot(1,2,1)

plot(t,h,t2,h2,'o')

subplot(1,2,2)

plot(t,v,t2,v2,'o')

The third while loop.

Time (s)
0 2 4 6 8 10 12

H
ei

gh
t

(m
)

-20

0

20

40

60

80

100

120

Time (s)
0 2 4 6 8 10 12

V
el

oc
it

y
(m

/s
)

-30

-20

-10

0

10

20

30

40

50

Parachute
opens

Parachute
Opens

6.7 Examples of MATLAB Applications 209

Sample Problem 6-12: AC to DC converter

A half-wave diode rectifier is an elec-
trical circuit that converts AC volt-
age to DC voltage. A rectifier circuit
that consists of an AC voltage
source, a diode, a capacitor, and a
load (resistor) is shown in the figure.
The voltage of the source is

, where , in

which f is the frequency. The opera-
tion of the circuit is illustrated in the
lower diagram where the dashed line
shows the source voltage and the
solid line shows the voltage across
the resistor. In the first cycle, the
diode is on (conducting current)
from until . At this
time the diode turns off and the power to the resistor is supplied by the dis-
charging capacitor. At the diode turns on again and continues to con-
duct current until . The cycle continues as long as the voltage source is
on. In this simplified analysis of this circuit, the diode is assumed to be ideal and
the capacitor is assumed to have no charge initially (at). When the diode
is on, the resistor’s voltage and current are given by:

 and

The current in the capacitor is:

When the diode is off, the voltage across the resistor is given by:

The times when the diode switches off (, , and so on) are calculated from

the condition . The diode switches on again when the voltage of the
source reaches the voltage across the resistor (time in the figure).

Write a MATLAB program that plots the voltage across the resistor and
the voltage of the source as a function of time for ms. The resistance
of the load is 1,800 , the voltage source V, and Hz. To examine
the effect of capacitor size on the voltage across the load, execute the program
twice, once with F and once with F.

vs v0 tsin= 2 f=

t 0= t tA=

t tB=
t tD=

t 0=

vR v0 tsin=

iC Cv0 tcos=

tA tD

tB

vR

vs

v0 12= f 60=

C 45= C 10=

210 Chapter 6: Programming in MATLAB

Solution

A program that solves the problem is presented below. The program has two
parts—one that calculates the voltage when the diode is on, and the other
when the diode is off. The switch command is used for switching between the
two parts. The calculations start with the diode on (the variable state=‘on’),
and when the value of state is changed to ‘off’, and the program
switches to the commands that calculate for this state. These calculations
continue until , when the program switches back to the equations that are
valid when the diode is on.

V0=12; C=45e-6; R=1800; f=60;

Tf=70e-3; w=2*pi*f;

clear t VR Vs

t=0:0.05e-3:Tf;

n=length(t);

state='on'

for i=1:n

 Vs(i)=V0*sin(w*t(i));

 switch state

 case 'on'

 VR(i)=Vs(i);

 iR=Vs(i)/R;

 iC=w*C*V0*cos(w*t(i));

 sumI=iR+iC;

 if sumI <= 0

 state='off ';

 tA=t(i);

 end

 case 'off '

 VR(i)=V0*sin(w*tA)*exp(-(t(i)-tA)/(R*C));

 if Vs(i) >= VR(i)

 state='on';

 end

 end

end

plot(t,Vs,':',t,VR,'k','linewidth',1)

xlabel('Time (s)'); ylabel('Voltage (V)')

vR

vR

Assign ‘on’ to the variable state.

Calculate the voltage of the source at time t.

Diode is on.

Check if .

If true, assign ‘off’ to state.

Assign a value to .tA

Diode is off.

Check if .

If true, assign
‘on’ to the
variable state.

6.8 Problems 211

The two plots generated by the program are shown below. One plot shows the
result with F and the other with F. It can be observed that
with a larger capacitor the DC voltage is smoother (smaller ripple in the wave).

6.8 PROBLEMS

1. Evaluate the following expressions without using MATLAB. Check the
answers with MATLAB.
(a) (b)

(c) (d)

2. Given: , , . Evaluate the following expressions without
using MATLAB. Check the answers with MATLAB.
(a) (b)
(c) (d)

3. Given: v = [–2 4 1 0 2 1 2] and w = [2 5 0 1 2 –1 3]. Evaluate the follow-
ing expressions without using MATLAB. Check the answers with MAT-
LAB.
(a) ~v ==~w (b) w > = v
(c) v > ~ –1*w (d) v > –1*w

C 45= C 10=

 FC 45=

 FC 10=

Time (s)
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

V
ol

ta
ge

 (
V

)

-15

-10

-5

0

5

10

15

Time (s)
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

V
ol

ta
ge

 (
V

)

-15

-10

-5

0

5

10

15

212 Chapter 6: Programming in MATLAB

4. Use the vectors v and w from Problem 3. Use relational operators to create a
vector u that is made up of the elements of v that are smaller than or equal
to the elements of w.

