
 Data Structures

1

Lists

A list is a popular data structure to store data in sequential order. For example, a list

of students, a list of available rooms, a list of cities, and a list of books, etc. can be

stored using lists. The common operations on a list are usually the following:

· Retrieve an element from this list.

· Insert a new element to this list.

· Delete an element from this list.

· Find how many elements in this list.

· Find if this list is full.

· Find if this list is empty.

Two Ways to Implement Lists

There are two ways to implement a list:

One is to use an array to store the elements.

Two is to use a linked structure. A linked structure consists of nodes. Each node is

dynamically created to hold an element. All the nodes are linked together to form a

list.(linked list)

1- Array Lists

Array is a fixed-size data structure. Once an array is created, its size cannot be

changed. Nevertheless, you can still use array to implement dynamic data structures.

The trick is to create a new larger array to replace the current array if the current array

cannot hold new elements in the list.

Initially, an array, say data of Object[] type, is created with a default size. When

inserting a new element into the array, first ensure there is enough room in the array.

If not, create a new array with the size as twice as the current one. Copy the elements

from the current array to the new array. The new array now becomes the current array.

 Data Structures

2

The ArrayLists Abstract Data Type

Class specification :

List

-MaxSize:int

- items[]:object;

-count:int
+List(int)

+ insert (int,object):void

+ remove(int):void

+retrieve(int):object

+IsFull():bool

+IsEmpty():bool

+Size():int

.

.

The List abstract data type (ADT) supports the following:

ADT : List

 {

 Data: a non zero positive integer number representing MaxSize . and array of object elements

represent the items.

 Operations:

 A constructor(List) :initialize the data to some Data object certain value.

 insert (pos,element): Insert object element into items at position pos.

 Input : Position pos and Object element Output: None.

 remove (pos): remove from items the object at position pos.

 Input : Position pos; Output: None.

 retrieve (pos): Return, but do not remove, from items the object at position pos.

 Input : Position pos; Output: object.

 IsFull() : Return a Boolean value indicating if the list is full.

 Input : None; Output: Boolean.

 IsEmpty() : Return a Boolean value indicating if the list is empty.

 Input : None; Output: Boolean.

 Size(): Return the number of objects in the list .

 Input : None; Output: Integer.

End ADT List

 Data Structures

3

We illustrate the operation in the list ADT in the following example:

Example: the following table shows a series of list operation and their effect on an initially empty

list items of integer and MaxSize = 5

Operation Output items

insert (0,5)

insert(1,3)

insert(2,7)

insert(1,8)

insert(0,9)

insert(3,5)

remove (1)

remove (0)

retreve (1)

Size()

-

-

-

-

-

 Error

3

3

(5)

(5, 3)

(5,3,7)

(5,8,3, 7)

(9,5,8,3, 7)

 (9, 5,8,3, 7)

(9,8,3, 7)

 (8,3, 7)

(8,3, 7)

 (8,3, 7)

class List

 {

// data member or data value

 private int MaxSize, count;

 private object[] items;
// Constructer or default Constructer

 public List(int n)

 {

 MaxSize = n;

 items = new object[MaxSize];

 count=0;

 }

List Operations

We describe how to use this method to implement a list in code :

Pseudocode insert(pos, element)

 Before inserting a new element at a specified index, shift all the elements after the index to the

right and increase the list size (count) by 1.

 Data Structures

4

if IsFull() then

 print error a listFull

else

 if (pos greater than or equal 0 and pos Less than or equal count)

 {

 for (i= count-1 to i>= pos , i--) // shift elements right

 items[i+1] ← items[i]

 items[pos] ← element // insert object in the specified pos

 count←count+1

 }

 else print error out of range

Pseudocode remove(pos)

 To remove an element at a specified index, shift all the elements after the index to the left by one

position and decrease the list size (count) by 1.

