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Chapter 1
Introduction

1.1 Boundary-Layer Meteorology

Boundary-layer meteorology, a subdiscipline of meteorology, is concerned with the
state of and processes in the air layer in immediate contact with the Earth’s surface.
This air layer, about 1 km in thickness and termed the atmospheric boundary layer
(Fig. 1.1), is the interface between the free atmosphere and the Earth’s surface,
which can be land ecosystems, lakes, ice fields, or the oceans. From the atmospheric
perspective, the boundary layer is the lower boundary of large-scale atmospheric
flows. From the biospheric perspective, conditions in the boundary layer impose a
top-down influence on ecosystem functions.

The boundary layer’s physical state is described with variables such as tem-
perature, humidity, pressure, and wind, and its chemical state with variables that
measure the abundance of trace gases such as carbon dioxide and air pollutants.
The physical state variables are tightly related to the dynamic aspects (level of
turbulence, diffusion efficiency, and air stability) of the boundary layer, whereas
the chemical state variables, except aerosols, are passive scalars that have no
direct dynamic consequences. Changes in boundary-layer state are controlled by
processes that transfer momentum, energy, and materials within the boundary layer
and between the boundary layer and the surface below or the free atmosphere aloft.
Flux variables are used to quantify the rate of these transfer processes. An important
goal of boundary-layer meteorology is to study the relationships between the state
and the process variables.

Radiation energy exchange with the surface is a key process that regulates the
physical and chemical state of the boundary layer. In cloud-free conditions, the
boundary layer is basically transparent to solar radiation. Absorption, reflection,
and emission of the radiation energy occur only at the surface. Absorption of solar
radiation by the Earth’s surface in daylight hours warms the boundary layer, and
loss of longwave radiation at night cools it. Solar radiation supplies energy for
evapotranspiration, the process in which liquid water is lost to the atmosphere

© Springer International Publishing AG 2018
X. Lee, Fundamentals of Boundary-Layer Meteorology,
Springer Atmospheric Sciences, DOI 10.1007/978-3-319-60853-2_1
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2 1 Introduction

Fig. 1.1 Division of the lower atmosphere. The vertical dimension is not drawn to scale

Fig. 1.2 Illustration of eddy motion in a convective boundary layer

via vaporization. In land ecosystems, evapotranspiration occurs primarily in the
daytime, causing the moisture level in the air to rise, and is weak or absent at
night. Plant photosynthesis and respiration activities are regulated by this daylight
and night cycle, generating variations in concentrations of carbon dioxide and
other biologically active gas species. The boundary layer is characterized by large
diurnal variations, or variations through the 24-h cycle, of its physical and chemical
conditions. In contrast, diurnal variations are absent in the free atmosphere.

Another important character of the boundary layer is that air motion is generally
turbulent. In a convective boundary layer (Fig. 1.2), turbulent eddies are generated
by wind shear, or variation of the velocity with height, and by buoyancy associated
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Fig. 1.3 Illustration of a nocturnal low level jet (left) and eddy motion generated by wind shear
near the jet layer and near the surface (right)

with surface heating. Some of the large eddies can penetrate into the free atmo-
sphere, generating convective clouds. At night, shear generation is the only source
of turbulence, which occurs near the surface and occasionally at the top of the
nocturnal boundary layer if a low-level jet is formed there (Fig. 1.3).

The turbulent nature of the flow allows energy and materials to diffuse in the
boundary layer and to the upper atmosphere at much higher efficiencies than
molecular processes allow. Turbulence also generates a frictional force on larger-
scale air motion. It is because of this retarding force that wind velocity in the
boundary layer is lower than in the free atmosphere; without this force, wind would
be intolerably high to humans and to many other living things on Earth. Air above
the boundary layer can move freely without being hindered by the surface friction.

