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Introduction

1.1 WHY MULTIVARIATE ANALYSIS?

Multivariate analysis consists of a collection of methods that can be used when sev-
eral measurements are made on each individual or object in one or more samples. We
will refer to the measurements as variables and to the individuals or objects as units
(research units, sampling units, or experimental units) or observations. In practice,
multivariate data sets are common, although they are not always analyzed as such.
But the exclusive use of univariate procedures with such data is no longer excusable,
given the availability of multivariate techniques and inexpensive computing power
to carry them out.

Historically, the bulk of applications of multivariate techniques have been in the
behavioral and biological sciences. However, interest in multivariate methods has
now spread to numerous other fields of investigation. For example, I have collab-
orated on multivariate problems with researchers in education, chemistry, physics,
geology, engineering, law, business, literature, religion, public broadcasting, nurs-
ing, mining, linguistics, biology, psychology, and many other fields. Table 1.1 shows
some examples of multivariate observations.

The reader will notice that in some cases all the variables are measured in the same
scale (see 1 and 2 in Table 1.1). In other cases, measurements are in different scales
(see 3 in Table 1.1). In a few techniques, such as profile analysis (Sections 5.9 and
6.8), the variables must be commensurate, that is, similar in scale of measurement;
however, most multivariate methods do not require this.

Ordinarily the variables are measured simultaneously on each sampling unit. Typ-
ically, these variables are correlated. If this were not so, there would be little use for
many of the techniques of multivariate analysis. We need to untangle the overlapping
information provided by correlated variables and peer beneath the surface to see the
underlying structure. Thus the goal of many multivariate approaches is simplifica-
tion. We seek to express what is going on in terms of a reduced set of dimensions.
Such multivariate techniques are exploratory; they essentially generate hypotheses
rather than test them.

On the other hand, if our goal is a formal hypothesis test, we need a technique that
will (1) allow several variables to be tested and still preserve the significance level
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2 INTRODUCTION

Table 1.1. Examples of Multivariate Data

Units Variables

1. Students Several exam scores in a single course
2. Students Grades in mathematics, history, music, art, physics
3. People Height, weight, percentage of body fat, resting heart

rate
4. Skulls Length, width, cranial capacity
5. Companies Expenditures for advertising, labor, raw materials
6. Manufactured items Various measurements to check on compliance with

specifications
7. Applicants for bank loans Income, education level, length of residence, savings

account, current debt load
8. Segments of literature Sentence length, frequency of usage of certain words

and of style characteristics
9. Human hairs Composition of various elements

10. Birds Lengths of various bones

and (2) do this for any intercorrelation structure of the variables. Many such tests are
available.

As the two preceding paragraphs imply, multivariate analysis is concerned gener-
ally with two areas, descriptive and inferential statistics. In the descriptive realm, we
often obtain optimal linear combinations of variables. The optimality criterion varies
from one technique to another, depending on the goal in each case. Although linear
combinations may seem too simple to reveal the underlying structure, we use them
for two obvious reasons: (1) they have mathematical tractability (linear approxima-
tions are used throughout all science for the same reason) and (2) they often perform
well in practice. These linear functions may also be useful as a follow-up to infer-
ential procedures. When we have a statistically significant test result that compares
several groups, for example, we can find the linear combination (or combinations)
of variables that led to rejection of the hypothesis. Then the contribution of each
variable to these linear combinations is of interest.

In the inferential area, many multivariate techniques are extensions of univariate
procedures. In such cases, we review the univariate procedure before presenting the
analogous multivariate approach.

Multivariate inference is especially useful in curbing the researcher’s natural ten-
dency to read too much into the data. Total control is provided for experimentwise
error rate; that is, no matter how many variables are tested simultaneously, the value
of α (the significance level) remains at the level set by the researcher.

Some authors warn against applying the common multivariate techniques to data
for which the measurement scale is not interval or ratio. It has been found, however,
that many multivariate techniques give reliable results when applied to ordinal data.
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C H A P T E R 2

Matrix Algebra

2.1 INTRODUCTION

This chapter introduces the basic elements of matrix algebra used in the remainder
of this book. It is essentially a review of the requisite matrix tools and is not intended
to be a complete development. However, it is sufficiently self-contained so that those
with no previous exposure to the subject should need no other reference. Anyone
unfamiliar with matrix algebra should plan to work most of the problems entailing
numerical illustrations. It would also be helpful to explore some of the problems
involving general matrix manipulation.

With the exception of a few derivations that seemed instructive, most of the results
are given without proof. Some additional proofs are requested in the problems. For
the remaining proofs, see any general text on matrix theory or one of the specialized
matrix texts oriented to statistics, such as Graybill (1969), Searle (1982), or Harville
(1997).

2.2 NOTATION AND BASIC DEFINITIONS

2.2.1 Matrices, Vectors, and Scalars

A matrix is a rectangular or square array of numbers or variables arranged in rows
and columns. We use uppercase boldface letters to represent matrices. All entries in
matrices will be real numbers or variables representing real numbers. The elements
of a matrix are displayed in brackets. For example, the ACT score and GPA for three
students can be conveniently listed in the following matrix:

A =

 23 3.54

29 3.81
18 2.75


 . (2.1)

The elements of A can also be variables, representing possible values of ACT and
GPA for three students:
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A =

 a11 a12

a21 a22
a31 a32


 . (2.2)

In this double-subscript notation for the elements of a matrix, the first subscript indi-
cates the row; the second identifies the column. The matrix A in (2.2) can also be
expressed as

A = (ai j ), (2.3)

where ai j is a general element.
With three rows and two columns, the matrix A in (2.1) or (2.2) is said to be

3 × 2. In general, if a matrix A has n rows and p columns, it is said to be n × p.
Alternatively, we say the size of A is n × p.

A vector is a matrix with a single column or row. The following could be the test
scores of a student in a course in multivariate analysis:

x =




98
86
93
97


 . (2.4)

Variable elements in a vector can be identified by a single subscript:

x =




x1
x2
x3
x4


 . (2.5)

We use lowercase boldface letters for column vectors. Row vectors are expressed as

x′ = (x1, x2, x3, x4) or as x′ = (x1 x2 x3 x4),

where x′ indicates the transpose of x. The transpose operation is defined in Sec-
tion 2.2.3.

Geometrically, a vector with p elements identifies a point in a p-dimensional
space. The elements in the vector are the coordinates of the point. In (2.35) in Sec-
tion 2.3.3, we define the distance from the origin to the point. In Section 3.12, we
define the distance between two vectors. In some cases, we will be interested in a
directed line segment or arrow from the origin to the point.

A single real number is called a scalar, to distinguish it from a vector or matrix.
Thus 2, −4, and 125 are scalars. A variable representing a scalar is usually denoted
by a lowercase nonbolded letter, such as a = 5. A product involving vectors and
matrices may reduce to a matrix of size 1 × 1, which then becomes a scalar.
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2.2.2 Equality of Vectors and Matrices

Two matrices are equal if they are the same size and the elements in corresponding
positions are equal. Thus if A = (ai j ) and B = (bi j ), then A = B if ai j = bi j for all
i and j . For example, let

A =
(

3 −2 4
1 3 7

)
, B =


 3 1

−2 3
4 7


 ,

C =
(

3 −2 4
1 3 7

)
, D =

(
3 −2 4
1 3 6

)
.

Then A = C. But even though A and B have the same elements, A �= B because the
two matrices are not the same size. Likewise, A �= D because a23 �= d23. Thus two
matrices of the same size are unequal if they differ in a single position.

2.2.3 Transpose and Symmetric Matrices

The transpose of a matrix A, denoted by A′, is obtained from A by interchanging
rows and columns. Thus the columns of A′ are the rows of A, and the rows of A′
are the columns of A. The following examples illustrate the transpose of a matrix or
vector:

A =
( −5 2 4

3 6 −2

)
, A′ =


 −5 3

2 6
4 −2


 ,

B =
(

2 −3
4 1

)
, B′ =

(
2 4

−3 1

)
,

a =

 2

−3
1


 , a′ = (2, −3, 1).

The transpose operation does not change a scalar, since it has only one row and
one column.

If the transpose operator is applied twice to any matrix, the result is the original
matrix:

(A′)′ = A. (2.6)

If the transpose of a matrix is the same as the original matrix, the matrix is said to
be symmetric; that is, A is symmetric if A = A′. For example,

A =

 3 −2 4

−2 10 −7
4 −7 9


 , A′ =


 3 −2 4

−2 10 −7
4 −7 9


 .

Clearly, all symmetric matrices are square.
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2.2.4 Special Matrices

The diagonal of a p × p square matrix A consists of the elements a11, a22, . . . , app .
For example, in the matrix

A =

 5 −2 4

7 9 3
−6 8 1


 ,

the elements 5, 9, and 1 lie on the diagonal. If a matrix contains zeros in all off-
diagonal positions, it is said to be a diagonal matrix. An example of a diagonal
matrix is

D =




10 0 0 0
0 −3 0 0
0 0 0 0
0 0 0 7


 .