 e0

 0 1
…

 i i+1 k-1 Before inserting
e at insertion point i

e1 … ei ei+1

…

… ek-1

data.length -1
Insertion point e

 e0

 0 1
…

 i i+1 After inserting
e at insertion point i,

list size is

incremented by 1

e1 … e ei

…

… ek-1

data.length -1 e inserted here

ek

ek

k

ei-1

ei-1

k+1 k

ei+1

 i+2

…shift…

 e0

 0 1
…

 i i+1 k-1 Before deleting the

element at index i
e1 … ei ei+1

…

… ek-1

data.length -1 Delete this element

 e0

 0 1
…

 i After deleting the

element, list size is

decremented by 1
e1 …

…

… ek

data.length -1

ek

k

ei-1

ei-1

k-1

ei+1

k-2

ek-1

…shift…

 Data Structures

5

if IsEmpty() then

 print error a listEmpty

else

 {

 if (pos greater than or equal 0 and pos less than count)

 {

 for (i= pos , i< count-1 , i++) // shift elements left

 items[i] ←items[i+1]

 count← count-1

 }

 else print error out of range

 }

Pseudocode retrieve (pos)

if IsEmpty() then

 print error a listEmpty

else

 if (pos greater than or equal 0 and pos less than count)

 return (items[pos])

 else print error out of range

Pseudocode Size():

return count

Pseudocode IsEmpty():

if (count equal 0) return true

else return false

Pseudocode IsFull():

if (count equal Maxsize) return true

else return false

 Data Structures

6

The table show the running times of methods in realization of a list by an array

Method Worst case Best case Average case

insert O(n) if position of element in

the first of the list and count of

elements in list not equal zero.

O(1) if position of

element in the end of

the list. or the count of

elements in list equal

zero.

O(log n)

 If position of

element in the

middle of the list

Remove O(n) if position of element in

the first of the list and count of

elements in list not equal 1.

O(1) if position of

element in the end of

the list. or the count of

elements in list equal 1

O(log n)

 If position of

element in the

middle of the list

Retrieve O(1) O(1) O(1)

IsFull() O(1) O(1) O(1)

IsEmpty O(1) O(1) O(1)

Exercises

Q1/ Consider the following operations on a List data structure that stores integer values?

List L1=new List(7);

L1.insert(0,6);

L1.insert(1,21);

L1.insert(2,3);

L1.remove(1);

L1.insert(0,7);

L1.remove(2);

L1.insert(1,15);

L1.remove(1);

what s will look like after the code above executes?

Q2/ given the following list:

Write a segment of code of c# program to perform the followings:

a-Create a list of 10 objects.

b-Add the element 70, 80, 90,100 in the list.

c- Delete the first object in the list.

d- Insert one element at position p in a list.

e- Delete all the elements of even position in the list.

f- Count the number of elements in the list.

 Data Structures

7

Q3/ let a=(a1,a2….a10)and b=(b1,b2,….b8)Are two lists. Write C# method to merge the first five

elements of the list b at the end of the list a .

Q4/ Define a new method of ArrayList class : void Display () that display all elements of any list .

Q5/ Define a new method of ArrayList class : void DisplayExcept (value) that display all

elements of any list except the element of data value44

Q6/ what is the output of the following code ?

a- for (int i=0; i< 5; i++)

 Ll.insert(0,i);

b- for (int i=0; i< 5; i++)

 Ll.insert(i,0);

c- for (int i=0; i< 5; i++)

 Ll.insert(i,i);

Q7: Define a new method of ArrayList class : int Search (element) that search element in the list.

Q8: Define a new method of ArrayList class : void Sort () that sorts elements in the list.

Q9: Define a new method of ArrayList class : int Search1(element) that search element in the

sorted list.

 Data Structures

8

2- Linked List :

A Linked List (or one way list) is a linear collection of data elements called (Node) , where

"Linear " order is given by means of "pointer" .

-A Linked List is a series of connected (linked) elements.

-Each node contains at least two fields :

-data of any type

-pointer to the next node in the list

-Each linked list must have a Head which is a pointer to the first node.

-The last points to null.