Turbulent motion is inherently chaotic. A question that arises naturally is whether
the motion is so chaotic to the extent that boundary layer processes basically
defy any useful and predictive treatment. The answer is no. Orderly patterns often
emerge out of the seemingly random motion structures, if one follows a set of
established principles of energy, mass, and momentum conservation. Paradoxically,
the more intense the turbulence is, the easier it is to quantify the mean state of the
boundary layer. How to properly apply these principles constitutes an essential task
of boundary-layer meteorology.

The influences of larger-scale atmospheric state on boundary-layer processes
are prescribed by a set of known parameters. For example, the pressure gradient
associated with synoptic weather patterns is considered as a known parameter,
and the task of a boundary-layer meteorologist is to determine from the known
pressure gradient the surface frictional force, the intensity of turbulence, the wind
directional shear in the boundary layer, and so forth. Another known parameter is
solar radiation above the boundary layer. The intensity of solar radiation varies in
a more predictable way in cloud-free conditions than in the presence of clouds.
Prediction of clouds, except for those formed in the boundary layer due to convective
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and radiative cooling, is beyond the scope of boundary-layer meteorology. Whether
the sky is overcast or clear is prescribed either from weather observation or from a
weather forecast model, and from these prescribed conditions, calculations are made
on how various forms of energy flux balance each other at the surface.

Embedded in the atmospheric boundary layer is the surface layer which spans
a few meters to a few tens of meters of space above the surface (Fig. 1.1). This
is the air layer where the surface influences are the strongest and where most
micrometeorological phenomena occur. Sometimes a plant or an urban canopy
occupies the lower portion of this layer. At other times the surface is free of plants
and other roughness elements. Of special interest are vertical profiles of wind,
temperature, humidity, and gaseous concentrations, as they control the efficiency
of exchanges of momentum, energy, water, and trace gases between the atmosphere
and the surface. Some trace gases, such as sulfur dioxide, ozone, and volatile organic
compounds, are air pollutants. Others are long-lived greenhouse gases related to
biological activities, such as carbon dioxide and methane. Methods established by
micrometeorologists for quantifying the fluxes of these gases have found a wide
range of applications. The theoretical foundations of these methods are discussed in
this book.

1.2 Application Topics

Boundary-layer meteorology is the basis for many application topics in earth and
environmental sciences. The following examples illustrate its connection to related
disciplines, including dynamic meteorology, terrestrial ecology, hydrology, and
air pollution meteorology. This book does not treat these topics in equal depth.
However, the materials covered should equip the reader with adequate preparation
for further literature exploration. The multidisciplinary linkages motivate the need
for a good understanding of boundary-layer phenomena and supply new questions
for boundary-layer meteorologists.

Parameterization of Surface Fluxes

The flux of a certain quantity is the net amount of flow of this quantity across a
reference plane of a unit surface area over a unit time. A radiation energy flux of
200 W m�2 indicates that 200 J of energy moves across a surface of area 1 m2 in 1 s.
A water vapor flux of 0.1 g m�2 s�1 indicates that 0.1 g of water vapor flows across a
surface area of 1 m2 in 1 s. If the reference plane is leveled and is located just above
the Earth’s surface, the flux is equivalent to the rate of exchange between the surface
and the atmosphere. Surface fluxes of radiation energy, sensible heat, momentum,
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and water vapor constitute the lower flux boundary conditions for weather and
climate prediction models. In the models, these fluxes are represented by a set
of mathematical formulae called parameterizations. The relationships between the
flux and surface morphology, surface optical properties, and ecological attributes of
vegetation are described with a set of known parameters. In online mode in which
these parameterizations are coupled with other model codes to make forecasts, the
actual flux calculations require forcing variables predicted at every time step by
the atmospheric model, at its first grid height. A typical set of forcing variables
consists of incoming solar radiation, incoming longwave radiation, air temperature,
air humidity, wind speed, and precipitation. In offline mode, flux parameterizations
are forced by observed values of these variables. Offline calculations are one way
with which experimentalists interpret field data. A robust parameterization must be
firmly grounded on sound principles of atmospheric transport processes. Boundary-
layer meteorological studies are essential for this endeavor.