This matrix can also be denoted as

D = diag(10,−3, 0, 7). (2.7)

A diagonal matrix can be formed from any square matrix by replacing off-
diagonal elements by 0’s. This is denoted by diag(A). Thus for the preceding matrix
A, we have

diag(A) = diag


 5 −2 4

7 9 3
−6 8 1


 =


 5 0 0

0 9 0
0 0 1


 . (2.8)

A diagonal matrix with a 1 in each diagonal position is called an identity matrix
and is denoted by I. For example, a 3 × 3 identity matrix is given by

I =

 1 0 0

0 1 0
0 0 1


 . (2.9)

An upper triangular matrix is a square matrix with zeros below the diagonal, such
as

T =




8 3 4 7
0 0 −2 3
0 0 5 1
0 0 0 6


 . (2.10)

A lower triangular matrix is defined similarly.
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A vector of 1’s is denoted by j:

j =




1
1
...

1


 . (2.11)

A square matrix of 1’s is denoted by J. For example, a 3 × 3 matrix J is given by

J =

 1 1 1

1 1 1
1 1 1


 . (2.12)

Finally, we denote a vector of zeros by 0 and a matrix of zeros by O. For example,

0 =

 0

0
0


 , O =


 0 0 0 0

0 0 0 0
0 0 0 0


 . (2.13)

2.3 OPERATIONS

2.3.1 Summation and Product Notation

For completeness, we review the standard mathematical notation for sums and prod-
ucts. The sum of a sequence of numbers a1, a2, . . . , an is indicated by

n∑
i=1

ai = a1 + a2 + · · · + an .

If the n numbers are all the same, then
∑n

i=1 a = a + a + · · · + a = na. The sum of
all the numbers in an array with double subscripts, such as

a11 a12 a13
a21 a22 a23,

is indicated by

2∑
i=1

3∑
j=1

ai j = a11 + a12 + a13 + a21 + a22 + a23.

This is sometimes abbreviated to

2∑
i=1

3∑
j=1

ai j =
∑

i j

ai j .
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The product of a sequence of numbers a1, a2, . . . , an is indicated by

n∏
i=1

ai = (a1)(a2) · · · (an).

If the n numbers are all equal, the product becomes
∏n

i=1 a = (a)(a) · · · (a) = an .

2.3.2 Addition of Matrices and Vectors

If two matrices (or two vectors) are the same size, their sum is found by adding
corresponding elements; that is, if A is n × p and B is n × p, then C = A + B is also
n × p and is found as (ci j ) = (ai j + bi j ). For example,


 −2 5

3 1
7 −6


+


 3 −2

4 5
10 −3


 =


 1 3

7 6
17 −9


 ,


 1

3
7


+


 5

−1
3


 =


 6

2
10


 .

Similarly, the difference between two matrices or two vectors of the same size is
found by subtracting corresponding elements. Thus C = A − B is found as (ci j ) =
(ai j − bi j ). For example,

(3 9 − 4)− (5 − 4 2) = (−2 13 − 6).

If two matrices are identical, their difference is a zero matrix; that is, A = B implies
A − B = O. For example,

(
3 −2 4
6 7 5

)
−
(

3 −2 4
6 7 5

)
=
(

0 0 0
0 0 0

)
.

Matrix addition is commutative:

A + B = B + A. (2.14)

The transpose of the sum (difference) of two matrices is the sum (difference) of
the transposes:

(A + B)′ = A′ + B′, (2.15)

(A − B)′ = A′ − B′, (2.16)

(x + y)′ = x′ + y′, (2.17)

(x − y)′ = x′ − y′. (2.18)
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2.3.3 Multiplication of Matrices and Vectors

In order for the product AB to be defined, the number of columns in A must be the
same as the number of rows in B, in which case A and B are said to be conformable.
Then the (i j)th element of C = AB is

ci j =
∑

k

aikbk j . (2.19)

Thus ci j is the sum of products of the i th row of A and the j th column of B. We
therefore multiply each row of A by each column of B, and the size of AB consists
of the number of rows of A and the number of columns of B. Thus, if A is n × m and
B is m × p, then C = AB is n × p. For example, if

A =




2 1 3
4 6 5
7 2 3
1 3 2


 and B =


 1 4

2 6
3 8


 ,

then

C = AB =




2 · 1 + 1 · 2 + 3 · 3 2 · 4 + 1 · 6 + 3 · 8
4 · 1 + 6 · 2 + 5 · 3 4 · 4 + 6 · 6 + 5 · 8
7 · 1 + 2 · 2 + 3 · 3 7 · 4 + 2 · 6 + 3 · 8
1 · 1 + 3 · 2 + 2 · 3 1 · 4 + 3 · 6 + 2 · 8




=




13 38
31 92
20 64
13 38


 .

Note that A is 4 × 3, B is 3 × 2, and AB is 4 × 2. In this case, AB is of a different
size than either A or B.

If A and B are both n × n, then AB is also n × n. Clearly, A2 is defined only if A
is a square matrix.

In some cases AB is defined, but BA is not defined. In the preceding example, BA
cannot be found because B is 3×2 and A is 4×3 and a row of B cannot be multiplied
by a column of A. Sometimes AB and BA are both defined but are different in size.
For example, if A is 2 × 4 and B is 4 × 2, then AB is 2 × 2 and BA is 4 × 4. If A and
B are square and the same size, then AB and BA are both defined. However,

AB �= BA, (2.20)

except for a few special cases. For example, let

A =
(

1 3
2 4

)
, B =

(
1 −2
3 5

)
.
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Then

AB =
(

10 13
14 16

)
, BA =

( −3 −5
13 29

)
.

Thus we must be careful to specify the order of multiplication. If we wish to multiply
both sides of a matrix equation by a matrix, we must multiply on the left or on the
right and be consistent on both sides of the equation.

Multiplication is distributive over addition or subtraction:

A(B + C) = AB + AC, (2.21)

A(B − C) = AB − AC, (2.22)

(A + B)C = AC + BC, (2.23)

(A − B)C = AC − BC. (2.24)

Note that, in general, because of (2.20),

A(B + C) �= BA + CA. (2.25)

Using the distributive law, we can expand products such as (A − B)(C − D) to
obtain

(A − B)(C − D) = (A − B)C − (A − B)D [by (2.22)]

= AC − BC − AD + BD [by (2.24)]. (2.26)

The transpose of a product is the product of the transposes in reverse order:

(AB)′ = B′A′. (2.27)

Note that (2.27) holds as long as A and B are conformable. They need not be square.
Multiplication involving vectors follows the same rules as for matrices. Suppose

A is n × p, a is p × 1, b is p × 1, and c is n × 1. Then some possible products are
Ab, c′A, a′b, b′a, and ab′. For example, let

A =
(

3 −2 4
1 3 5

)
, a =


 1

−2
3


 , b =


 2

3
4


 , c =

(
2

−5

)
.

Then

Ab =
(

3 −2 4
1 3 5

) 2
3
4


 =

(
16
31

)
,
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c′A = (2 −5)
(

3 −2 4
1 3 5

)
= (1 −19 −17),

c′Ab = (2 −5)

(
3 −2 4
1 3 5

) 2
3
4


 = (2 −5)

(
16
31

)
= −123,

a′b = (1 −2 3)


 2

3
4


 = 8,

b′a = (2 3 4)


 1

−2
3


 = 8,

ab′ =

 1

−2
3


(2 3 4) =


 2 3 4

−4 −6 −8
6 9 12


 ,

ac′ =

 1

−2
3


(2 −5) =


 2 −5

−4 10
6 −15


 .

Note that Ab is a column vector, c′A is a row vector, c′Ab is a scalar, and a′b = b′a.
The triple product c′Ab was obtained as c′(Ab). The same result would be obtained
if we multiplied in the order (c′A)b:

(c′A)b = (1 −19 −17)


 2

3
4


 = −123.

This is true in general for a triple product:

ABC = A(BC) = (AB)C. (2.28)

Thus multiplication of three matrices can be defined in terms of the product of two
matrices, since (fortunately) it does not matter which two are multiplied first. Note
that A and B must be conformable for multiplication, and B and C must be con-
formable. For example, if A is n × p, B is p × q, and C is q × m, then both multi-
plications are possible and the product ABC is n × m.

We can sometimes factor a sum of triple products on both the right and left sides.
For example,

ABC + ADC = A(B + D)C. (2.29)

As another illustration, let X be n × p and A be n × n. Then

X′X − X′AX = X′(X − AX) = X′(I − A)X. (2.30)



14 MATRIX ALGEBRA

If a and b are both n × 1, then

a′b = a1b1 + a2b2 + · · · + anbn (2.31)

is a sum of products and is a scalar. On the other hand, ab′ is defined for any size a
and b and is a matrix, either rectangular or square:

ab′ =




a1
a2
...

an


(b1 b2 · · · bp) =




a1b1 a1b2 · · · a1bp

a2b1 a2b2 · · · a2bp
...

...
...

anb1 anb2 · · · anbp


 . (2.32)

Similarly,

a′a = a2
1 + a2

2 + · · · + a2
n , (2.33)

aa′ =




a2
1 a1a2 · · · a1an

a2a1 a2
2 · · · a2an

...
...

...

ana1 ana2 · · · a2
n


 . (2.34)

Thus a′a is a sum of squares, and aa′ is a square (symmetric) matrix. The products a′a
and aa′ are sometimes referred to as the dot product and matrix product, respectively.
The square root of the sum of squares of the elements of a is the distance from the
origin to the point a and is also referred to as the length of a:

Length of a = √
a′a =

√∑n
i=1 a2

i . (2.35)

As special cases of (2.33) and (2.34), note that if j is n × 1, then

j′j = n, jj′ =




1 1 · · · 1
1 1 · · · 1
...

...
...