5. Evaluate the following expressions without using MATLAB. Check the
answers with MATLAB.
(a) 0|7&9&–3 (b) 7>6&~0<=2
(c) ~4<5|0>=12/6 (d) – 7<–5<–2&2+3<=15/3

6. Use loops to create a matrix in which the value of each element is two
times its row number minus three times its column number. For example, the
value of element (2,5) is .

7. Write a program that generates a vector with 30 random integers between
–20 and 20 and then finds the sum of all the elements that are divisible by 3.

8. Write a program that asks the user to input a vector of integers of arbitrary
length. Then, using a for-end loop the program examines each element of
the vector. If the element is positive, its value is doubled. If the element is
negative, its value is tripled. The program displays the vector that was
entered and the modified vector. Execute the program, and when the pro-
gram ask the user to input a vector type randi([-10 20],1,19). This
creates a 19-element vector with random integers between –10 and 20.

9. Write a program that asks the user to input a vector of integers of arbitrary
length. Then, using a for-end loop the program eliminates all the negative
elements. The program displays the vector that was entered and the modi-
fied vector, and a message that says how many elements were eliminated.
Execute the program and when the program ask the user to input a vector
type randi([-15 20],1,25). This creates a 25-element vector with
random integers between –15 and 20.

10. The daily high temperature (°F) in New York City and Denver, Colorado,
during the month of January 2014 is given in the vectors below (data from
the U.S. National Oceanic and Atmospheric Administration).
NYC = [33 33 18 29 40 55 19 22 32 37 58 54 51 52 45 41 45 39 36
45 33 18 19 19 28 34 44 21 23 30 39]
DEN = [39 48 61 39 14 37 43 38 46 39 55 46 46 39 54 45 52 52 62
45 62 40 25 57 60 57 20 32 50 48 28]
where the elements in the vectors are in the order of the days in the month.
Write a program in a script file that determines and displays the following
information:
(a) The average temperature for the month in each city (rounded to the

nearest degree).

6.8 Problems 213

(b) The number of days that the temperature was above the average in each
city.

(c) The number of days that the temperature in Denver was higher than the
temperature in New York.

11. The Pascal triangle can be displayed as elements in a
lower-triangular matrix as shown on the right. Write a
MATLAB program that creates a matrix that dis-
plays n rows of Pascal’s triangle. Use the program to create
4 and 7 rows Pascal’s triangles. (One way to calculate the
value of the elements in the lower portion of the matrix is

.)

12. Fibonacci numbers are the numbers in a sequence in which the first three
elements are 0, 1, and 1, and the value of each subsequent element is the sum
of the previous three elements:

0, 1, 1, 2, 4, 7, 13, 24, ...
Write a MATLAB program in a script file that determines and displays the
first 25 Fibonacci numbers.

13. The reciprocal Fibonacci constant is defined by the infinite sum:

where are the Fibonacci numbers 1, 1, 2, 3, 5, 8, 13, Each element in
this sequence of numbers is the sum of the previous two. Start by setting the
first two elements equal to 1, then . Write a MATLAB pro-
gram in a script file that calculates for a given n. Execute the program for

and 100.

14. The value of can be estimated from:

Write a program (using a loop) that determines for a given n. Run the pro-
gram with n = 10, n = 100, and n = 1,000. Compare the result with pi. (Use
format long.)

15. The value of can be estimated from the expression:

Write a MATLAB program in a script file that determine for any number
of terms. The program asks the user to enter the number of terms, and then

1 0 0 0 0 0
1 1 0 0 0 0
1 2 1 0 0 0
1 3 3 1 0 0
1 4 6 4 1 0
1 5 10 10 5 1

n 1=

=

Fn

n 10 50, ,=

n 0=

214 Chapter 6: Programming in MATLAB

calculates the corresponding value of . Execute the program with 5, 10,
and 40 terms. Compare the result with pi. (Use format long.)