Ecosystem Metabolism

The metabolic processes of an ecosystem involve constant flow of energy and
materials between the system and its surroundings. In daylight hours, carbon dioxide
is taken up from the atmosphere for photosynthesis. Coupled to the carbon capture is
loss of water via transpiration, which prevents the plants from overheating and helps
their roots absorb nutrients from the soil. At night, carbon dioxide is released back
to the atmosphere by respiration. These processes are highly dynamic, changing
by the hour owing to weather fluctuations. The exchanges of carbon dioxide and
water vapor take place in the atmospheric surface layer, making this layer of air
an excellent environment to observe these processes. In comparison, it is virtually
impossible to obtain information on ecosystem functions from observations made
in the upper atmosphere. The ecosystem’s imprints on the surface layer make it
possible to infer the ecosystem exchanges of these two gases from atmospheric
measurements. The techniques that accomplish this task are at the appropriate scale
that matches the size of a typical ecosystem. These micrometeorological techniques
are widely used, largely because they do not require destructive sampling of
individual plants or alteration of their growth environment. With these advantages,
however, come methodological challenges. The theoretical foundation underlying
these techniques is the principle of mass conservation. In reality, only an incomplete
number of terms in the mass conservation equation can be measured, and we are
forced to approximate the true net ecosystem exchange with these measurable
quantities. Knowledge about meteorological and site conditions under which this
approximation may break down is essential for proper design of a measurement
campaign and the subsequent data analysis.
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Pathways of Biological Agents

Biological agents in the atmosphere fall into two size groups. Plant seeds that
rely on wind for dispersal are in the large size group, their size ranging from
several millimeters to several centimeters. In the small size group (0.5–100 �m)
are pollen grains and spores. The life cycle of these agents consists of production,
release, dispersion, and deposition. All of these stages are impacted by atmospheric
conditions in the boundary layer. Their movement through the atmosphere is
especially sensitive to wind patterns and the structure of air turbulence. Having
large settling velocity, plant seeds rarely escape the surface layer. The majority of
the seeds have a dispersion distance on the order of tens of meters from the parent
plant. Their exact travel path is controlled by wind speed at the plant height, wind
direction, and directional shear inside the plant canopy. The smaller biotic particles
(pollen and spore) can travel over longer distances, with the majority deposited
within a distance of several kilometers from the source. Caught in large convective
eddies, a small fraction of these particles can escape the surface layer to the upper
boundary layer and the free atmosphere and undergo long-distance transport. Long-
distance transport of spores is the main mechanism by which plant diseases spread
over large areas. Similarly, long-distance transport of pollen can cause genetic
contamination, a concern for plant breeders. Determination of the escape fraction is
made on the basis of the particle’s morphological characteristics, production timing,
as well as the structure of turbulence in the atmospheric boundary layer.

Dispersion of Air Pollutants

The severity of air pollution downwind of a pollution source is controlled by the
rate of pollution emission, source configuration, and local meteorology. For inert
pollutants, the dependence on emission rate is linear: a doubling of emission results
in a doubling of the pollution concentration. The dependence on meteorological
conditions is much more complex. The same source may be in compliance with
air quality standards in one day but become noncompliant the next day as the
state of the atmosphere changes. The atmospheric power to disperse air pollutants
increases with wind speed, turbulence intensity, static instability, and the height of
the boundary layer. Taking these dispersion conditions into account and utilizing
conservation of mass, an air quality model aims to predict the concentration of the
pollutant near an emission source. These predictions are made for existing sources
to inform local residents about air quality in their neighborhood. In regulatory
applications, air quality models are used to determine if construction of a new
source may cause new violation of air quality standards. The rate of deposition of air
pollution to the ground is proportional to pollution concentration in the surface layer,
so predicting ground-level concentrations is helpful for assessment of air pollution
impact on ecosystem health.
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Prediction of Evapotranspiration