1 1 · · · 1


 = J, (2.36)

where j and J were defined in (2.11) and (2.12). If a is n × 1 and A is n × p, then

a′j = j′a =
n∑

i=1

ai , (2.37)
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j′A =
(∑

i

ai1,
∑

i

ai2, . . . ,
∑

i

aip

)
, Aj =



∑

j a1 j∑
j a2 j
...∑
j anj


 . (2.38)

Thus a′j is the sum of the elements in a, j′A contains the column sums of A, and Aj
contains the row sums of A. In a′j, the vector j is n × 1; in j′A, the vector j is n × 1;
and in Aj, the vector j is p × 1.

Since a′b is a scalar, it is equal to its transpose:

a′b = (a′b)′ = b′(a′)′ = b′a. (2.39)

This allows us to write (a′b)2 in the form

(a′b)2 = (a′b)(a′b) = (a′b)(b′a) = a′(bb′)a. (2.40)

From (2.18), (2.26), and (2.39) we obtain

(x − y)′(x − y) = x′x − 2x′y + y′y. (2.41)

Note that in analogous expressions with matrices, however, the two middle terms
cannot be combined:

(A − B)′(A − B) = A′A − A′B − B′A + B′B,

(A − B)2 = (A − B)(A − B) = A2 − AB − BA + B2.

If a and x1, x2, . . . , xn are all p×1 and A is p× p, we obtain the following factoring
results as extensions of (2.21) and (2.29):

n∑
i=1

a′xi = a′
n∑

i=1

xi , (2.42)

n∑
i=1

Axi = A
n∑

i=1

xi , (2.43)

n∑
i=1

(a′xi )
2 = a′

(
n∑

i=1

xi x′
i

)
a [by (2.40)], (2.44)

n∑
i=1

Axi (Axi )
′ = A

(
n∑

i=1

xi x′
i

)
A′. (2.45)

We can express matrix multiplication in terms of row vectors and column vectors.
If a′

i is the i th row of A and b j is the j th column of B, then the (i j)th element of AB
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is a′
i b j . For example, if A has three rows and B has two columns,

A =

 a′

1
a′

2
a′

3


 , B = (b1,b2),

then the product AB can be written as

AB =

 a′

1b1 a′
1b2

a′
2b1 a′

2b2
a′

3b1 a′
3b2


 . (2.46)

This can be expressed in terms of the rows of A:

AB =

 a′

1(b1,b2)

a′
2(b1,b2)

a′
3(b1,b2)


 =


 a′

1B
a′

2B
a′

3B


 =


 a′

1
a′

2
a′

3


B. (2.47)

Note that the first column of AB in (2.46) is


 a′

1b1
a′

2b1
a′

3b1


 =


 a′

1
a′

2
a′

3


b1 = Ab1,

and likewise the second column is Ab2. Thus AB can be written in the form

AB = A(b1,b2) = (Ab1,Ab2).

This result holds in general:

AB = A(b1,b2, . . . ,bp) = (Ab1,Ab2, . . . ,Abp). (2.48)

To further illustrate matrix multiplication in terms of rows and columns, let A =(a′
1

a′
2

)
be a 2 × p matrix, x be a p × 1 vector, and S be a p × p matrix. Then

Ax =
(

a′
1

a′
2

)
x =

(
a′

1x
a′

2x

)
, (2.49)

ASA′ =
(

a′
1Sa1 a′

1Sa2
a′

2Sa1 a′
2Sa2

)
. (2.50)

Any matrix can be multiplied by its transpose. If A is n × p, then

AA′ is n × n and is obtained as products of rows of A [see (2.52)].
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Similarly,

A′A is p × p and is obtained as products of columns of A [see (2.54)].

From (2.6) and (2.27), it is clear that both AA′ and A′A are symmetric.
In the preceding illustration for AB in terms of row and column vectors, the rows

of A were denoted by a′
i and the columns of B, by b j . If both rows and columns of

a matrix A are under discussion, as in AA′ and A′A, we will use the notation a′
i for

rows and a( j) for columns. To illustrate, if A is 3 × 4, we have

A =

 a11 a12 a13 a14

a21 a22 a23 a24
a31 a32 a33 a34


 =


 a′

1
a′

2
a′

3


 = (a(1), a(2), a(3), a(4)),

where, for example,

a′
2 = (a21 a22 a23 a24),

a(3) =

 a13

a23
a33


 .

With this notation for rows and columns of A, we can express the elements of
A′A or of AA′ as products of the rows of A or of the columns of A. Thus if we write
A in terms of its rows as

A =




a′
1

a′
2
...

a′
n


 ,

then we have

A′A = (a1, a2, . . . , an)




a′
1

a′
2
...

a′
n


 =

n∑
i=1

ai a′
i , (2.51)

AA′ =




a′
1

a′
2
...

a′
n


(a1, a2, . . . , an) =




a′
1a1 a′

1a2 · · · a′
1an

a′
2a1 a′

2a2 · · · a′
2an

...
...

...

a′
na1 a′

na2 · · · a′
nan


 . (2.52)

Similarly, if we express A in terms of its columns as

A = (a(1), a(2), . . . , a(p)),
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then

AA′ = (a(1), a(2), . . . , a(p))




a′
(1)

a′
(2)
...

a′
(p)


 =

p∑
j=1

a( j)a′
( j), (2.53)

A′A =




a′
(1)

a′
(2)
...

a′
(p)


(a(1), a(2), . . . , a(p))

=




a′
(1)a(1) a′

(1)a(2) · · · a′
(1)a(p)

a′
(2)a(1) a′

(2)a(2) · · · a′
(2)a(p)

...
...

...

a′
(p)a(1) a′

(p)a(2) . . . a′
(p)a(p)


 . (2.54)

Let A = (ai j ) be an n×n matrix and D be a diagonal matrix, D = diag(d1, d2, . . . , dn).
Then, in the product DA, the i th row of A is multiplied by di , and in AD, the j th
column of A is multiplied by d j . For example, if n = 3, we have

DA =

 d1 0 0

0 d2 0
0 0 d3




 a11 a12 a13

a21 a22 a23
a31 a32 a33




=

 d1a11 d1a12 d1a13

d2a21 d2a22 d2a23
d3a31 d3a32 d3a33


 , (2.55)

AD =

 a11 a12 a13

a21 a22 a23
a31 a32 a33




 d1 0 0

0 d2 0
0 0 d3




=

 d1a11 d2a12 d3a13

d1a21 d2a22 d3a23
d1a31 d2a32 d3a33


 , (2.56)

DAD =

 d2

1 a11 d1d2a12 d1d3a13

d2d1a21 d2
2 a22 d2d3a23

d3d1a31 d3d2a32 d2
3 a33


 . (2.57)

In the special case where the diagonal matrix is the identity, we have

IA = AI = A. (2.58)

If A is rectangular, (2.58) still holds, but the two identities are of different sizes.
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The product of a scalar and a matrix is obtained by multiplying each element of
the matrix by the scalar:

cA = (cai j ) =




ca11 ca12 · · · ca1m

ca21 ca22 · · · ca2m
...

...
...

can1 can2 · · · canm


 . (2.59)

For example,

cI =




c 0 · · · 0
0 c · · · 0
...

...
...

0 0 · · · c


 , (2.60)

cx =




cx1
cx2
...

cxn


 . (2.61)

Since cai j = ai j c, the product of a scalar and a matrix is commutative:

cA = Ac. (2.62)

Multiplication of vectors or matrices by scalars permits the use of linear combi-
nations, such as

k∑
i=1

ai xi = a1x1 + a2x2 + · · · + akxk,

k∑
i=1

ai Bi = a1B1 + a2B2 + · · · + akBk .

If A is a symmetric matrix and x and y are vectors, the product

y′Ay =
∑

i

aii y2
i +

∑
i �= j

ai j yi y j (2.63)

is called a quadratic form, whereas

x′Ay =
∑

i j

ai j xi y j (2.64)
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is called a bilinear form. Either of these is, of course, a scalar and can be treated
as such. Expressions such as x′Ay/

√
x′Ax are permissible (assuming A is positive

definite; see Section 2.7).

2.4 PARTITIONED MATRICES

It is sometimes convenient to partition a matrix into submatrices. For example, a
partitioning of a matrix A into four submatrices could be indicated symbolically as
follows:

A =
(

A11 A12
A21 A22

)
.

For example, a 4 × 5 matrix A can be partitioned as

A =




2 1 3 8 4
−3 4 0 2 7

9 3 6 5 −2

4 8 3 1 6


 =

(
A11 A12
A21 A22

)
,

where

A11 =

 2 1 3

−3 4 0
9 3 6


 , A12 =


 8 4

2 7
5 −2


 ,

A21 = (4 8 3), A22 = (1 6).

If two matrices A and B are conformable and A and B are partitioned so that the
submatrices are appropriately conformable, then the product AB can be found by
following the usual row-by-column pattern of multiplication on the submatrices as if
they were single elements; for example,

AB =
(

A11 A12
A21 A22

)(
B11 B12
B21 B22

)

=
(

A11B11 + A12B21 A11B12 + A12B22
A21B11 + A22B21 A21B12 + A22B22

)
. (2.65)

It can be seen that this formulation is equivalent to the usual row-by-column defi-
nition of matrix multiplication. For example, the (1, 1) element of AB is the product
of the first row of A and the first column of B. In the (1, 1) element of A11B11 we
have the sum of products of part of the first row of A and part of the first column of
B. In the (1, 1) element of A12B21 we have the sum of products of the rest of the first
row of A and the remainder of the first column of B.
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Multiplication of a matrix and a vector can also be carried out in partitioned form.
For example,

Ab = (A1,A2)

(
b1
b2

)
= A1b1 + A2b2, (2.66)

where the partitioning of the columns of A corresponds to the partitioning of the
elements of b. Note that the partitioning of A into two sets of columns is indicated
by a comma, A = (A1,A2).