16. Write a program that (a) generates a vector with 20 random integer elements
with integers between 10 and 30, (b) replaces all the elements that are not
even integers with random integers between 10 and 30, and (c) repeats (b)
until all the elements are even integers. The program should also count how
many times (b) is repeated before all the elements are even integers. When
done, the program displays the vector and a statement that states how many
iterations were needed for generating the vector.

17. A vector is given by x = [9 –1.5 13.4 13.3 –2.1 4.6 1.1 5 –6.1 10 0.2].
Using conditional statements and loops, write a program that rearranges
the elements of x in order from the smallest to the largest. Do not use MAT-
LAB’s built-in function sort.

18. The Pythagorean theorem states that . Write a MATLAB pro-
gram in a script file that finds all the combinations of triples a, b, and c that
are positive integers all smaller or equal to 50 that satisfy the Pythagorean
theorem. Display the results in a three-column table in which every row cor-
responds to one triple. The first three rows of the table are:

3 4 5
5 12 13
6 8 10

19. Write a MATLAB program in a script file that finds and displays all the
numbers between 100 and 999 whose product of digits is 6 times the sum of
the digits. [e.g. 347 since]. Use a for-end loop in the pro-
gram. The loop should start from 100 and end at 999.

20. A safe prime is a prime number that can be written in the form where p is
also a prime number. For example, 47 is a safe prime since and 23
is also a prime number. Write a computer program that finds and displays all the
safe primes between 1 and 1,000. Do not use MATLAB’s built-in function
isprime.

21. Sexy primes are two prime numbers that the difference between them is 6. For
example, 23 and 29 are sexy primes since . Write a computer pro-
gram that finds all the sexy primes between 1 and 300. The numbers should be
displayed in a two-column matrix where each row displays one pair. Do not use
MATLAB’s built-in function isprime.

a2 b2+ c2=

6.8 Problems 215

22. A Mersenne prime is a prime number that is equal to , where n is an inte-

ger. For example, 31 is a Mersenne prime since . Write a computer
program that finds all the Mersenne primes between 1 and 10,000. Do not use
MATLAB’s built-in function isprime.

23. A perfect number is a positive integer that is equal to the sum of its positive divi-
sors except the number itself. The first two perfect numbers are 6 and 28 since

 and . Write a computer program that finds the
first four perfect numbers.

24. A list of exam scores (S) (in percent out of 100%) is given: 72, 81, 44, 68, 90,
53, 80, 75, 74, 65, 50, 92, 85, 69, 41, 73, 70, 86, 61, 65, 79, 94, 69.
Write a computer program that calculates the average (Av) and standard
deviation (Sd) of the scores, which are rounded to the nearest integer. Then,
the program determines the letter grade of each of the scores according to
the following scheme:

The program displays the values of Av and Sd followed by a list that shows
the scores and the corresponding letter grade (e.g., 72% Letter grade C).

25. The Taylor series expansion for ax is:

Write a MATLAB program that determines ax using the Taylor series
expansion. The program asks the user to type a value for x. Use a loop for
adding the terms of the Taylor series. If cn is the nth term in the series, then
the sum Sn of the n terms is . In each pass calculate the esti-

mated error E given by . Stop adding terms when .

The program displays the value of ax. Use the program to calculate:
(a) 23.5 (b) 6.31.7
Compare the values with those obtained by using a calculator.

Score (%)

Letter grade A B
Score (%)

Letter grade C D
Score (%)

Letter grade F

n 0=

216 Chapter 6: Programming in MATLAB

26. Write a MATLAB program in a script file that finds a positive integer n such
that the sum of all the integers is a number between 100
and 1,000 whose three digits are identical. As output, the program displays
the integer n and the corresponding sum.

27. The following are formulas for calculating the training heart rate (THR):

where MHR is the maximum heart rate given by (https://en.wikipedia.org/
wiki/Heart_rate):

For males: , for females: ,

RHR is the resting heart rate, and INTEN the fitness level (0.55 for low, 0.65
for medium, and 0.8 for high fitness). Write a program in a script file that
determines the THR. The program asks users to enter their gender (male or
female), age (number), resting heart rate (number), and fitness level (low,
medium, or high). The program then displays the training heart rate
(rounded to the nearest integer). Use the program for determining the train-
ing heart rate for the following two individuals:
(a) A 19-year-old male, resting heart rate of 64, and medium fitness level.
(b) A 20-year-old female, resting heart rate of 63, and high fitness level.

