
 ALGORITHMS Design and Analysis-2nd class By: Harsh Bhasin © Oxford University Press 2015

College of Science /Computer Science Dept. Prepared by: Dr.Boshra Al_bayaty & Dr. Muhanad Tahrir Younis

(2018-2019)

Definition given a list of elements {,,,} aa an 12… , sorting is a procedure that

rearranges the elements of the array such that for any two elements in the

sorted list, ai and aj, ai < aj.

It may be noted that an array with a single element is deemed to be sorted. The

process is carried out to facilitate searching. A sorted array is easy to search and

maintain. Binary search, for instance, can be applied only to a sorted file. Searching a

file, via binary search, takes On (log) time, whereas searching via linear search takes On

() , which is considerably larger than the former (for larger values of n). For instance, if

the value of n is 1024, the ratio of time taken by linear search is approximately 10 times

of that taken in binary search.

As discussed earlier, sorting means the arrangement of a set of numbers in an

order. In selection sort, the element at the first position is compared with all other

elements. The number being compared and the number, to which it is compared to, are

swapped, if the number to be compared is smaller. The same procedure is repeated for

the element at all the other positions.

A: Selection Sort (Min)

So the Idea of the selection sort (Min) as the following steps:

1. Find the smallest element in the array

2. Exchange it with the element in the first position

3. Find the second smallest element and exchange it with the element in the

second position

4. Continue until the array is sorted

 ALGORITHMS Design and Analysis-2nd class By: Harsh Bhasin © Oxford University Press 2015

College of Science /Computer Science Dept. Prepared by: Dr.Boshra Al_bayaty & Dr. Muhanad Tahrir Younis

(2018-2019)

B: Selection Sort (Max)

1. Find the largest element in the array

2. Exchange it with the element in the last position

3. Find the second largest element and exchange it with the element in the

next last position

4. Continue until the array is sorted

i= 0 8 3 9 7 2 6 4 max = 9

i= 1 8 3 4 7 2 6 9 max = 8

i= 2 6 3 4 7 2 8 9 max = 7

i= 3 6 3 4 2 7 8 9 max = 6

i= 4 2 3 4 6 7 8 9 max = 4

i= 5 2 3 4 6 7 8 9 max = 3

 end 2 3 4 6 7 8 9

 ALGORITHMS Design and Analysis-2nd class By: Harsh Bhasin © Oxford University Press 2015

College of Science /Computer Science Dept. Prepared by: Dr.Boshra Al_bayaty & Dr. Muhanad Tahrir Younis

(2018-2019)

Algorithm: Selection Sort

Complexity: Since there is a loop inside another loop, the first loop runs (n − 1)

times and for each (n − 1) iteration the inner loop runs (n − i − 1) times, where i is

the iteration number of iterations. The complexity of the algorithm, therefore,

becomes O(n2).

 ALGORITHMS Design and Analysis-2nd class By: Harsh Bhasin © Oxford University Press 2015

College of Science /Computer Science Dept. Prepared by: Dr.Boshra Al_bayaty & Dr. Muhanad Tahrir Younis

(2018-2019)

It’s one of the oldest sorts known. In bubble sort, the element at the first position

is taken and compared with the item at the second position. The number being compared

and the number to which it is compared to are swapped, if the number to be compared is

smaller. The same procedure is repeated for the element at the second and the third

positions.

 The bubble sort got its name because of the way the biggest elements

"bubble" to the top .

 It based on the property of a sorted list that any two adjacent elements are

in sorted order .

 In a typical iteration of bubble sort each adjacent pair of elements is

compared, starting with the first two elements, then the second and the

third elements, and all the way to the final two elements .

 Each time two elements are compared, if they are already in sorted order,

nothing is done to them and the next pair of elements is compared .

 In the case where the two elements are not in sorted order, the two

elements are swapped, putting them in order.

Algorithm: Bubble Sort
Input: an array ‘a’ containing n elements.

Output: a sorted array.

Constraints: no constraints

BUBBLE SORT (a, n) returns a

{ i=0;

// (n-1) iterations

while(i<(n-1))

 {

 j=0;

 ALGORITHMS Design and Analysis-2nd class By: Harsh Bhasin © Oxford University Press 2015

College of Science /Computer Science Dept. Prepared by: Dr.Boshra Al_bayaty & Dr. Muhanad Tahrir Younis

(2018-2019)

 while (j<n-1-i)

 {

 if (a[j+1]<a[j])

 {

 temp=a[j];

 a[j]=a[i];

 a[i]=temp;

 }

 j++;

 }

 i++;

 }

 return a;

 }

Complexity: Since there is a loop inside another loop, the first loop

runs (n − 1) times and for each (n − 1) iteration, the inner loop runs (n −

i − 1) times, where i is the iteration number iterations. The complexity of

the algorithm, therefore, becomes O(n
2
). Number of comparisons: n

2
/ 2

Problem: The algorithm has a high complexity

Example
 Consider a set of data: 5 9 2 8 4 6 3 .

 Bubble sort first compares the first two elements, the 5 and the 9 .

 Because they are already in sorted order, nothing happens .

 The next pair of numbers, the 9 and the 2 are compared .

 Because they are not in sorted order, they are swapped and the data

becomes: 5 2 9 8 4 6 3 .

 To better understand the "bubbling" nature of the sort, watch how

the largest number, 9, "bubbles" to the top in the first iteration of

the sort.