The partitioned multiplication in (2.66) can be extended to individual columns of
A and individual elements of b:

Ab = (a1, a2, . . . , ap)




b1
b2
...

bp




= b1a1 + b2a2 + · · · + bpap. (2.67)

Thus Ab is expressible as a linear combination of the columns of A, the coefficients
being elements of b. For example, let

A =

 3 −2 1

2 1 0
4 3 2


 and b =


 4

2
3


 .

Then

Ab =

 11

10
28


 .

Using a linear combination of columns of A as in (2.67), we obtain

Ab = b1a1 + b2a2 + b3a3

= 4


 3

2
4


+ 2


 −2

1
3


+ 3


 1

0
2




=

 12

8
16


+


 −4

2
6


+


 3

0
6


 =


 11

10
28


 .
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We note that if A is partitioned as in (2.66), A = (A2,A2), the transpose is not equal
to (A′

1,A′
2), but rather

A′ = (A1,A2)
′ =

(
A′

1
A′

2

)
. (2.68)
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We note that if A is partitioned as in (2.66), A = (A2,A2), the transpose is not equal
to (A′

1,A′
2), but rather

A′ = (A1,A2)
′ =

(
A′

1
A′

2

)
. (2.68)

2.5 RANK

Before defining the rank of a matrix, we first introduce the notion of linear inde-
pendence and dependence. A set of vectors a1, a2, . . . , an is said to be linearly
dependent if constants c1, c2, . . . , cn (not all zero) can be found such that

c1a1 + c2a2 + · · · + cnan = 0. (2.69)

If no constants c1, c2, . . . , cn can be found satisfying (2.69), the set of vectors is said
to be linearly independent.

If (2.69) holds, then at least one of the vectors ai can be expressed as a linear
combination of the other vectors in the set. Thus linear dependence of a set of vec-
tors implies redundancy in the set. Among linearly independent vectors there is no
redundancy of this type.

The rank of any square or rectangular matrix A is defined as

rank(A) = number of linearly independent rows of A

= number of linearly independent columns of A.

It can be shown that the number of linearly independent rows of a matrix is always
equal to the number of linearly independent columns.

If A is n × p, the maximum possible rank of A is the smaller of n and p, in which
case A is said to be of full rank (sometimes said full row rank or full column rank).
For example,

A =
(

1 −2 3
5 2 4

)

has rank 2 because the two rows are linearly independent (neither row is a multiple of
the other). However, even though A is full rank, the columns are linearly dependent
because rank 2 implies there are only two linearly independent columns. Thus, by
(2.69), there exist constants c1, c2, and c3 such that

c1

(
1
5

)
+ c2

( −2
2

)
+ c3

(
3
4

)
=
(

0
0

)
. (2.70)
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By (2.67), we can write (2.70) in the form

(
1 −2 3
5 2 4

) c1
c2
c3


 =

(
0
0

)

or
Ac = 0. (2.71)

A solution vector to (2.70) or (2.71) is given by any multiple of c = (14,−11,−12)′.
Hence we have the interesting result that a product of a matrix A and a vector c is
equal to 0, even though A �= O and c �= 0. This is a direct consequence of the linear
dependence of the column vectors of A.

Another consequence of the linear dependence of rows or columns of a matrix is
the possibility of expressions such as AB = CB, where A �= C. For example, let

A =
(

1 3 2
2 0 −1

)
, B =


 1 2

0 1
1 0


 , C =

(
2 1 1
5 −6 −4

)
.

Then

AB = CB =
(

3 5
1 4

)
.

All three matrices A, B, and C are full rank; but being rectangular, they have a rank
deficiency in either rows or columns, which permits us to construct AB = CB with
A �= C. Thus in a matrix equation, we cannot, in general, cancel matrices from both
sides of the equation.

There are two exceptions to this rule. One exception involves a nonsingular matrix
to be defined in Section 2.6. The other special case occurs when the expression holds
for all possible values of the matrix common to both sides of the equation. For exam-
ple,

If Ax = Bx for all possible values of x, then A = B. (2.72)

To see this, let x = (1, 0, . . . , 0)′. Then the first column of A equals the first column
of B. Now let x = (0, 1, 0, . . . , 0)′, and the second column of A equals the second
column of B. Continuing in this fashion, we obtain A = B.

Suppose a rectangular matrix A is n × p of rank p, where p < n. We typically
shorten this statement to “A is n × p of rank p < n.”

2.6 INVERSE

If a matrix A is square and of full rank, then A is said to be nonsingular, and A has
a unique inverse, denoted by A−1, with the property that

AA−1 = A−1A = I. (2.73)
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For example, let

A =
(

3 4
2 6

)
.

Then

A−1 =
(

.6 −.4
−.2 .3

)
,

AA−1 =
(

3 4
2 6

)(
.6 −.4

−.2 .3

)
=
(

1 0
0 1

)
.

If A is square and of less than full rank, then an inverse does not exist, and A is
said to be singular. Note that rectangular matrices do not have inverses as in (2.73),
even if they are full rank.

If A and B are the same size and nonsingular, then the inverse of their product is
the product of their inverses in reverse order,

(AB)−1 = B−1A−1. (2.74)

Note that (2.74) holds only for nonsingular matrices. Thus, for example, if A is n × p
of rank p < n, then A′A has an inverse, but (A′A)−1 is not equal to A−1(A′)−1

because A is rectangular and does not have an inverse.
If a matrix is nonsingular, it can be canceled from both sides of an equation, pro-

vided it appears on the left (or right) on both sides. For example, if B is nonsingular,
then

AB = CB implies A = C,

since we can multiply on the right by B−1 to obtain

ABB−1 = CBB−1,

AI = CI,

A = C.

Otherwise, if A, B, and C are rectangular or square and singular, it is easy to construct
AB = CB, with A �= C, as illustrated near the end of Section 2.5.

The inverse of the transpose of a nonsingular matrix is given by the transpose of
the inverse:

(A′)−1 = (A−1)′. (2.75)

If the symmetric nonsingular matrix A is partitioned in the form

A =
(

A11 a12
a′

12 a22

)
,
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then the inverse is given by

A−1 = 1

b

(
bA−1

11 + A−1
11 a12a′

12A−1
11 −A−1

11 a12

−a′
12A−1

11 1

)
, (2.76)

where b = a22 − a′
12A−1

11 a12. A nonsingular matrix of the form B + cc′, where B is
nonsingular, has as its inverse

(B + cc′)−1 = B−1 − B−1cc′B−1

1 + c′B−1c
. (2.77)

2.7 POSITIVE DEFINITE MATRICES

The symmetric matrix A is said to be positive definite if x′Ax > 0 for all possible
vectors x (except x = 0). Similarly, A is positive semidefinite if x′Ax ≥ 0 for all
x �= 0. [A quadratic form x′Ax was defined in (2.63).] The diagonal elements aii of a
positive definite matrix are positive. To see this, let x′ = (0, . . . , 0, 1, 0, . . . , 0)with
a 1 in the i th position. Then x′Ax = aii > 0. Similarly, for a positive semidefinite
matrix A, aii ≥ 0 for all i .

One way to obtain a positive definite matrix is as follows:

If A = B′B, where B is n × p of rank p < n, then B′B is positive definite. (2.78)

This is easily shown:

x′Ax = x′B′Bx = (Bx)′(Bx) = z′z,

where z = Bx. Thus x′Ax = ∑n
i=1 z2

i , which is positive (Bx cannot be 0 unless
x = 0, because B is full rank). If B is less than full rank, then by a similar argument,
B′B is positive semidefinite.

Note that A = B′B is analogous to a = b2 in real numbers, where the square of
any number (including negative numbers) is positive.

In another analogy to positive real numbers, a positive definite matrix can be
factored into a “square root” in two ways. We give one method in (2.79) and the
other in Section 2.11.8.

A positive definite matrix A can be factored into

A = T′T, (2.79)

where T is a nonsingular upper triangular matrix. One way to obtain T is the
Cholesky decomposition, which can be carried out in the following steps.

Let A = (ai j ) and T = (ti j ) be n × n. Then the elements of T are found as
follows:
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t11 = √
a11, t1 j = a1 j

t11
2 ≤ j ≤ n,

tii =
√√√√aii −

i−1∑
k=1

t2
ki 2 ≤ i ≤ n,

ti j = ai j −∑i−1
k=1 tki tk j

tii
2 ≤ i < j ≤ n,

ti j = 0 1 ≤ j < i ≤ n.

For example, let

A =

 3 0 −3

0 6 3
−3 3 6


 .

Then by the Cholesky method, we obtain

T =



√
3 0 −√

3
0

√
6

√
1.5

0 0
√

1.5


 ,

T′T =



√
3 0 0

0
√

6 0
−√

3
√

1.5
√

1.5






√
3 0 −√

3
0

√
6

√
1.5

0 0
√

1.5




=

 3 0 −3

0 6 3
−3 3 6


 = A.