28. Body mass index (BMI) is a measure of obesity. In standard units, it is cal-
culated by the formula

where W is weight in pounds, and H is height in inches. The obesity classifi-
cation is:

Write a program in a script file that calculates the BMI of a person. The pro-
gram asks the person to enter his or her weight (lb) and height (in.). The
program displays the result in a sentence that reads: “Your BMI value is
XXX, which classifies you as SSSS,” where XXX is the BMI value rounded
to the nearest tenth, and SSSS is the corresponding classification. Use the
program for determining the obesity of the following two individuals:
(a) A person 6 ft 2 in. tall with a weight of 180 lb.
(b) A person 5 ft 1 in. tall with a weight of 150 lb.

BMI Classification

Below 18.5 Underweight

18.5 to 24.9 Normal

25 to 29.9 Overweight

30 and above Obese

1 2 3 n+ + + +

6.8 Problems 217

29. Write a program in a script file that calculates the cost of renting a car
according to the following price schedule:

The program asks the user to enter the type of car (sedan or SUV), the num-
ber of days, and the number of miles driven. The program then displays the
cost (rounded to cents) for the rent. Run the program three times for the fol-
lowing cases:
(a) Sedan, 10 days, 769 miles. (b) SUV, 32 days, 4,056 miles.
(c) Sedan, 3 days, 511 miles.

30. Write a program that determines the change given back to a customer in a
self-service checkout machine of a supermarket for purchases of up to $50.
The program generates a random number between 0.01 and 50.00 and dis-
plays the number as the amount to be paid. The program then asks the user
to enter payment, which can be one $1 bill, one $5 bill, one $10 bill, one $20
bill, or one $50 bill. If the payment is less than the amount to be paid, an
error message is displayed. If the payment is sufficient, the program calcu-
lates the change and lists the bills and/or the coins that make up the change,
which has to be composed of the least number each of bills and coins. For
example, if the amount to be paid is $2.33 and a $10 bill is entered as pay-
ment, then the change is one $5 bill, two $1 bills, two quarters, one dime,
one nickel, and two pennies. Execute the program three times.

31. The concentration of a drug in the body can be modeled by the equation:

where is the dosage administered (mg), is the volume of distribution
(L), is the absorption rate constant (h–1), is the elimination rate con-
stant (h–1), and t is the time (h) since the drug was administered. For a cer-
tain drug, the following quantities are given: mg, L,

h–1, and h–1.
(a) A single dose is administered at . Calculate and plot versus t

for 10 h.
(b) A first dose is administered at , and subsequently four more doses

Duration of rent
Sedan SUV

Daily
rate

Free
miles

(per day)

Cost of
additional
mile

Daily
rate

Free
miles

(per day)

Cost of
additional
mile

1-6 days $79 80 $0.69 $84 80 $0.74

7-29 days $69 100 $0.59 $74 100 $0.64

30 or more days $59 120 $0.49 $64 120 $0.54

CP

DG Vd

ka ke

DG 150= Vd 50=
ka 1.6= ke 0.4=

t 0= CP

t 0=

218 Chapter 6: Programming in MATLAB

are administered at intervals of 4 h (i.e., at). Calculate
and plot versus t for 24 h.

32. One numerical method for calculating the cubic root of a number, is Hal-
ley’s method. The solution process starts by choosing a value as a first esti-
mate of the solution. Using this value, a second, more accurate value is

calculated with , which is then used for calculating a
third, still more accurate value , and so on. The general equation for calculat-

ing the value of from the value of is .
Write a MATLAB program that calculates the cubic root of a number. In the
program use for the first estimate of the solution. Then, by using the
general equation in a loop, calculate new, more accurate values. Stop the looping

when the estimated relative error E defined by is smaller than

0.00001. Use the program to calculate:

(a) (b) (c)

33. Write a program in a script file that converts a measure of area given in units
of either m2, cm2, in2, ft2, yd2, or acre to the equivalent quantity in different
units specified by the user. The program asks the user to enter a numerical
value for the size of an area, its current units, and the desired new units. The
output is the size of the area in the new units. Use the program to:
(a) Convert 55 in.2 to cm2. (b) Convert 2400 ft2 to m2.
(c) Convert 300 cm2 to yd2.

34. In a one-dimensional random walk, the position x of a walker is computed
by:

where s is a random number. Write a program that calculates the number of
steps required for the walker to reach a boundary . Use MATLAB’s
built-in function randn(1,1) to calculate s. Run the program 100 times
(by using a loop) and calculate the average number of steps when .