Linked List in C# :

1-A linked list is a collection of class objects called nodes.

2- Each node is linked to its successor node in the list using a reference to the successor node.

3-A node is made up of a field for storing data and the field for the node reference.

4-The reference to another node is called a link (next).

An example linked list is shown in Figure below.

 Header

 Null Pointer

Single Linked List

 Header

 Null Pointer

Double Linked List

'A' 'B' 'C'

'A' 'B' 'C'

 Data Structures

9

AN OBJECT-ORIENTED LINKED LIST DESIGN

1-Linked list will involve at least two classes.

2-We’ll create a Node class and instantiate a Node object each time we add a node to the list.

3-The nodes in the list are connected via references to other nodes.

4-These references are set using methods created in a separate LinkedList class.

5- Let’s start by looking at the design of the Node class.

Traversing a Linked List:

-Traversal means "visiting " or examining each node .

-Algorithm :

 - start at the beginning

 - Go one node at a time until the end .

Types of Linked List

1-Single Linked List (S.L.L)

 The single linked list is the most basic of all the dynamic data structures . a single linked list is

simply a sequence of dynamically allocated storage elements , each containing a pointer to its

successor and have a pointer to the head of the list called Head .

The Single Linked List Abstract Data Type

The Node Class

Class Node specification :

Node

+data:object

+ next:Node

+Node()

+ Node (object)

The Node abstract data type (ADT) supports the following:

ADT : Node

 {

 Data: A node is made up of two data members: data, which stores the node’s data; and

next, which stores a reference to the next node in the list.

 Data Structures

11

Constructors:

we need at least two constructor methods. We definitely want a

A constructor(Node()) : default constructor that creates an empty Node, with both the

data and next members set to null.

 A constructor(Node(object)) : assigns data to the data member and sets the next

member to null.

 } ADT Node

Here’s the code for the Node class:

public class Node

 {

// data member or data value

 public object data;

 public Node next;

// Constructer or default Constructer

 public Node()

 {

 data=null;

 next=null;

 }

 public Node(object item)

 {

 data=item;

 next=null;

 }

} end of class Node

The linkedlist class :

1-The Linked List class is used to create the linkage for the nodes of our linked list.

2-The class includes several methods for adding nodes to the list, removing nodes from the list,

traversing the list, and finding a node in the list etc.

3-We also need a constructor method that instantiates a list.

4-The only data member in the class is the head node.

 Data Structures

11

Class LinkedList specification :

LinkedList

-Head:Node

+LinkedList()

+ AddAtEnd(object):void

+ AddAtFront(object):void

+ DelFront():void

+ DelEnd():void

+ Insert(object,object):void

+ Delete(object):void

-Find(object):Node

-FindPre(object):Node

+IsEmpty():bool

+Display():void

+Size():int

The LinkedList abstract data type (ADT) supports the following:

ADT : LinkedList

{

 Data: Head data type class Node

 Operations:

 A constructor(LinkedList()) :initialize the Head member set to null.

 AddAtEnd(object): insert Node at the last position in the Linked List

 Input : object Output: None.

 AddAtFront(object): insert Node at the first position in the Linked List

 Input : object; Output: None.

 DelFront(): delete the first node in the Linked List

 Input : None ; Output: None

 DelEnd(): delete the last Node in the Linked List

 Input : None ; Output: None

 Data Structures

12

Insert(object , object): To insert a new node after an existing node, we have to first find the

“after” node. To do this, we create a Private method,(-Find(object)), that searches through

the Element field of each node until a match is found.

 Input : two objects Output: None.

Delete(object): (deleting a node with given value) . We need to find the node before the node

we want to remove, we’ll define a Private method, (- FindPre(object)) . This method walks

down the list, stopping at each node and looking ahead to the next node to see if that node’s

Element field holds the item we want to remove.

 Input : object Output: None.

IsEmpty() : Return a Boolean value indicating if the Linkedlist is empty.

 Input : None; Output: Boolean.

Size(): Return the number of objects in the LinkedList .

 Input : None; Output: Integer.

Display (): display all elements of linked list.

 Input: None Output : None

End ADT LinkList

Here’s the code for the LinkedList class:

class LinkedList

 {

// data member or data value

 private Node Head;

// Constructer

 public LinkedList()

 {

 Head=null;

 }

 Data Structures

13

Single LinkedList Operations

We describe how to use this method to implement a Linked list in code :

Pseudocode AddAtEnd(object item)

 Example:

 n

 Head p

IsEmpty

Head n

Node n = new Node(item)

if IsEmpty()

 {

 n.next← null

 Head← n

 }

 else

 {

 Node p ← Head

search the last node in the list

 while(p.next notEqual null)

 p←p.next

 p.next←n

 }

Pseudocode AddAtFront(object item)

 Head

 n

'A' 'B' 'C'

 D

A

 D

'C' 'B' 'A'

 Data Structures

14

Node n ← new Node(item)

Link a new node

 n.next← Head

 update Head pointer

 Head←n

Pseudocode DelEnd()

 Head n p

if IsEmpty()

 print linked list empty

else

 {

 Node p← Head

 Node n← null

 Move the temporary P to the node that is before the last node

 while(p.next not equal null)

 {

 n←p

 p←p.next

 }

 Make the node that is before the last node point to Null

 n.next←null

 }

Pseudocode DelFront()

 Head

 D 'A' 'B' 'C'

'A' 'B' 'C'

 Data Structures

15

 if IsEmpty()

 print linked list empty

else

 Head← Head.next

Pseudocode Find(object after)

Ex: after= 15

 Head n

 Node n← Head;

 while (n not equal null and n.data not equal after)

 n←n.next ;

return n

Pseudocode FindPre(object value)

 Ex: value =25

 Head n

 Node n← Head;

 while (n.next not equal null and n.next.data not equal value)

 n←n.next

return n

Pseudocode Insert(object item, object after)

 Ex: after =15 n

 Head current

10 15 25

5

 20

25

5
 10 15

25

5

10 15 30

 Data Structures

16

 Node n← new Node(item);

 Node current←Find(after)

 if (current not equal null)

 {

 n.next←current.next

 current.next←n

 }

 else

 print the after not found in the linked list

Pseudocode delete(object value)

Ex: value =25

 Head current current.next=current.next.next

 if IsEmpty()

 print linked list is empty

 else

 {

 Node current ← FindPre(value)

 if (current.next not equal null)

 current.next ←current.next.next

 else

 print the value not found in the linked list

 }

Pseudocode IsEmpty()

 if Head equal null

 return true

 else

 return false

25

5

10 15 30

 Data Structures

17

Pseudocode Size()

 if IsEmpty()

 count←0

 else

 {

 Node p← Head

 while (p not equal null)

 {

 count← coun+1

 p←p.next

 }

 }

 Return count

Pseudocode Display()

 if IsEmpty()

 print link list empty

 else

 {

 Node p← Head

 while (p not equal null)

 {

 Print p.data

 p←p.next

 }

 }

LINKED LIST DESIGN MODIFICATIONS

There are several modifications we can make to our linked list design in order to better solve certain

problems. Two of the most common modifications are :

1- A doubly linked list makes it easier to move backward through a linked list and to remove a node

from the list.

2-A circularly linked list is convenient for applications that move more than once through a list.

1-The Doubly Linked List

 Although traversing a linked list from the first node in the list to the last node is very

straightforward, it is not as easy to traverse a linked list backward. We can make this procedure

much easier if we add a field to our Node class that stores the link to the previous node. When we

insert a node into the list, we’ll have to perform more operations in order to assign data to the new

 Data Structures

18

field, but we gain efficiency when we have to remove a node from the list, since we don’t have to

look for the previous node.

We first need to modify the Node class to add an extra link to the class.

To distinguish between the two links, we’ll call the link to the next node the FLink, and the link to

the previous node the BLink. These fields are set to Nothing when a Node is instantiated.

 Header

 Null pointer

Null pointer

Double Linked List

The Node Class

Class Node specification :

Node

+data:object

+ Flink:Node

+ Blink:Node
+Node()

+ Node (object)

Here’s the code:

public class Node

{

 public Object data;

 public Node Flink;

 public Node Blink;

 // Constructors

 public Node()

 {

 Flink = null;

 Blink = null;

 }

public Node(Object item)

 {

data = item;

Flink = null;

Blink = null;

 }

}

'A' 'B' 'C'

 Data Structures

19

The Insertion method is similar to the same method in a singularly linked list, except we have to

set the new node’s back link to point to the previous node.

 Node n← new Node(item)

 Node current← Find(after)

 if (current not equal null)

 {

 n.Flink ← current.FLink

n.Blink ← current

current.Flink ← n

n.Flink.Blink ←n

 }

 else

 print the after not found in the linked list

The Remove method for a doubly linked list is much simpler to write than for a singularly linked

list.

1-We first need to find the node in the list;

2- then we set the node’s back link property to point to the node pointed to in the deleted

node’s forward link.

3- Then we need to redirect the back link of the link the deleted node points to and point it to the

node before the deleted node.

Figure below illustrates a special case of deleting a node (B) from a doubly linked list .

Head

 p.Blink.Flink = p.Flink;

 p.Flink.Blink = p.Blink;

The Pseudocode for the Remove method of a doubly linked list is as follows.

 if IsEmpty()

 print linked list is empty

 else

 {

 Node p ← Find(n)

A B C D

 Data Structures

21

 if (!(p.Flink Equal null))

 {

 p.Blink.Flink ← p.Flink

 p.Flink.Blink ← p.Blink

 }

 else // delete last node

 p.Blink.Flink ← null

 }

We’ll end this section on implementing doubly linked lists by writing a method that prints the

elements of a linked list in reverse order. In a singularly linked list, this could be somewhat difficult,

but with a doubly linked list, the method is easy to write. First, we need a method that finds the last

node in the list. This is just a matter of following each node’s forward link until we reach a link that

points to null. This method, called FindLast, is defined as follows:

The Pseudocode FindLast()

 Node current ← Head

while(!(current.Flink Equal null))

current ← current.Flink

 return current

Once we find the last node in the list, to print the list in reverse order we just follow the backward

link until we get to a link that points to null, which indicates we’re at the header node.

The Pseudocode PrintReverse

if IsEmpty()

 print linked list is empty

else

 {

Node current ← FindLast()

while (current not equal null))

{

Print (current.data)

current ← current.Blink

 }

}

 Data Structures

21

2-The Circularly Linked List

A circularly linked list is a list where the last node points back to the first node (which may be a

header node). Figure below illustrates how a circularly linked list works.

public class Node

{

public Object data;

public Node next;

public Node()

 {

data = null;

next = null;

 }

public Node(Object item)

{

 data = item;

 next= null;

 }

}

public class LinkedList

{

private Node current;

private Node Head ;

public LinkedList()

{

Head= null;

 }

 The Pseudocode IsEmpty ()

 if (Head equal null)

 return true

else

 return false

'C' 'A' 'B'

 Data Structures

22

The Pseudocode MakeEmpty()

 Head ← null

The Pseudocode PrintList()

Node current ← Head

while ((current.next not equal Head))

{

Print (current. data)

current ← current.next

 }

 Print (current.data)

The Pseudocode MoveHead(int n)

Node current ←Head

for(int i ← 0; i < n; i++)

current ← current.next

Head ← current

Stack and Queues using Linked Structures

Implementing stacks or Queues using arrays

• Simple implementation.

• The size of the stack or (queues) must be determined when a stack object is declared.

• Space is wasted if we use less elements.

• We cannot "push" or "enqueue" more elements than the array can hold.

Implementing stacks using Linked List

• Allocate memory for each new element dynamically .

• Use one pointer, Top (Head) to mark the top (last element) of the stack.

• Each node in the stack should contain two parts:

– data: the user's data.

– next: the address of the next element in the stack .

 Data Structures

23

Class SLinkedList specification :

SLinkedList

-Top:Node similar -Head: Node

+SLinkedList()

+ Push(object):void similar +AddAtFront(object):void

+ PoP() :void similar +DelFront():void

+Peek(): object

+IsEmpty():bool similar +IsEmpty():bool

+Display():void similar +Display():bool

+Size():int similar +Size():int

class SLinkedList

 {

// data member or data value

 private Node Top;

// Constructer

 public SLinkedList()

 {

 Top=null;

 }

StackLinkList Operations

We describe how to use this method to implement a stack Linked list in code :

Pseudocode Push (object item) similar Pseudocode AddAtFront(object item)

 Top

 n

 D

'C' 'B' 'A'

 Data Structures

24

Node n = new Node(item)

 n.next← Top

 Top←n

Pseudocode Pop() similar Pseudocode DelFront()

 Top

if IsEmpty()

 print stacklinked list empty

else

 Top← Top.next

Pseudocode Peek()

 Top

if IsEmpty()

 print stacklinked list empty

else

 item ← Top.data // return (Top.data)

Pseudocode IsEmpty()

 if (Top equal null)

 return true

 else

 return false

'C' 'B' 'A'

'C' 'B' 'A'

 Data Structures

25

Pseudocode Size()

 if IsEmpty

 count←0

 else

 {

 Node p← Top

 while (p not equal null)

 {

 count= coun+1

 p=p.next

 }

 }

 Return count

Pseudocode Display()

 if IsEmpty()

 print stack empty

 else

 {

 Node p← Top

 while (p not equal null)

 {

 Print p.data

 p←p.next

 }

 }

Implementing queues using linked list

• Allocate memory for each new element dynamically .

• Use two pointers, qFront and qRear, to mark the front and rear of the queue

• Each node in the Queue should contain two parts:

• data: the user's data

• next: the address of the next element in the stack

 Data Structures

26

Class QLinkedList specification :

QLinkedList

-qFront:Node

-qRear:Node
+QLinkedList()

+ Enqueue(object):void

+ Dequeue():void

+ Front():object

+IsEmpty():bool

+Display():void

+Size():int

class QLinkedList

 {

// data member or data value

 private Node qFront;

 private Node qRear;

// Constructer

 public QLinkList()

 {

 qFront =null;

 qRear =null;

 }

QLinkList Operations

We describe how to use this method to implement a QLinked list in code :

Pseudocode enqueue(object item)

 Example: n

 qFron qRear

IsEmpty

qFront qRear n

 D

'A' 'B' 'C'

A

 Data Structures

27

Node n = new Node(item)

if IsEmpty()

 {

 n.next← null

 qFront← n

 qRear← n

 }

 else

 {

 qRear.next← n

 q.Rear← n

 }

Pseudocode dequeue()

 qFront qRear

if IsEmpty()

 print Queuelinked list empty

else

 if (q.Rear Equal q.Front) // one node

 {

 q.Rear←null

 q.Front←null

 }

 else

 qFront← qFront.next;

Pseudocode Front()

 qFront qRear

'A' 'B' 'C'

10 15 25

5

 Data Structures

28

 if IsEmpty()

 print Queuelinked list empty

else

 return qFront.data;

Pseudocode IsEmpty()

 if (qFront equal null)

 return true

 else

 return false

Pseudocode Size()

 if IsEmpty()

 count←0

 else

 {

 Node p← qFront

 while (p not equal null)

 {

 count← coun+1

 p←p.next

 }

 }

 Return count

Pseudocode Display()

 if IsEmpty()

 print Queuelink list empty

 else

 {

 Node p← qFront;

 while (p not equal null)

 {

 Print p.data

 p←p.next

 }

 }

 Data Structures

29

The table show the running times of methods in realization of a linked list:

Method Worst case Best case Average case

AddAtEnd(object) O(n) O(1) O(n)

AddAtFront(object) O(1) O(1) O(1)

DelFront() O(1) O(1) O(1)

DelEnd() O(n) O(1) O(n)

Insert(object,object) O(n) if position of

element end of the list .