2.8 DETERMINANTS

The determinant of an n×n matrix A is defined as the sum of all n! possible products
of n elements such that

1. each product contains one element from every row and every column, and
2. the factors in each product are written so that the column subscripts appear in

order of magnitude and each product is then preceded by a plus or minus sign
according to whether the number of inversions in the row subscripts is even or
odd.

An inversion occurs whenever a larger number precedes a smaller one. The symbol
n! is defined as

n! = n(n − 1)(n − 2) · · · 2 · 1. (2.80)
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The determinant of A is a scalar denoted by |A| or by det(A). The preceding def-
inition is not useful in evaluating determinants, except in the case of 2 × 2 or 3 × 3
matrices. For larger matrices, other methods are available for manual computation,
but determinants are typically evaluated by computer. For a 2 × 2 matrix, the deter-
minant is found by

|A| =
∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ = a11a22 − a21a12. (2.81)

For a 3 × 3 matrix, the determinant is given by

|A| = a11a22a33 + a12a23a31 + a13a32a21 − a31a22a13 − a32a23a11 − a33a12a21.

(2.82)

This can be found by the following scheme. The three positive terms are obtained by

and the three negative terms, by

The determinant of a diagonal matrix is the product of the diagonal elements; that
is, if D = diag(d1, d2, . . . , dn), then

|D| =
n∏

i=1

di . (2.83)

As a special case of (2.83), suppose all diagonal elements are equal, say,

D = diag(c, c, . . . , c) = cI.
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Then

|D| = |cI| =
n∏

i=1

c = cn. (2.84)

The extension of (2.84) to any square matrix A is

|cA| = cn|A|. (2.85)

Since the determinant is a scalar, we can carry out operations such as

|A|2, |A|1/2, 1

|A| ,

provided that |A| > 0 for |A|1/2 and that |A| �= 0 for 1/|A|.
If the square matrix A is singular, its determinant is 0:

|A| = 0 if A is singular. (2.86)

If A is near singular, then there exists a linear combination of the columns that is
close to 0, and |A| is also close to 0. If A is nonsingular, its determinant is nonzero:

|A| �= 0 if A is nonsingular. (2.87)

If A is positive definite, its determinant is positive:

|A| > 0 if A is positive definite. (2.88)

If A and B are square and the same size, the determinant of the product is the
product of the determinants:

|AB| = |A||B|. (2.89)

For example, let

A =
(

1 2
−3 5

)
and B =

(
4 2
1 3

)
.

Then

AB =
(

6 8
−7 9

)
, |AB| = 110,

|A| = 11, |B| = 10, |A||B| = 110.

The determinant of the transpose of a matrix is the same as the determinant of the
matrix, and the determinant of the the inverse of a matrix is the reciprocal of the
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determinant:

|A′| = |A|, (2.90)

|A−1| = 1

|A| = |A|−1. (2.91)

If a partitioned matrix has the form

A =
(

A11 O
O A22

)
,

where A11 and A22 are square but not necessarily the same size, then

|A| =
∣∣∣∣ A11 O

O A22

∣∣∣∣ = |A11||A22|. (2.92)

For a general partitioned matrix,

A =
(

A11 A12
A21 A22

)
,

where A11 and A22 are square and nonsingular (not necessarily the same size), the
determinant is given by either of the following two expressions:

∣∣∣∣ A11 A12
A21 A22

∣∣∣∣ = |A11||A22 − A21A−1
11 A12| (2.93)

= |A22||A11 − A12A−1
22 A21|. (2.94)

Note the analogy of (2.93) and (2.94) to the case of the determinant of a 2 × 2
matrix as given by (2.81):

∣∣∣∣ a11 a12
a21 a22

∣∣∣∣ = a11a22 − a21a12

= a11

(
a22 − a21a12

a11

)

= a22

(
a11 − a12a21

a22

)
.

If B is nonsingular and c is a vector, then

|B + cc′| = |B|(1 + c′B−1c). (2.95)
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2.9 TRACE

A simple function of an n × n matrix A is the trace, denoted by tr(A) and defined
as the sum of the diagonal elements of A; that is, tr(A) = ∑n

i=1 aii . The trace is, of
course, a scalar. For example, suppose

A =

 5 4 4

2 −3 1
3 7 9


 .

Then

tr(A) = 5 + (−3)+ 9 = 11.

The trace of the sum of two square matrices is the sum of the traces of the two
matrices:

tr(A + B) = tr(A)+ tr(B). (2.96)

An important result for the product of two matrices is

tr(AB) = tr(BA). (2.97)

This result holds for any matrices A and B where AB and BA are both defined. It is
not necessary that A and B be square or that AB equal BA. For example, let

A =

 1 3

2 −1
4 6


 , B =

(
3 −2 1
2 4 5

)
.

Then

AB =

 9 10 16

4 −8 −3
24 16 34


 , BA =

(
3 17

30 32

)
,

tr(AB) = 9 − 8 + 34 = 35, tr(BA) = 3 + 32 = 35.

From (2.52) and (2.54), we obtain

tr(A′A) = tr(AA′) =
n∑

i=1

p∑
j=1

a2
i j , (2.98)

where the ai j ’s are elements of the n × p matrix A.
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2.10 ORTHOGONAL VECTORS AND MATRICES

Two vectors a and b of the same size are said to be orthogonal if

a′b = a1b1 + a2b2 + · · · + anbn = 0. (2.99)

Geometrically, orthogonal vectors are perpendicular [see (3.14) and the comments
following (3.14)]. If a′a = 1, the vector a is said to be normalized. The vector a can
always be normalized by dividing by its length,

√
a′a. Thus

c = a√
a′a

(2.100)

is normalized so that c′c = 1.
A matrix C = (c1, c2, . . . , cp) whose columns are normalized and mutually

orthogonal is called an orthogonal matrix. Since the elements of C′C are products of
columns of C [see (2.54)], which have the properties c′

i ci = 1 for all i and c′
i c j = 0

for all i �= j , we have

C′C = I. (2.101)

If C satisfies (2.101), it necessarily follows that

CC′ = I, (2.102)

from which we see that the rows of C are also normalized and mutually orthogonal.
It is clear from (2.101) and (2.102) that C−1 = C′ for an orthogonal matrix C.

We illustrate the creation of an orthogonal matrix by starting with

A =

 1 1 1

1 1 −1
1 −2 0


 ,

whose columns are mutually orthogonal. To normalize the three columns, we divide
by the respective lengths,

√
3,

√
6, and

√
2, to obtain

C =

 1/

√
3 1/

√
6 1/

√
2

1/
√

3 1/
√

6 −1/
√

2
1/

√
3 −2/

√
6 0


 .

Note that the rows also became normalized and mutually orthogonal so that C satis-
fies both (2.101) and (2.102).

Multiplication by an orthogonal matrix has the effect of rotating axes; that is, if a
point x is transformed to z = Cx, where C is orthogonal, then
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z′z = (Cx)′(Cx) = x′C′Cx = x′Ix = x′x, (2.103)

and the distance from the origin to z is the same as the distance to x.

2.11 EIGENVALUES AND EIGENVECTORS

2.11.1 Definition

For every square matrix A, a scalar λ and a nonzero vector x can be found such that

Ax = λx. (2.104)

In (2.104), λ is called an eigenvalue of A, and x is an eigenvector of A corresponding
to λ. To find λ and x, we write (2.104) as

(A − λI)x = 0. (2.105)

If |A − λI| �= 0, then (A − λI) has an inverse and x = 0 is the only solution. Hence,
in order to obtain nontrivial solutions, we set |A − λI| = 0 to find values of λ
that can be substituted into (2.105) to find corresponding values of x. Alternatively,
(2.69) and (2.71) require that the columns of A − λI be linearly dependent. Thus in
(A − λI)x = 0, the matrix A − λI must be singular in order to find a solution vector
x that is not 0.

The equation |A − λI| = 0 is called the characteristic equation. If A is n × n,
the characteristic equation will have n roots; that is, A will have n eigenvalues λ1,
λ2, . . . , λn . The λ’s will not necessarily all be distinct or all nonzero. However, if A
arises from computations on real (continuous) data and is nonsingular, the λ’s will
all be distinct (with probability 1). After finding λ1, λ2, . . . , λn , the accompanying
eigenvectors x1, x2, . . . , xn can be found using (2.105).

If we multiply both sides of (2.105) by a scalar k and note by (2.62) that k and
A − λI commute, we obtain

(A − λI)kx = k0 = 0. (2.106)

Thus if x is an eigenvector of A, kx is also an eigenvector, and eigenvectors are
unique only up to multiplication by a scalar. Hence we can adjust the length of x,
but the direction from the origin is unique; that is, the relative values of (ratios of)
the components of x = (x1, x2, . . . , xn)

′ are unique. Typically, the eigenvector x is
scaled so that x′x = 1.

To illustrate, we will find the eigenvalues and eigenvectors for the matrix

A =
(

1 2
−1 4

)
.
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The characteristic equation is

|A − λI| =
∣∣∣∣ 1 − λ 2

−1 4 − λ

∣∣∣∣ = (1 − λ)(4 − λ)+ 2 = 0,

λ2 − 5λ+ 6 = (λ− 3)(λ− 2) = 0,

from which λ1 = 3 and λ2 = 2. To find the eigenvector corresponding to λ1 = 3, we
use (2.105),

(A − λI)x = 0,(
1 − 3 2
−1 4 − 3

)(
x1
x2

)
=
(

0
0

)
,

−2x1 + 2x2 = 0

−x1 + x2 = 0.