35. The Sierpinski triangle can be implemented in MATLAB by plotting points
iteratively according to one of the following three rules that are selected ran-
domly with equal probability.
Rule 1: ,

Rule 2: ,

Rule 3: ,

Write a program in a script file that calculates the x and y vectors and then
plots y versus x as individual points [use plot(x,y,‘^’)]. Start with

t 4 8 12 16, , ,=
CP

P3

x1

x2

x3

xi 1+ xi

x1 P=

8003 590713

xj xj s+=

B 10=

xn 1+ 0.5xn= yn 1+ 0.5yn=

xn 1+ 0.5xn 0.25+=

xn 1+ 0.5xn 0.5+= yn 1+ 0.5yn=

6.8 Problems 219

 and . Run the program four times with 10, 100, 1,000, and
10,000 iterations.

36. The roots of a cubic equation can be calculated
using the following procedure:
Set: , , and .

Calculate: ,

where and .
If the equation has complex roots.
If all roots are real and at least two are equal. The roots are given by:

, , and .
If all roots are real and are given by:

, , and

 , where .
Write a MATLAB program that determines the real roots of a cubic equa-
tion. As input the program asks the user to enter the values of a3, a2, a1, and
a0 as a vector. The program then calculates the value of D. If the equations
have complex roots, the message “The equation has complex roots” is dis-
played. Otherwise the real roots are calculated and displayed. Use the pro-
gram to solve the following equations:

(a) (b)

(c)

37. The overall grade in a course is determined from the grades of 10 homework
assignments, 2 midterms, and a final exam, using the following scheme:
Homework: Homework assignments are graded on a scale from 0 to 80. The
grade of the two lowest assignments is dropped and the average of the eight
assignments with the higher grades constitutes 20% of the course grade.
Midterms and final exam: Midterms and final exams are graded on a scale
from 0 to 100. If the average of the midterm scores is higher than, or the
same as, the score on the final exam, the average of the midterms constitutes
40% of the course grade and the grade of the final exam constitutes 40% of
the course grade. If the final exam grade is higher than the average of the
midterms, the average of the midterms constitutes 30% of the course grade
and the grade of the final exam constitutes 50% of the course grade.

Write a computer program in a script file that determines the course
grade for a student. The program first asks the user to enter the 10 home-
work assignment grades (in a vector), two midterm grades (in a vector), and
the grade of the final. Then the program calculates a numerical course grade
(a number between 0 and 100). Execute the program for the following cases:
(a) Homework assignment grades: 65, 79, 80, 50, 71, 73, 61, 70, 69, 74. Mid-

x1 0= y1 0=

220 Chapter 6: Programming in MATLAB

term grades: 83, 91. Final exam: 84.
(b) Homework assignment grades: 70, 69, 83, 45, 90, 89, 52, 78, 100, 87.

Midterm grades: 87, 72. Final exam: 90.

38. A Keith number is a number (integer) that appears in a Fibonacci-like
sequence that is based on its own decimal digits. For two-decimal digit num-
bers (10 through 99) a Fibonacci-like sequence is created in which the first
element is the tens digit and the second element is the units digit. The value
of each subsequent element is the sum of the previous two elements. If the
number is a Keith number, then it appears in the sequence. For example, the
first two-decimal digit Keith number is 14, since the corresponding Fibo-
nacci-like sequence is 1, 4, 5, 9, 14. Write a MATLAB program that deter-
mines and displays all the Keith numbers between 10 and 99.

39. The following MATLAB commands create a sine-shaped signal y(t) that
contains random noise:
t = 0:.05:10;
y = sin(t)-0.1+0.2*rand(1,length(t));

Write a MATLAB program that uses these commands to create a noisy
sine-shaped signal. Then the program smooths the signal by using the three-
points moving-average method. In this method the value of every point i,
except the first and last, is replaced by the average of the value of three adja-
cent points (i–1, i, and i+1). Make a plot that display the noisy and
smoothed signals.

	Chapter 6: Programming in MATLAB
	6.1 RELATIONAL AND LOGICAL OPERATORS���
	6.2 CONDITIONAL STATEMENTS���������������������������������
	6.2.1 The if-end Structure���������������������������������
	6.2.2 The if-else-end Structure��������������������������������������
	6.2.3 The if-elseif-else-end Structure���

	6.3 THE switch-case STATEMENT������������������������������������
	6.4 LOOPS����������������
	6.4.1 for-end Loops��������������������������
	6.4.2 while-end Loops����������������������������

	6.5 NESTED LOOPS AND NESTED CONDITIONAL STATEMENTS���
	6.6 THE break AND continue COMMANDS��
	6.7 EXAMPLES OF MATLAB APPLICATIONS��
	6.8 PROBLEMS�������������������

