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4.1 Introduction 

Genetic Algorithms are search algorithm based on mechanics of natural 

genetics. They are based on operations existing in nature. They combine a 

Darwinian survival of the fittest approach with a structured, yet randomized, 

information exchange. The advantage is they can search complex and large 

amount of spaces efficiently and locate near optimal solutions pretty rapidly. 

Solution to a problem solved by genetic algorithm uses an evolutionary 

process (it is evolved). Algorithm begins with a set of solutions (represented 

by chromosomes) called population. Solutions from one population are 

taken and used to form a new population. This is motivated by a hope, that the 

new population will be better than the old one. Solutions which are then 

selected to form new solutions (offspring) are selected according to their 

fitness - the more suitable they are the more chances they have to reproduce. 

This is repeated until some condition (for example number of populations or 

improvement of the best solution) is satisfied [5]. 

 

4.2 Biological Terminology  

At this point it is useful to formally introduce some of the biological 

terminology that will be used throughout the book. In the context of genetic 

algorithms, these biological terms are used in the spirit so analogy with real 

biology, through the entities they refer to are much simpler than the real 

biological ones. 

 All living organisms consist of cells, and each cell contains the same 

set of one or more chromosomes – strings of DNA – that serve as a 

“blueprint” for the algorithms. A chromosome can be conceptually divided 

into genes – functional blocks of DNA, each of which encodes a particular 

protein. Very roughly, one can think of a gene as encoding a trail, such as eye 
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color. The different possible “settings” for a trail (e.g., blue, brown, hazel) are 

called alleles. Each gene is located at a particular locus (position) on the 

chromosome.  

Many organisms have multiple chromosomes in each cell. The complete 

collection of genetic material (all chromosomes taken together) is called the 

organism’s genome. The term genotype refers to the particular set of genes 

contained in a genome. Two individuals that have identical genomes are said 

to have the same genotype. The genotype gives rise, under fetal and later 

development, to the organism’s phenotype – its physical and mental 

characteristics, such as eye color, height, brain size, and intelligence [11].    

    

 

4.3 How is GA Different ? 

 GAs work on " Encoding "of the parameter (Not the parameters!). 

 GAs search from a population of points (Implicit Parallelism). 

 GAs use pay-off information only. They don't require any 

extraneous information.  

 GAs use probabilistic transition rules, not deterministic rules [3]. 
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4.4 Basic Genetic Algorithm 

The Basic Genetic Algorithm procedure is [10]: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To solve any problem using GA, we should consider the following: 

1.  Encoding. 

2. Initialization 

3. Selection 

4. Alteration [3]. 

                  

The important elements are the encoding of chromosomes, the 

initialization of the population, evaluation of each individual in the 

 

 

Procedure Genetic algorithm 

  Begin 

     t := 0 

    Initialize Population (t) 

   Evaluate Population (t) 

   While (not termination-condition) do 

      Begin 

        t  := t + 1 

       Select Population (t) from Population (t - 1) 

      Alter Population (t) 

      Evaluate Population (t) 

     End 

End 
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population, selection of those individuals to pass on to the next generation, 

and alteration of the selected individuals to generate new, hopefully better, 

solutions. We will examine each of these elements in turn, however decisions 

made in one portion of the algorithm could affect choices available elsewhere 

[10]. 

 

4.5 Encoding 

Encoding of chromosomes is the first question to ask when starting 

to solve a problem with GA. Encoding depends on the problem heavily. 

We introduced some encoding that has been already used with some 

success. 

 

1-Binary Encoding  

     Binary encoding is the most common one, mainly because the first 

research of GA used this type of encoding and because of its relative 

simplicity.  

In binary encoding, every chromosome is a string of bits (0 or 1) 

as shown in figure (4.1).  

 

Chromosome A 101100101100101011100101 

Chromosome B 111111100000110000011111 

 

Figure(4.1)Example of chromosomes with binary encoding 

 

Binary encoding gives many possible chromosomes even with a 

small number of alleles. On the other hand, this encoding is often not 

natural for many problems and sometimes corrections must be made after 

crossover and/or mutation.  
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Example of Problem: Knapsack problem 
 

The problem: There are things with given value and size. The knapsack has 

given capacity. Select things to maximize the value of things in knapsack, but 

do not extend knapsack capacity. 

Encoding :  Each bit says, whether the corresponding thing is in knapsack. 

 

2-Permutation Encoding  

Permutation encoding can be used in ordering problems, such as 

travelling salesman problem or task ordering problem.  

          In permutation encoding, every chromosome is a string of 

numbers that represent a position in a sequence as shown in figure(4.2).  

 

Chromosome A    1 5 3 2 6 4 7 9 8 

Chromosome B    8 5 6 7 2 3 1 4 9 

 

Figure(4.2) Example of chromosomes with permutation encoding  

                

Permutation encoding is useful for ordering problems. For some 

types of crossover and mutation corrections must be made to leave the 

chromosome consistent (i.e. have real sequence in it) for some problems.  

 

Example of Problem: Travelling salesman problem (TSP) 

The problem: There are cities and given distances between them. 

Travelling salesman has to visit all of them, but he does not want to travel 

more than necessary. Find a sequence of cities with a minimal traveled 

distance.  

Encoding : Chromosome describes the order of cities, in which the 

salesman will visit them. 
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3-Value Encoding  

Direct value encoding can be used in problems where some more 

complicated values such as real numbers are used. Use of binary encoding 

for this type of problems would be difficult.  

In the value encoding, every chromosome is a sequence of some 

values. Values can be anything connected to the problem, such as (real) 

numbers, chars or any objects as shown in figure (4.3).  

 

Chromosome A       1.2324 5.3243 0.4556 2.3293 2.4545 

Chromosome B ABDJEIFJDHDIERJFDLDFLFEGT 

Chromosome C (back), (back), (right), (forward), (left) 

 

Figure (4.3) Example of chromosomes with value encoding 

 

Value encoding is a good choice for some special problems. 

However, for this encoding it is often necessary to develop some new 

crossover and mutation specific for the problem.  

 

Example of Problem: Finding weights for a neural network 

The problem: A neural network is given with defined architecture. Find 

weights between neurons in the neural network to get the desired output 

from the network. 

Encoding : Real values in chromosomes represent weights in the neural 

network. 
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4-Tree Encoding  

Tree encoding is used mainly for evolving programs or expressions, 

i.e. for genetic programming.  

In the tree encoding every chromosome is a tree of some objects, 

such as functions or commands in programming language.  

Tree encoding is useful for evolving programs or any other 

structures that can be encoded in trees. Programming language LISP is 

often used for this purpose, since programs in LISP are represented 

directly in the form of tree and can be easily parsed as a tree, so the 

crossover and mutation can be done relatively easily.  

 

Example of Problem: Finding a function that would approximate given       

                                    pairs of values 

The problem: Input and output values are given. The task is to find a 

function that will give the best outputs (i.e. the closest to the wanted ones) 

for all inputs. 

Encoding: Chromosome are functions represented in a tree [5]. 

 

4.6 Initialization 

First, we must determine how large to make the population. Again, 

it is a matter of choice that should be tuned to the specific problem at 

hand. We wish to initialize the population with diverse individuals. Why? 

Because they will be learning from each other. One of the issues GA have 

to deal with is premature convergence to sub-optimal solutions due to a 

lack of diversity in the population. There are many ways to arrange this 

initial diversity:  
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1-Uniformly Random  

We create tours randomly from the search space with a uniform 

distribution. But this is not the only way.  

 

2-Grid initialization  

Here, we seed the population with selection from regular intervals 

in the search space. The size of the intervals, and exactly what makes an 

interval, is generally problem dependent.  

 

3-Non-clustering  

Another restriction we can place on our population to ensure 

diversity is a non-clustering rule. Each newly generated individual must 

be a predefined distance away from all previously added individuals. For 

TSP, we could say that all new individuals must be at least 2 applications 

of 2-swap away from each other.  

 

4-Local Optimization  

A final method for initialization is to use the solutions found by 

other search techniques, such as hill-climbing or SA. While this does not 

encourage diversity, we can guarantee that our genetic algorithm will do 

at least as well as the initial seed algorithm, and this can help reassure 

some skeptics.  

 

4.7 Evaluation Functions 

Selecting which individuals can reproduce is based on the 

evaluation and comparison of solutions. Therefore we must take care 

when designing an evaluation function, such that it discriminates between 
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better and worse solutions. For example, let's say our task is to find the 

string of text "HAPPY" and our possible solutions are any arrangement of 

5 alphabetic characters. The size of this search space is 5
26

. How can we 

distinguish between good and bad strings? One possible, albeit very poor, 

function assigns the word "HAPPY" a score of 1, and all other strings a 

score of 0. You can see how hard it would be to search using this 

evaluation function. To develop a good evaluation function, one thing we 

can do is look at our operators. Suppose we have an operator that lets us 

replace a particular character with another one, similar to 1-flip in SAT. A 

useful evaluation function would be based on how many letters of 

"HAPPY" are in the correct position. For instance, "HXOPN" receives 

score of 2, while "OOGIE" receives a score of 0. But under this evaluation 

function, the string "APPYH" would receive a score of 0, even though all 

the letters of the goal string are present. With only our 1-flip operator, this 

is reasonable, but suppose we add another operator, that allows us to 

rotate the string either left or right. Now we would like "APPYH" to 

receive a much better score than 0. A more complex evaluation function 

we could derive would be 1 point for each letter of the string that is a part 

of the goal string, and an additional point for each letter in the correct 

position. Then "HXOPN" would still receive a score of 2, while 

"APPYH" is now evaluated to be 6, and "HAPXY" would have a score of 

8.  

 

4.8 Selection 

Selection of individuals for the next generation, either to reproduce 

or to live on, relies heavily on the evaluation function above. How heavily 

is dependent on which selection technique you use. We wish to apply 
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some pressure so that good solutions survive, and weak solutions die; too 

much, and we converge to less than optimal solutions, too little and we 

never make progress towards the solution. Again, it is a balancing act to 

find the right selection technique for the problem at hand.  

 

1-Deterministic 

In deterministic selection, only the best survive. This leads to very 

fast vengeance. Two deterministic selection techniques are common, one 

that includes parents in determining the best solutions, and one which 

replaces all parents with children. 

We can represent the size of the population as "mu", and the 

number of children generated as "lambda". (mu + lambda) selection 

chooses the best "mu" to continue to the next generation, and the 

competition is between both parents and children. (mu, lambda) selection 

again chooses the best "mu", however it is only the children that factor 

into who's the best. Parents are thrown away to fight early convergence. 

Deterministic selection relies very heavily on the evaluation function, and 

converges the fastest of all methods we will discuss.  

 

2-Proportional Fitness 

Instead of taking the best "mu", each individual can be selected 

proportionally to their evaluation score. Suppose we have the following 

population:  
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Individual Score 

     A    4 

     B   10 

     C   14 

     D    7 

     E    9 

     F    6 

 

Figure (4.4) Hypothetical Population 

 

The sum of their scores is 50. This gives individual A 8% chance of 

being selected, individual B 20%, etc. We usually implement this with 

what is called "roulette wheel selection". Select a random number 

between 0 and 1. Then progressively add on the probabilities of each 

individual in order, until this sum is greater than the random number. For 

example, I randomly choose 0.77. This selects individual E, since 8 + 20 

+ 28 + 14 + 18 is 88%. With a random choice of 0.34, we select C, since 8 

+ 20 + 28 = 56%. To select the next generation, we would need to choose 

"mu" random numbers.  

                We see in proportional fitness, even the worst individual, A has 

a chance to reproduce, albeit only 8%. This will help prevent stagnation in 

the population.  

 

3-Tournament Selection 

In this scheme, two individuals are selected at random with 

replacement from the population, and the one with the best score gets 

selected to reproduce. Using the above example, one round of tournament 
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selection could choose B and D for competition. B would then be selected 

since its score of 10 is larger than D's score of 7. Repeat this "mu" times 

to get the next population.  

So how is this different from proportional fitness? Now, A has a 

1/36 chance of reproducing (the chance of choosing A for both sides of 

the competition), about 2.8%, while C, the most fit individual, has a 11/36 

chance, or 30.6%. Tournament selection does not care about the spread of 

the scores, only the ranking. The nth ranked individual in a population of 

size mu will have a (2mu - 2n + 1) / mu
2
 chance of reproducing. This puts 

an upper and lower bound on the chances of any individual to reproduce 

for the next generation. Tournament selection can be generalized to 

include more than 2 individuals being chosen for competition, and 

selecting the best from this group [10].  

 

4.9 Alteration 

There are a number of genetic operators that are used to                 

alter the population: 

 

1-Mutation 

The first most basic way to alter a solution for the next generation 

is to use mutation [10]. Mutation plays a decidedly secondary role in the 

operation of GA. Mutation is needed because, even though reproduction 

and crossover effectively search and recombine extant notions, 

occasionally they may lose some potentially useful genetic material. 