As expected, either equation is redundant in the presence of the other, and there
remains a single equation with two unknowns, x1 = x2. The solution vector can be
written with an arbitrary constant,

(
x1
x2

)
= x1

(
1
1

)
= c

(
1
1

)
.

If c is set equal to 1/
√

2 to normalize the eigenvector, we obtain

x1 =
(

1/
√

2
1/

√
2

)
.

Similarly, corresponding to λ2 = 2, we have

x2 =
(

2/
√

5
1/

√
5

)
.

2.11.2 I + A and I − A

If λ is an eigenvalue of A and x is the corresponding eigenvector, then 1 + λ is an
eigenvalue of I + A and 1 − λ is an eigenvalue of I − A. In either case, x is the
corresponding eigenvector.

We demonstrate this for I + A:

Ax = λx,

x + Ax = x + λx,

(I + A)x = (1 + λ)x.
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2.11.3 tr(A) and |A|
For any square matrix A with eigenvalues λ1, λ2, . . . , λn , we have

tr(A) =
n∑

i=1

λi , (2.107)

|A| =
n∏

i=1

λi . (2.108)

Note that by the definition in Section 2.9, tr(A) is also equal to
∑n

i=1 aii , but
aii �= λi .

We illustrate (2.107) and (2.108) using the matrix

A =
(

1 2
−1 4

)

from the illustration in Section 2.11.1, for which λ1 = 3 and λ2 = 2. Using (2.107),
we obtain

tr(A) = λ1 + λ2 = 3 + 2 = 5,

and from (2.108), we have

|A| = λ1λ2 = 3(2) = 6.

By definition, we obtain

tr(A) = 1 + 4 = 5 and |A| = (1)(4)− (−1)(2) = 6.

2.11.4 Positive Definite and Semidefinite Matrices

The eigenvalues and eigenvectors of positive definite and positive semidefinite matri-
ces have the following properties:

1. The eigenvalues of a positive definite matrix are all positive.
2. The eigenvalues of a positive semidefinite matrix are positive or zero, with the

number of positive eigenvalues equal to the rank of the matrix.

It is customary to list the eigenvalues of a positive definite matrix in descending
order: λ1 > λ2 > · · · > λp. The eigenvectors x1, x2, . . . , xn are listed in the same
order; x1 corresponds to λ1, x2 corresponds to λ2, and so on.

The following result, known as the Perron–Frobenius theorem, is of interest in
Chapter 12: If all elements of the positive definite matrix A are positive, then all ele-
ments of the first eigenvector are positive. (The first eigenvector is the one associated
with the first eigenvalue, λ1.)
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2.11.5 The Product AB

If A and B are square and the same size, the eigenvalues of AB are the same as those
of BA, although the eigenvectors are usually different. This result also holds if AB
and BA are both square but of different sizes, as when A is n × p and B is p × n. (In
this case, the nonzero eigenvalues of AB and BA will be the same.)

2.11.6 Symmetric Matrix

The eigenvectors of an n ×n symmetric matrix A are mutually orthogonal. It follows
that if the n eigenvectors of A are normalized and inserted as columns of a matrix
C = (x1, x2, . . . , xn), then C is orthogonal.

2.11.7 Spectral Decomposition

It was noted in Section 2.11.6 that if the matrix C = (x1, x2, . . . , xn) contains the
normalized eigenvectors of an n × n symmetric matrix A, then C is orthogonal.
Therefore, by (2.102), I = CC′, which we can multiply by A to obtain

A = ACC′.

We now substitute C = (x1, x2, . . . , xn):

A = A(x1, x2, . . . , xn)C′

= (Ax1,Ax2, . . . ,Axn)C′ [by (2.48)]

= (λ1x1, λ2x2, . . . , λnxn)C′ [by (2.104)]

= CDC′ [by (2.56)], (2.109)

where

D =



λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

0 0 · · · λn


 . (2.110)

The expression A = CDC′ in (2.109) for a symmetric matrix A in terms of its
eigenvalues and eigenvectors is known as the spectral decomposition of A.

Since C is orthogonal and C′C = CC′ = I, we can multiply (2.109) on the left
by C′ and on the right by C to obtain

C′AC = D. (2.111)

Thus a symmetric matrix A can be diagonalized by an orthogonal matrix containing
normalized eigenvectors of A, and by (2.110) the resulting diagonal matrix contains
eigenvalues of A.
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2.11.8 Square Root Matrix

If A is positive definite, the spectral decomposition of A in (2.109) can be modified
by taking the square roots of the eigenvalues to produce a square root matrix,

A1/2 = CD1/2C′, (2.112)

where

D1/2 =




√
λ1 0 · · · 0
0

√
λ2 · · · 0

...
...

...

0 0 · · · √
λn


 . (2.113)

The square root matrix A1/2 is symmetric and serves as the square root of A:

A1/2A1/2 = (A1/2)2 = A. (2.114)

2.11.9 Square Matrices and Inverse Matrices

Other functions of A have spectral decompositions analogous to (2.112). Two of
these are the square and inverse of A. If the square matrix A has eigenvalues λ1,
λ2, . . . , λn and accompanying eigenvectors x1, x2, . . . , xn , then A2 has eigenval-
ues λ2

1, λ2
2, . . . , λ

2
n and eigenvectors x1, x2, . . . , xn . If A is nonsingular, then A−1

has eigenvalues 1/λ1, 1/λ2, . . . , 1/λn and eigenvectors x1, x2, . . . , xn . If A is also
symmetric, then

A2 = CD2C′, (2.115)

A−1 = CD−1C′, (2.116)

where C = (x1, x2, . . . , xn) has as columns the normalized eigenvectors of A (and of
A2 and A−1), D2 = diag(λ2

1, λ
2
2, . . . , λ

2
n), and D−1 = diag(1/λ1, 1/λ2, . . . , 1/λn).

2.11.10 Singular Value Decomposition

In (2.109) in Section 2.11.7, we expressed a symmetric matrix A in terms of its
eigenvalues and eigenvectors in the spectral decomposition A = CDC′. In a similar
manner, we can express any (real) matrix A in terms of eigenvalues and eigenvectors
of A′A and AA′. Let A be an n × p matrix of rank k. Then the singular value
decomposition of A can be expressed as

A = UDV′, (2.117)

where U is n × k, D is k × k, and V is p × k. The diagonal elements of the non-
singular diagonal matrix D = diag(λ1, λ2, . . . , λk) are the positive square roots of
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λ2
1, λ2

2, . . . , λ
2
k , which are the nonzero eigenvalues of A′A or of AA′. The values

λ1, λ2, . . . , λk are called the singular values of A. The k columns of U are the nor-
malized eigenvectors of AA′ corresponding to the eigenvalues λ2

1, λ2
2, . . . , λ

2
k . The k

columns of V are the normalized eigenvectors of A′A corresponding to the eigenval-
ues λ2

1, λ2
2, . . . , λ

2
k . Since the columns of U and of V are (normalized) eigenvectors

of symmetric matrices, they are mutually orthogonal (see Section 2.11.6), and we
have U′U = V′V = I.
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PROBLEMS

2.1 Let

A =
(

4 2 3
7 5 8

)
, B =

(
3 −2 4
6 9 −5

)
.

(a) Find A + B and A − B.
(b) Find A′A and AA′.

2.2 Use the matrices A and B in Problem 2.1:

(a) Find (A + B)′ and A′ + B′ and compare them, thus illustrating (2.15).
(b) Show that (A′)′ = A, thus illustrating (2.6).

2.3 Let

A =
(

1 3
2 −1

)
, B =

(
2 0
1 5

)
.

(a) Find AB and BA.
(b) Find |AB|, |A|, and |B| and verify that (2.89) holds in this case.

2.4 Use the matrices A and B in Problem 2.3:

(a) Find A + B and tr(A + B).
(b) Find tr(A) and tr(B) and show that (2.96) holds for these matrices.

2.5 Let

A =
(

1 2 3
2 −1 1

)
, B =


 3 −2

2 0
−1 1


 .

(a) Find AB and BA.
(b) Compare tr(AB) and tr(BA) and confirm that (2.97) holds here.

2.6 Let

A =

 1 2 3

2 4 6
5 10 15


 , B =


 −1 1 −2

−1 1 −2
1 −1 2


 .
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(a) Show that AB = O.

(b) Find a vector x such that Ax = 0.

(c) Show that |A| = 0.

2.7 Let

A =

 1 −1 4

−1 1 3
4 3 2


 , B =


 3 −2 4

7 1 0
2 3 5


 ,

x =

 1

−1
2


 , y =


 3

2
1


 .

Find the following:

(a) Bx (d) x′Ay (g) xx′
(b) y′B (e) x′x (h) xy′
(c) x′Ax (f) x′y (i) B′B

2.8 Use x, y, and A as defined in Problem 2.7:

(a) Find x + y and x − y.

(b) Find (x − y)′A(x − y).

2.9 Using B and x in Problem 2.7, find Bx as a linear combination of columns of
B as in (2.67) and compare with Bx found in Problem 2.7(a).

2.10 Let

A =
(

2 1
1 3

)
, B =

(
1 4 2
5 0 3

)
, I =

(
1 0
0 1

)
.

(a) Show that (AB)′ = B′A′ as in (2.27).

(b) Show that AI = A and that IB = B.

(c) Find |A|.
2.11 Let

a =

 1

−3
2


 , b =


 2

1
3


 .

(a) Find a′b and (a′b)2.

(b) Find bb′ and a′(bb′)a.