O(1) if position of

element in the first

of the list.

O(log n)

 If the position

of element in the

middle of the list

Delete(object) O(n) if position of

element end of the list .

O(1) if position of

element in the first

of the list.

O(log n)

 If the position

of element in the

middle of the list

IsEmpty O(1) O(1) O(1)

Display() O(n) O(n) O(n)

Size() O(n) O(n) O(n)

Comparisons :

1-Comparision between Single Linked List and Circular Linked List:

Single Linked List Circular Linked List

1-Searching must begin from the beginning of

the list .

1-Searching can begin from the middle of list .

2- Last node points to Null. 2-last node points to first node .

2- Comparison between Single Linked List and Double Linked List:

Single Linked List Double Linked List

1-Searching is in one direction (forward) . 1-Searching can be done in two directions

(forward and backward) .

2- each node has one pointer that point to the

successor (Next) .

2- Each node has two pointers : one points to

the successor (Flink) and one points to the

predecessor (Blink) .

3-Takes less storage. 3- Takes more storage .

 Data Structures

31

Exercises :

Q1 Draw the LinkedList resulted from executing the following code:

 Node N1= new Node();

 Node N2 = new Node(70);

 N1.next = new Node(10);

 N1.next.next = N2;

 N1.data= N1.next.data;

 N2.next=N1;

Q2:/ Complete the following method where needed?

 int sum List()

 {

 int sum=0;

 Node p= ;

 while (p null)

 {

 sum=sum+ p. ;

 p= ;

 }

 return sum

 }

Q3/ Redraw the following list after executing the piece of code shown underneath?

 Head

 Node p=Head;

 while(p.next.next !=null) p=p.next;

 p.next=Head;

 Head=p;

'A' 'B' 'D' 'C'

 Data Structures

31

Q4/ choose the most suitable answer:

 1-Consider a "LinkedList " implementation of the Queue class , where from dose the "dequeue"

method remove the element on the linked list?

 a-from the head of the linked list .

b-from the entry following the head of the linked list

c-from the entry priority the end of the linked list.

 d- from the end of the linked list

2- one or more statements is true about linked list:

a-Linked List is better used when the amount of data items to be stored is not Known until

running.

b-Linked List is better when the amount of data items to be stored is Known in advance.

c-Storage allocation for linked list is done at running time.

d- Storage allocation for linked list is done at compile time.

3-In linked List implementation of general list , which operations require linear time for their

worst case behavior?

a- DelEnd() b-IsEmpty() c- AddAtFront(object) d-Non of these operation require Linear Time

 4-which structure is faster if you want to insert a new integer between the first and the second

integer in the sequence?

 a-linkedlist b- Array

Q5/Define a new method of Linked List class: void ListIncrement() that increment (add one to)

List entries?

Q6/ Given the following list:

 Head

Write c# methods to:

a- Delete first element from it.

b- Add one element after data value C.

c- Display all the elements.

'A' 'B' 'D' ‘C’

 Data Structures

32

Q7/Which of the following correctly describe(s) the steps to delete element C from the below

doubly Linked list

 Head current Tail

1-Current.Flink.Flink.Blink=current.Blink; current.Flink=current.Flink.Flink;

2-Current.Flink=current.Blink.Flink; current.Flink.Flink.Blink=current.Blink;

3-Current.Flink=current.Flink.Flink; current.Flink.Flink.Blink=current.Flink.Blink;

4-Current.Flink=Tail; Head.Flink=current.Flink.Blink;

5- Current.Flink=Tail ; Tail.Blink=Current;

Q8/Write method to delete a last node from double linked list?

Q9/ Compare between sequential and dynamic allocation of storage.

Q10/ Define a new method of Linked List class: int Count() to count the number of odd value

elements in any linked list.

A B C D