Water is a vital resource for plant growth. The amount of water incorporated into
plant biomass is, however, negligible, and a large quantity is lost via evapotran-
spiration to the atmosphere. The rate of evapotranspiration is controlled primarily
by available radiation energy and soil moisture, and to a lesser extent by air
temperature, air humidity, and wind speed in the surface layer. Predictions of
evapotranspiration flux from these state variables are useful to farmers in their
scheduling of irrigation timing and amount. More generally, the ability to quantify
evapotranspiration helps to determine plant growth in ecosystem models. The sur-
face water vapor flux, or the rate of evapotranspiration, is bounded by conservation
of energy and conservation of mass, expressed in the form of the surface energy
balance equation and water balance equation, respectively. No equivalent constraints
from the first principles exist for the carbon dioxide flux. However, water use
efficiency, that is, the ratio of carbon dioxide flux to water vapor flux, is a biological
trait that is known to vary within a narrow range among plants that share the same
photosynthetic mode (e.g., C3 or C4). Modelers take advantage of the conserved
behavior of water use efficiency in their calculation of ecosystem productivity.

Urban Heat Islands

The urban heat island refers to the phenomenon of higher surface and air tempera-
ture in urban areas than in the surrounding rural land. Even though urban heat islands
are localized hot spots in the landscape, they have a profound impact on the lives
of urban residents, who comprise more than half of the world’s population. They
increase energy demand for air conditioning and aggravate heat stress on human
health. There are growing efforts to mitigate urban heat. The scientific foundation
underlying these efforts is the principle of surface energy balance. Replacement
of a natural landscape with man-made structures disrupts this balance in several
ways. Reduction of evaporative cooling is an important factor contributing to urban
warming. Anthropogenic heat release is an added energy input to the energy balance
and increases the surface temperature. Energy input by solar radiation also increases
if albedo is reduced in the process of land conversion. Buildings and other artificial
materials store more radiation energy in the daytime than do natural vegetation and
soil; release of the stored energy at night contributes to nighttime warming. Energy
redistribution through convection between the surface and the atmospheric boundary
layer either increases or reduces the intensity of the urban heat island, depending
on whether the efficiency of convection over urban land is suppressed or enhanced
relative to that over the adjacent rural land. These concepts have been known for
some time. To aid urban heat island mitigation efforts, it is important to quantify
how their roles vary through the course of the day and the year, among individual
neighborhoods of a city, and among cities across different climate zones.
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Connection to Large-Scale Atmospheric Flows

Ekman pumping is one well-recognized mechanism that connects the flow in the
boundary layer with larger-scale atmospheric dynamics. Owing to the balance
between the pressure gradient force and the Coriolis force, air above the boundary
layer moves counterclockwise in a low-pressure system and clockwise in a high-
pressure system in the Northern Hemisphere. The horizontal extent of these synoptic
weather systems is on the order of several hundreds of kilometers. In the boundary
layer, the presence of surface friction deflects the flow inward in the low-pressure
system resulting in flow convergence, and outward in the high-pressure system
resulting in flow divergence. Ekman pumping refers to the phenomenon whereby
flow convergence in the low-pressure system causes upward motion at the top of
the boundary layer, bringing moisture from the surface to upper levels to sustain
clouds. The rising motion is compensated by sinking motion in the (neighboring)
high-pressure system, thus forming a secondary circulation that interacts with the
counterclockwise and clockwise rotations. Successful predictions of cloud and
precipitation require accurate formulation of the Ekman pumping mechanism.

Transport Phenomena

Aside from the above issues, investigation on diffusion in the lower atmosphere
can help scientists refine theory of turbulent transport. Transport phenomena in
the atmospheric boundary layer take place under conditions that would not be
possible in controlled environments, thus pushing established theories beyond their
conventional parameter space. For example, Prandtl’s theory on turbulent diffusion,
established for boundary layer flows in pipes and in wind tunnels, works reasonably
well in the atmospheric surface layer but does a poor job in the upper boundary layer
and in a plant canopy where diffusion is dominated by large turbulent eddies whose
length scale is much greater than Prandtl’s mixing length. Another case in point is
the exchange of energy and materials at the interface between the free atmosphere
and the boundary layer. Here the transport of heat and water vapor is best described
by a mass movement of the diffusion media itself rather than by a pure diffusion
process linked to temperature and gaseous concentration gradients.