(c) Compare (a′b)2 with a′(bb′)a and thus illustrate (2.40).

math
Highlight

math
Highlight

math
Highlight

math
Highlight

math
Highlight

math
Highlight

math
Highlight

math
Highlight

math
Highlight



PROBLEMS 39

2.12 Let

A =

 1 2 3

4 5 6
7 8 9


 , D =


 a 0 0

0 b 0
0 0 c


 .

Find DA, AD, and DAD.

2.13 Let the matrices A and B be partitioned as follows:

A =



2 1 2
3 2 0

1 0 1


 , B =




1 1 1 0
2 1 1 2

2 3 1 2


 .

(a) Find AB as in (2.65) using the indicated partitioning.

(b) Check by finding AB in the usual way, ignoring the partitioning.

2.14 Let

A =
(

1 3 2
2 0 −1

)
, B =


 1 2

0 1
1 0


 , C =

(
2 1 1
5 −6 −4

)
.

Find AB and CB. Are they equal? What is the rank of A, B, and C?

2.15 Let

A =

 5 4 4

2 −3 1
3 7 2


 , B =


 1 0 1

0 1 0
1 2 3


 .

(a) Find tr(A) and tr(B).
(b) Find A + B and tr(A + B). Is tr(A + B) = tr(A)+ tr(B)?
(c) Find |A| and |B|.
(d) Find AB and |AB|. Is |AB| = |A||B|?

2.16 Let

A =

 3 4 3

4 8 6
3 6 9


 .

(a) Show that |A| > 0.

(b) Using the Cholesky decomposition in Section 2.7, find an upper triangular
matrix T such that A = T′T.
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2.17 Let

A =

 3 −5 −1

−5 13 0
−1 0 1


 .

(a) Show that |A| > 0.
(b) Using the Cholesky decomposition in Section 2.7, find an upper triangular

matrix T such that A = T′T.

2.18 The columns of the following matrix are mutually orthogonal:

A =

 1 −1 1

2 1 0
1 −1 −1


 .

(a) Normalize the columns of A by dividing each column by its length; denote
the resulting matrix by C.

(b) Show that C is an orthogonal matrix, that is, C′C = CC′ = I.

2.19 Let

A =

 1 1 −2

−1 2 1
0 1 −1


 .

(a) Find the eigenvalues and associated normalized eigenvectors.
(b) Find tr(A) and |A| and show that tr(A) = ∑3

i=1 λi and |A| = ∏3
i=1 λi .

2.20 Let

A =

 3 1 1

1 0 2
1 2 0


 .

(a) The eigenvalues of A are 1, 4, −2. Find the normalized eigenvectors and
use them as columns in an orthogonal matrix C.

(b) Show that C′AC = D as in (2.111), where D is diagonal with the eigenval-
ues of A on the diagonal.

(c) Show that A = CDC′ as in (2.109).

2.21 For the positive definite matrix

A =
(

2 −1
−1 2

)
,

calculate the eigenvalues and eigenvectors and find the square root matrix A1/2

as in (2.112). Check by showing that (A1/2)2 = A.
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2.22 Let

A =

 3 6 −1

6 9 4
−1 4 3


 .

(a) Find the spectral decomposition of A as in (2.109).

(b) Find the spectral decomposition of A2 and show that the diagonal matrix
of eigenvalues is equal to the square of the matrix D found in part (a), thus
illustrating (2.115).

(c) Find the spectral decomposition of A−1 and show that the diagonal matrix
of eigenvalues is equal to the inverse of the matrix D found in part (a), thus
illustrating (2.116).

2.23 Find the singular value decomposition of A as in (2.117), where

A =




4 −5 −1
7 −2 3

−1 4 −3
8 2 6


 .

2.24 If j is a vector of 1’s, as defined in (2.11), show that the following hold:

(a) j′a = a′j = ∑
i ai as in (2.37).

(b) j′A is a row vector whose elements are the column sums of A as in (2.38).

(c) Aj is a column vector whose elements are the row sums of A as in (2.38).

2.25 Verify (2.41); that is, show that (x − y)′(x − y) = x′x − 2x′y + y′y.

2.26 Show that A′A is symmetric, where A is n × p.

2.27 If a and x1, x2, . . . , xn are all p × 1 and A is p × p, show that (2.42)–(2.45)
hold:

(a)
∑n

i=1 a′xi = a′∑n
i=1 xi .

(b)
∑n

i=1 Axi = A
∑n

i=1 xi .

(c)
∑n

i=1(a
′xi )

2 = a′(
∑n

i=1 xi x′
i )a.

(d)
∑n

i=1 Axi (Axi )
′ = A(

∑n
i=1 xi x′

i )A
′.

2.28 Assume that A = (a′
1

a′
2

)
is 2 × p, x is p × 1, and S is p × p.

(a) Show that

Ax =
(

a′
1x

a′
2x

)
,

as in (2.49).
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(b) Show that

ASA′ =
(

a′
1Sa1 a′

1Sa2
a′

2Sa1 a′
2Sa2

)
,

as in (2.50).

2.29 (a) If the rows of A are denoted by a′
i , show that A′A = ∑n

i=1 ai a′
i as in

(2.51).
(b) If the columns of A are denoted by a( j), show that AA′ = ∑p

j=1 a( j)a′
( j)

as in (2.53).

2.30 Show that (A′)−1 = (A−1)′ as in (2.75).

2.31 Show that the inverse of the partitioned matrix given in (2.76) is correct by
multiplying by

(
A11 a12
a′

12 a22

)

to obtain an identity.

2.32 Show that the inverse of B + cc′ given in (2.77) is correct by multiplying by
B + cc′ to obtain an identity.

2.33 Show that |cA| = cn|A| as in (2.85).

2.34 Show that |A−1| = 1/|A| as in (2.91).

2.35 If B is nonsingular and c is a vector, show that |B + cc′| = |B|(1 + c′B−1c) as
in (2.95).

2.36 Show that tr(A′A) = tr(AA′) = ∑
i j a2

i j as in (2.98).

2.37 Show that CC′ = I in (2.102) follows from C′C = I in (2.101).

2.38 Show that the eigenvalues of AB are the same as those of BA, as noted in
Section 2.11.5.

2.39 If A1/2 is the square root matrix defined in (2.112), show that

(a) (A1/2)2 = A as in (2.114),
(b) |A1/2|2 = |A|,
(c) |A1/2| = |A|1/2.
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(b) Show that

ASA′ =
(

a′
1Sa1 a′

1Sa2
a′

2Sa1 a′
2Sa2

)
,

as in (2.50).

2.29 (a) If the rows of A are denoted by a′
i , show that A′A = ∑n

i=1 ai a′
i as in

(2.51).
(b) If the columns of A are denoted by a( j), show that AA′ = ∑p

j=1 a( j)a′
( j)

as in (2.53).

2.30 Show that (A′)−1 = (A−1)′ as in (2.75).

2.31 Show that the inverse of the partitioned matrix given in (2.76) is correct by
multiplying by

(
A11 a12
a′

12 a22

)

to obtain an identity.

2.32 Show that the inverse of B + cc′ given in (2.77) is correct by multiplying by
B + cc′ to obtain an identity.

2.33 Show that |cA| = cn|A| as in (2.85).

2.34 Show that |A−1| = 1/|A| as in (2.91).

2.35 If B is nonsingular and c is a vector, show that |B + cc′| = |B|(1 + c′B−1c) as
in (2.95).

2.36 Show that tr(A′A) = tr(AA′) = ∑
i j a2

i j as in (2.98).

2.37 Show that CC′ = I in (2.102) follows from C′C = I in (2.101).

2.38 Show that the eigenvalues of AB are the same as those of BA, as noted in
Section 2.11.5.

2.39 If A1/2 is the square root matrix defined in (2.112), show that

(a) (A1/2)2 = A as in (2.114),
(b) |A1/2|2 = |A|,
(c) |A1/2| = |A|1/2.
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2.22 Let

A =

 3 6 −1

6 9 4
−1 4 3


 .

(a) Find the spectral decomposition of A as in (2.109).

(b) Find the spectral decomposition of A2 and show that the diagonal matrix
of eigenvalues is equal to the square of the matrix D found in part (a), thus
illustrating (2.115).

(c) Find the spectral decomposition of A−1 and show that the diagonal matrix
of eigenvalues is equal to the inverse of the matrix D found in part (a), thus
illustrating (2.116).

2.23 Find the singular value decomposition of A as in (2.117), where

A =




4 −5 −1
7 −2 3

−1 4 −3
8 2 6


 .

2.24 If j is a vector of 1’s, as defined in (2.11), show that the following hold:

(a) j′a = a′j = ∑
i ai as in (2.37).

(b) j′A is a row vector whose elements are the column sums of A as in (2.38).

(c) Aj is a column vector whose elements are the row sums of A as in (2.38).

2.25 Verify (2.41); that is, show that (x − y)′(x − y) = x′x − 2x′y + y′y.

2.26 Show that A′A is symmetric, where A is n × p.

2.27 If a and x1, x2, . . . , xn are all p × 1 and A is p × p, show that (2.42)–(2.45)
hold:

(a)
∑n

i=1 a′xi = a′∑n
i=1 xi .

(b)
∑n

i=1 Axi = A
∑n

i=1 xi .

(c)
∑n

i=1(a
′xi )

2 = a′(
∑n

i=1 xi x′
i )a.

(d)
∑n

i=1 Axi (Axi )
′ = A(

∑n
i=1 xi x′

i )A
′.

