
          

  

  

  

 

 

int sum= 0;                                                                            1 

for (i=0; i<10; i++)                                                               11   

sum = sum +i ;                                                                    10  

What is the time complexity?  

Sol: T=22   

 

int z;                                                                                 1    

  for (i=0; i<10; i++)                                                          11 for 

(j=0; j<5; j++)                                                  10 x 6 z= i*j; 

                10 x 5  

What is the time complexity?  

T= 12+10 x 6 + 10 x 5= 12+10(6+5)=122  

 

input f;          1 

for (i=0; i<5; i++)      6   if 

(i==2)          5      

printf(i);         1  

What is the time complexity?  

Sol:  

T=13  
  



          

  

  

  

Calculate the time for Case 

1:  

1. For (i=0, i<n, i++)   

    0------------ n-1  

      n+1  

           0<10  

           1<10   :  

  :                    11, which 

is n+1   :  

9 < 10  

10 < 10  
  

Case 2:  

    

2. for ( i=0; i<=n; i++) 0 

------- n  

n+1+1  
  
  

Case 3:  

      n+2  

for (i=1;  i<n;  i++)                 n   

1------------n-1  

     n-1+1 (failure)  
  

Case 4:  

 for (i =1; i<=n; i++)          n+1  
        

   1------------n  

 n  

let n=10  

           i< n  

  



          

  

  

  

 

n+1  

 

f(n)= am nm + am -1 nm-1 + … + a1 n1 + a0 f(n) 

= O (nm)  

 

Recursion means calling a function in itself. If a function invokes itself, then the 

phenomenon is referred to as recursion. However, in order to generate an answer, a 

terminating condition is must. In order to understand the concept, let us take an example.   

Ex 1: If the factorial of a number is to be calculated using the function fac(n) defined as 

follows:   

fac(n) = n × fac(n-1)  

and fac(1) = 1, and if the value of  n  is 5, then the process of calculating fac(5) can be 

explained with the help of Fig. 3.1. fac(1) is calculated and its value is used to calculate 

fac(2), which in turn is used for calculating fac(3). fac(3) helps to calculate fac(4) and 

finally, fac(4) is used to calculate fac(5). As is evident from Fig. 3.1, recursion uses the 

principle of last in first out and hence requires a stack. One can also see that had there been 

no fac(1), the evaluation would not have been possible. This was the reason for stating that 

recursion requires a terminating condition also.  



          

  

  

  

  

  

  Ex 2: power  

int power (int base, int exponent) {       

if (exponent == 0) {         

return 1;     } else {  
        return base * power(base, exponent - 1);  
    }  
};  

  

The key in any recursive function is the BASE CASE, without which the recursion will go on 

until it overflows the stack.  

The exponent is passed in and immediately checked to see if it is zero. If it is, then 1 is 

returned, and the recursion terminated. At this point, the stack is cleared and final result 

returned.  

Do a pencil check of the function to follow its flow:  

Let the function be called with arguments 2 and 5 (base and exponent, respectively)  

On paper we can begin to break down our running variables and track the interim returns:  

  

  
  



          

  

  

  

base = 2 exponent 

= 5  
exponent !== 0 so base case is skipped 
return 2 * power(2, 4) exponent = 4 
return 2 * power(2, 3) exponent = 3 
return 2 * power(2, 2) exponent = 2 
return 2 * power(2, 1) exponent = 1 
return 2 * power(2, 0) exponent = 0 
return 1  

  

Now that the base case is reached, the computer will have to cycle through all the returns that are 

currently stored internally in the stack.  

return 1 * 2 = 2 

return 2 * 2 = 4 

return 4 * 2 = 8 

return 8 * 2 = 16 

return 16 * 2 = 32  

Answer: 32  

  

Ex3: sum=1+2+3+ …+ n  

int sum(int n)  

{  

    if(n == 0)         

return 0;     else  

        return n + sum(n-1);  

}  

  