The simple mutation method by Holland (1975), flips a random bit 

on or off. There are several types of Mutation such as “Shift change” 

mutation, and “Exchange” mutation. In Shift mutation, a column of 
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chromosome at one position is removed and at another position as shown 

in figure (4.5-a). The two positions are randomly selected, the column 6 of 

child 1 is removed and inserted between columns 2 and 3. 

Exchange mutation, randomly selects two positions in a given 

chromosome and exchange both genes. The remaining genes are kept 

intact as shown in figure (4.5-b) [12].               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4.5) GA – Mutation  

 

 

 

 

J1 J2 J6 J3 J4 J5 J7 J8 

 

Child 1 : before mutation 

 

J1 J2 J5 J6 J3 J4 J7 J8 

 

Child 2 : before mutation 

 

(One) “Shift Change” mutation 

 

 

 

1 0 0 1 1 0 1 

 

Child 1 : before mutation 

 

1 1 0 1 0 0 1 

 

Child 1 : after mutation 

 

(b) Exchange mutation 



Chapter Four                                Genetic Algorithm Overview  

 14 

2-Crossover 

But the interesting behavior arises from genetic algorithms because of 

the ability of solutions to learn from each other. Solutions can combine to 

form offspring for the next generation. Sometimes they will pass on their 

worst information, but if we do crossover in combination with a forceful 

selection technique, then we should see better solutions result. Since there are 

many details to crossover with permutations as in TSP, we will cover the 

basic crossover techniques, known as "cut and splice" techniques, for vectors 

today, such as SAT.  

 

 One-point  

We select two individuals to be parents for the next generation, and 

choose some point along the vector, between 0 and the length of the 

vector. This will be our crossover point between the two parents. We swap 

information after the crossover point to make our two new children. For 

example, we have  

                 1101101101 and 0001001000  

as our two parents, and choose the crossover point to be after the 5th digit. 

Our two new children will be  

                 11011 + 01000 and 00010 + 01101.  

We can see that large chunks of each parent will survive to the next 

generation.  

 

 More than one-point  

This is a generalization of 1-point crossover, in that we choose n 

places to splice up our solutions. Above, we could chose 3 points, after 

the 3rd, 6th, and 8th digit, to get  
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110 + 010 + 11 + 00 and 000 + 110 + 10 + 01 

for the next generation.  

 

 Uniform crossover  

Each new variable for the offspring is chosen randomly from each 

of the parent vectors. This works best when the variables are independent 

and therefore no relationship needs to survive to the next generation, only 

the values of the variables.  

This works great for vectors, but not with permutations. We will 

almost always create illegal solutions by using these crossover techniques 

with say a path representation for the tour. More thought and time need to 

be devoted to gain intuition with different representations [10].  

 

 

4.10 Some Application of Genetic Algorithms  

The versions of the of the genetic algorithm described is very simple, 

but variations on the basic theme have been used in a large number of 

scientific and engineering problems and models. Some examples follow : 

 Optimization: GAs have been used in a wide variety of optimization 

tasks, including numerical optimization and such combinatorial 

optimization problems as circuit layout and job-shop scheduling.  

 Automatic Programming:  GAs have been used to evolve computer 

programs for specific tasks, and to design other computational 

structures such as cellular automata and sorting networks. 

 Machine Learning: GAs have been used for many machine 

learning applications, including classification and prediction tasks, 

such as the prediction of weather or protein structure. GAs have also 

been used to evolve aspects of particular machine learning systems, 
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such as weights for neural networks, rules for learning classifier 

systems or symbolic production systems, and sensors for robots. 

 Economics: GAs have been used to model processes of innovation, 

the development of biding strategies, and the emergence of 

economic markets. 

 Immune Systems: GAs have been used to model various aspects of 

natural immune systems, including somatic mutation during an 

individual’s lifetime and the discovery of multi-gene families during 

evolutionary time. 

 Ecology: GAs have been used to model ecological phenomena such 

as biological arms races, host-parasite convolution, symbiosis, and 

resource flow.  

 Population Genetics: GAs have been used to study questions in 

population genetics, such as “Under what conditions will a gene for 

recombination be evolution viable ?”. 

 Evolution and Learning: GAs have been used to study how 

individual learning and species evolution affect one another.  

 Social Systems: GAs have been used to study evolutionary aspects 

of social systems, such as the evolution of social behavior in insect 

colonies, and, more generally, the evolution cooperation and 

communication in multi-agent systems [11].   

 