2.28 Assume that A = (a′
1

a′
2

)
is 2 × p, x is p × 1, and S is p × p.

(a) Show that

Ax =
(

a′
1x

a′
2x

)
,

as in (2.49).
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2.17 Let

A =

 3 −5 −1

−5 13 0
−1 0 1


 .

(a) Show that |A| > 0.
(b) Using the Cholesky decomposition in Section 2.7, find an upper triangular

matrix T such that A = T′T.

2.18 The columns of the following matrix are mutually orthogonal:

A =

 1 −1 1

2 1 0
1 −1 −1


 .

(a) Normalize the columns of A by dividing each column by its length; denote
the resulting matrix by C.

(b) Show that C is an orthogonal matrix, that is, C′C = CC′ = I.

2.19 Let

A =

 1 1 −2

−1 2 1
0 1 −1


 .

(a) Find the eigenvalues and associated normalized eigenvectors.
(b) Find tr(A) and |A| and show that tr(A) = ∑3

i=1 λi and |A| = ∏3
i=1 λi .

2.20 Let

A =

 3 1 1

1 0 2
1 2 0


 .

(a) The eigenvalues of A are 1, 4, −2. Find the normalized eigenvectors and
use them as columns in an orthogonal matrix C.

(b) Show that C′AC = D as in (2.111), where D is diagonal with the eigenval-
ues of A on the diagonal.

(c) Show that A = CDC′ as in (2.109).

2.21 For the positive definite matrix

A =
(

2 −1
−1 2

)
,

calculate the eigenvalues and eigenvectors and find the square root matrix A1/2

as in (2.112). Check by showing that (A1/2)2 = A.
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2.12 Let

A =

 1 2 3

4 5 6
7 8 9


 , D =


 a 0 0

0 b 0
0 0 c


 .

Find DA, AD, and DAD.

2.13 Let the matrices A and B be partitioned as follows:

A =



2 1 2
3 2 0

1 0 1


 , B =




1 1 1 0
2 1 1 2

2 3 1 2


 .

(a) Find AB as in (2.65) using the indicated partitioning.

(b) Check by finding AB in the usual way, ignoring the partitioning.

2.14 Let

A =
(

1 3 2
2 0 −1

)
, B =


 1 2

0 1
1 0


 , C =

(
2 1 1
5 −6 −4

)
.

Find AB and CB. Are they equal? What is the rank of A, B, and C?

2.15 Let

A =

 5 4 4

2 −3 1
3 7 2


 , B =


 1 0 1

0 1 0
1 2 3


 .

(a) Find tr(A) and tr(B).
(b) Find A + B and tr(A + B). Is tr(A + B) = tr(A)+ tr(B)?
(c) Find |A| and |B|.
(d) Find AB and |AB|. Is |AB| = |A||B|?

2.16 Let

A =

 3 4 3

4 8 6
3 6 9


 .

(a) Show that |A| > 0.

(b) Using the Cholesky decomposition in Section 2.7, find an upper triangular
matrix T such that A = T′T.
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(a) Show that AB = O.

(b) Find a vector x such that Ax = 0.

(c) Show that |A| = 0.

2.7 Let

A =

 1 −1 4

−1 1 3
4 3 2


 , B =


 3 −2 4

7 1 0
2 3 5


 ,

x =

 1

−1
2


 , y =


 3

2
1


 .

Find the following:

(a) Bx (d) x′Ay (g) xx′
(b) y′B (e) x′x (h) xy′
(c) x′Ax (f) x′y (i) B′B

2.8 Use x, y, and A as defined in Problem 2.7:

(a) Find x + y and x − y.

(b) Find (x − y)′A(x − y).

2.9 Using B and x in Problem 2.7, find Bx as a linear combination of columns of
B as in (2.67) and compare with Bx found in Problem 2.7(a).

2.10 Let

A =
(

2 1
1 3

)
, B =

(
1 4 2
5 0 3

)
, I =

(
1 0
0 1

)
.

(a) Show that (AB)′ = B′A′ as in (2.27).

(b) Show that AI = A and that IB = B.

(c) Find |A|.
2.11 Let

a =

 1

−3
2


 , b =


 2

1
3


 .

(a) Find a′b and (a′b)2.

(b) Find bb′ and a′(bb′)a.

(c) Compare (a′b)2 with a′(bb′)a and thus illustrate (2.40).
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PROBLEMS

2.1 Let

A =
(

4 2 3
7 5 8

)
, B =

(
3 −2 4
6 9 −5

)
.

(a) Find A + B and A − B.
(b) Find A′A and AA′.

2.2 Use the matrices A and B in Problem 2.1:

(a) Find (A + B)′ and A′ + B′ and compare them, thus illustrating (2.15).
(b) Show that (A′)′ = A, thus illustrating (2.6).

2.3 Let

A =
(

1 3
2 −1

)
, B =

(
2 0
1 5

)
.

(a) Find AB and BA.
(b) Find |AB|, |A|, and |B| and verify that (2.89) holds in this case.

2.4 Use the matrices A and B in Problem 2.3:

(a) Find A + B and tr(A + B).
(b) Find tr(A) and tr(B) and show that (2.96) holds for these matrices.

2.5 Let

A =
(

1 2 3
2 −1 1

)
, B =


 3 −2

2 0
−1 1


 .

(a) Find AB and BA.
(b) Compare tr(AB) and tr(BA) and confirm that (2.97) holds here.

2.6 Let

A =

 1 2 3

2 4 6
5 10 15


 , B =


 −1 1 −2

−1 1 −2
1 −1 2


 .



2 INTRODUCTION

Table 1.1. Examples of Multivariate Data

Units Variables

1. Students Several exam scores in a single course
2. Students Grades in mathematics, history, music, art, physics
3. People Height, weight, percentage of body fat, resting heart

rate
4. Skulls Length, width, cranial capacity
5. Companies Expenditures for advertising, labor, raw materials
6. Manufactured items Various measurements to check on compliance with

specifications
7. Applicants for bank loans Income, education level, length of residence, savings

account, current debt load
8. Segments of literature Sentence length, frequency of usage of certain words

and of style characteristics
9. Human hairs Composition of various elements

10. Birds Lengths of various bones

and (2) do this for any intercorrelation structure of the variables. Many such tests are
available.

As the two preceding paragraphs imply, multivariate analysis is concerned gener-
ally with two areas, descriptive and inferential statistics. In the descriptive realm, we
often obtain optimal linear combinations of variables. The optimality criterion varies
from one technique to another, depending on the goal in each case. Although linear
combinations may seem too simple to reveal the underlying structure, we use them
for two obvious reasons: (1) they have mathematical tractability (linear approxima-
tions are used throughout all science for the same reason) and (2) they often perform
well in practice. These linear functions may also be useful as a follow-up to infer-
ential procedures. When we have a statistically significant test result that compares
several groups, for example, we can find the linear combination (or combinations)
of variables that led to rejection of the hypothesis. Then the contribution of each
variable to these linear combinations is of interest.

In the inferential area, many multivariate techniques are extensions of univariate
procedures. In such cases, we review the univariate procedure before presenting the
analogous multivariate approach.

Multivariate inference is especially useful in curbing the researcher’s natural ten-
dency to read too much into the data. Total control is provided for experimentwise
error rate; that is, no matter how many variables are tested simultaneously, the value
of α (the significance level) remains at the level set by the researcher.

Some authors warn against applying the common multivariate techniques to data
for which the measurement scale is not interval or ratio. It has been found, however,
that many multivariate techniques give reliable results when applied to ordinal data.
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Introduction

1.1 WHY MULTIVARIATE ANALYSIS?

Multivariate analysis consists of a collection of methods that can be used when sev-
eral measurements are made on each individual or object in one or more samples. We
will refer to the measurements as variables and to the individuals or objects as units
(research units, sampling units, or experimental units) or observations. In practice,
multivariate data sets are common, although they are not always analyzed as such.
But the exclusive use of univariate procedures with such data is no longer excusable,
given the availability of multivariate techniques and inexpensive computing power
to carry them out.

Historically, the bulk of applications of multivariate techniques have been in the
behavioral and biological sciences. However, interest in multivariate methods has
now spread to numerous other fields of investigation. For example, I have collab-
orated on multivariate problems with researchers in education, chemistry, physics,
geology, engineering, law, business, literature, religion, public broadcasting, nurs-
ing, mining, linguistics, biology, psychology, and many other fields. Table 1.1 shows
some examples of multivariate observations.

The reader will notice that in some cases all the variables are measured in the same
scale (see 1 and 2 in Table 1.1). In other cases, measurements are in different scales
(see 3 in Table 1.1). In a few techniques, such as profile analysis (Sections 5.9 and
6.8), the variables must be commensurate, that is, similar in scale of measurement;
however, most multivariate methods do not require this.

Ordinarily the variables are measured simultaneously on each sampling unit. Typ-
ically, these variables are correlated. If this were not so, there would be little use for
many of the techniques of multivariate analysis. We need to untangle the overlapping
information provided by correlated variables and peer beneath the surface to see the
underlying structure. Thus the goal of many multivariate approaches is simplifica-
tion. We seek to express what is going on in terms of a reduced set of dimensions.
Such multivariate techniques are exploratory; they essentially generate hypotheses
rather than test them.

On the other hand, if our goal is a formal hypothesis test, we need a technique that
will (1) allow several variables to be tested and still preserve the significance level

1
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