1.3 Structure of This Book

The materials presented in this book are organized around a set of fundamental
governing equations: conservation of momentum, conservation of mass (dry air,
water vapor, and trace gases), conservation of energy (applied to both the moving
air and the Earth’s surface), and the ideal gas law. Insights and consequences
are explained via logical deduction by manipulating these equations for various
situations.
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The basic equations are introduced in Chap. 2. Chapter 3 applies the Reynolds
decomposition rules to these equations. The result is a set of governing equations
that express the relations between time-averaged state variables and flux variables.

The next three chapters (Chaps. 4, 5 and 6) are applications of the momentum
conservation principle. In Chap. 4, the mean momentum equations are manipulated
further to gain insights on generation and maintenance of turbulent kinetic energy
in the atmospheric boundary layer. Chapter 5 is an application of momentum con-
servation to the airspace in plant canopies, where an additional volume-averaging
operation is used to handle the interaction between plant elements and the moving
air. In Chap. 6, the boundary layer is divided into several sublayers, and the balance
of forces after omitting small terms leads to simplified analytical solutions for the
mean velocities.

Chapters 7 and 8 are applications of the mass conservation principle. Chapter 7
deals with diffusion processes involving a tracer released in the boundary layer.
In Chap. 8, a volume-averaging operation is applied to the Reynolds mean mass
conservation equations to establish the connection between plant carbon dioxide,
water vapor and heat sources, and process variables in the atmosphere. This
connection forms the basis of the eddy covariance technique for flux measurements.

Chapter 9 examines the interferences caused by dry air density variations on our
ability to measure gaseous fluxes in the boundary layer. Here, the ideal gas law is
used extensively to constrain the interdependence between temperature, humidity,
trace gas concentration, and atmospheric pressure.

Chapter 10 develops mathematical models of evaporation and surface tempera-
ture. The theoretical basis for these applications is the surface energy balance, or the
principle of energy conservation applied to a surface (a leaf surface, a canopy, and
the ground surface).

In the final chapter (Chap. 11), the energy and mass conservation principles are
used to establish a predictive understanding of the transport of energy, water, and
trace gases between the whole boundary layer, the Earth’s surface, and the free
atmosphere.

1.4 How to Use This Book

This book is intended primarily as a text for an upper-level undergraduate or a
graduate-level course on boundary-layer meteorology and micrometeorology. The
content is slightly more than the amount needed for a three-credit course. In the
author’s university, a three-credit course consists of 3-h lectures per week for
12 weeks. A course that emphasizes measurement techniques can skip the modeling
chapter (Chap. 10) and a majority of Chap. 7 but retain the section on flux footprint.
Likewise, a course devoted to modeling of boundary-layer phenomena can omit two
measurement chapters (Chaps. 8 and 9).

A research reference book typically presents materials in a historical sequence to
show how concepts and theories have evolved over time. This is not the strategy used
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here. Instead, the content is organized by a structure deemed most logical, without
regard to when it was published. A short list of citations is provided at the end of
each chapter, so an interested reader can reconstruct the historical development of a
particular topic or pursue further literature exploration.

Users of this book are expected to have working knowledge of multivariable
calculus. Prior preparation in fluid mechanics and thermodynamics is helpful but
is not required. Students majoring in atmospheric sciences may find materials
presented in Chap. 2 repetitive to what they may have already encountered in other
atmospheric courses, but still it is helpful to review these fundamental principles
before moving onto more specialized topics in later parts of the book. While
derivation of equations is presented wherever appropriate, it is more important for
the reader to grasp the physical meaning of the equations and the conditions under
which simplifications are made than to perform the mathematical derivation itself.