 ALGORITHMS Design and Analysis-2nd class By: Harsh Bhasin © Oxford University Press 2015

College of Science /Computer Science Dept. Prepared by: Dr.Boshra Al_bayaty & Dr. Muhanad Tahrir Younis

(2018-2019)

First iteration i=1

 j=1 (5 9) 2 8 4 6 3 --> compare 5 and 9, no swap

 j=2 5 (9 2) 8 4 6 3 --> compare 9 and 2, swap

 j=3 5 2 (9 8) 4 6 3 --> compare 9 and 8, swap

 j=4 5 2 8 (9 4) 6 3 --> compare 9 and 4, swap

 j=5 5 2 8 4 (9 6) 3 --> compare 9 and 6, swap

 j=6 5 2 8 4 6 (9 3) --> compare 9 and 3, swap

 5 2 8 4 6 3 9 --> first iteration complete

- Notice that in the example above, the largest element, the 9 got swapped

all the way into its correct position at the end of the list.

- This happens because in each comparison, the larger element is always

pushed towards its place at the end of the list.

Second iteration i=2

In the second iteration, the second-largest element will be bubbled up to its

correct place in the same manner :

 j=1 (5 2) 8 4 6 3 9 --> compare 5 and 2, swap

 j=2 2 (5 8) 4 6 3 9 --> compare 5 and 8, no swap

 j=3 2 5 (8 4) 6 3 9 --> compare 8 and 4, swap

 j=4 2 5 4 (8 6) 3 9 --> compare 8 and 6, swap

 j=5 2 5 4 6 (8 3) 9 --> compare 8 and 3, swap

 2 5 4 6 3 8 9 --> second iteration complete

- (No need to compare last two because the last element is known to be the

largest).

 ALGORITHMS Design and Analysis-2nd class By: Harsh Bhasin © Oxford University Press 2015

College of Science /Computer Science Dept. Prepared by: Dr.Boshra Al_bayaty & Dr. Muhanad Tahrir Younis

(2018-2019)

Third iteration i=3

 j=1 (2 5) 4 6 3 8 9 -->compare 2 and 5 no swap ,

 j=2 2 (5 4) 6 3 8 9 -->compare 5 and 4 swap ,

 j=3 2 4 (5 6) 3 8 9 -->compare 5 and 6 no swap ,

 j=4 2 4 5 (6 3) 8 9 -->compare 6 and 3 swap ,

 2 4 5 3 6 8 9 --> Third iteration complete

- (No need to compare the last three elements)

Fourth iteration i=4

 j=1 (2 4) 5 3 6 8 9 --> compare 2 and 4, no swap

 j=2 2 (4 5) 3 6 8 9 --> compare 4 and 5, no swap

 j=3 2 4 (5 3) 6 8 9 --> compare 5 and 3, swap

 2 4 3 5 6 8 9 --> Fourth iteration complete

 - (No need to compare the last four elements).

Fifth iteration i=5

 j=1 (2 4) 3 5 6 8 9 --> compare 2 and 4, no swap

 j=2 2 (4 3) 5 6 8 9 --> compare 4 and 3, swap

 2 3 4 5 6 8 9 --> Fifth iteration complete

 - (No need to compare the last five elements).

Sixth iteration i=6

 j=1 (2 3) 4 5 6 8 9 --> compare 2 and 3, no swap

 2 3 4 5 6 8 9 --> Sixth iteration complete

- (No need to compare the last six elements).

 ALGORITHMS Design and Analysis-2nd class By: Harsh Bhasin © Oxford University Press 2015

College of Science /Computer Science Dept. Prepared by: Dr.Boshra Al_bayaty & Dr. Muhanad Tahrir Younis

(2018-2019)

In each iteration, the largest element from amongst the yet unsorted elements is

found and placed at its proper position.

Insertion sort is a sorting technique, which inserts an item at its correct position in

a partially sorted array. The technique is a well-known one as it is used in sorting

It’s one of the simplest methods to sort an array is an insertion sort, If the playing cards.

first few objects are already sorted, and unsorted object can be inserted in the sorted set

in proper place.

 An example of an insertion sort occurs in everyday life while playing cards.

 To sort the cards in your hand you extract a card, shift the remaining cards, and

then insert the extracted card in the correct place. This process is repeated until all

the cards are in the correct sequence.

 Both average and worst-case time is O(n
2
)

 Best case time is O(n)

Example1: Sort the Array X[4,3,1,2]

 Starting near the top of the array in the Figure (a) we extract the 3 .

 Then the above elements are shifted down until we find the correct place to

insert the 3 .

 This process repeats in Figure (b) with the next number .

 Finally, in Figure (c), we complete the sort by inserting 2 in the correct place .

 ALGORITHMS Design and Analysis-2nd class By: Harsh Bhasin © Oxford University Press 2015

College of Science /Computer Science Dept. Prepared by: Dr.Boshra Al_bayaty & Dr. Muhanad Tahrir Younis

(2018-2019)

 Example2: Sort the Array X[8,3,9,7,2,20,4]

 Number of pass : n-1 = 6

 Average no. of comparison is n
2
/4 = 7

2
/4 = 12.25

 Average no. of exchanges n
2
/4 = 7

2
/4 = 12.25

 Bubble sort (no. of comparison is n
2
/2 = 7

2
/2 = 24.5

 Bubble sort slower than Insertion sort

 ALGORITHMS Design and Analysis-2nd class By: Harsh Bhasin © Oxford University Press 2015

College of Science /Computer Science Dept. Prepared by: Dr.Boshra Al_bayaty & Dr. Muhanad Tahrir Younis

(2018-2019)