An emphasis is on theories and concepts that have universal appeal. Obviously,
this is simply a matter of presentation style and does not diminish the importance
of observational studies in boundary-layer meteorology. Some empirical results
published by the author and by other scientists are incorporated into the problem set
at the end of each chapter. Users who do not want to work on the problem set should
still spend time reading the problem statements. They are also encouraged to explore
connections between the fundamental principles presented here and empirical data
presented in other textbooks. In this sense, this book is complementary to several
excellent textbooks on boundary-layer meteorology, including Boundary Layer Cli-
mates by T. R. Oke, An Introduction to Boundary Layer Meteorology by R. B. Stull,
The Atmospheric Boundary Layer by J. R. Garratt, Turbulence in the Atmosphere by
J. C. Wyngaard, Micrometeorology by T. Foken, and Atmospheric Boundary Layer:
Integrating Air Chemistry and Land Interactions by J. Vilá-Guerau de Arellano, C.
C. van Heerwaarden, B. J. H. van Stratum, and K. van den Dries.

Readers interested in the history of boundary-layer meteorology should consult
the books cited above. The book volume A Voyage through Turbulence, edited by
P. A. Davidson, Y. Kaneda, K. Moffatt, and K. R. Sreenivasan, also provides an
excellent historical perspective.

A problem set in each chapter serves to reinforce the concepts presented in the
main text of that chapter. Each set consists of about 20 questions of varying levels of
difficulty. The most difficult questions, marked by an asterisk, are essentially small
research projects constructed from the published literature. Hints on how to solve
these difficult questions are usually found in one of the references listed at the end
of the chapter. When answering questions, you should pay attention to details, such
as physical units and a number of significant digits, and should try to develop a good
“number sense”. Often it is these details that will be used to judge whether you have
mastered the material. For example, the net radiation of a natural surface falls in
the range of �100 to 700 W m�2, but something has gone wrong if your answer
is �150 W m�2.

The source files for the graphics included in this book are available on the
author’s website. Users may find them helpful for lecture preparation and classroom
discussion. An open online course based on this textbook is under development and,
once completed, will be released to the general public via the author’s website.



Chapter 2
Fundamental Equations

2.1 Coordinate Systems

Vector quantities, such as the flux, the velocity, and the scalar concentration
gradient, are generally expressed in a right-handed Cartesian coordinate frame. In
the discussion of momentum, mass, and energy conservation, the frame’s origin is
at a fixed position, and the directions of its three axes are also fixed. The horizontal
x-axis may be pointing to the north, the y-axis pointing to the west, and the z-axis
aligned with and in the opposite direction of the gravitational force. The instant
velocity vector is v D fu; v; wg, and the gradient vector of a scalar quantity a is
ra D f@a=@x; @a=@y; @a=@zg.

A special type of Cartesian coordinate, the micrometeorological coordinate,
utilizes the observed wind vector in the surface layer to orient its two horizontal
axes (Fig. 2.1). This is a right-handed system, with its x-axis aligned with the mean
horizontal velocity vector, its y-axis in the crosswind or lateral direction, and its
z-axis normal to the surface. On a flat terrain, the z-axis is in the opposite direction
of the gravitational force. The mean velocity vector is v D fu; v; wg, where the
overbar denotes time averaging. A typical averaging length is 30 min. If wind
direction shifts from one 30-min observation to the next, the coordinate’s x- and
y-axis will shift accordingly. By definition, the lateral mean velocity component v in
the surface layer is always zero. A non-zero mean vertical velocity w is permissible
for individual observations, although the long-term average of w should be very
close to zero. Above the surface layer, v may be non-zero due to wind directional
change with height.

Wind measurements are made in an instrument coordinate. For proper data
interpretation, coordinate rotation is required to express velocity statistics and flux
quantities in the micrometeorological coordinate. By forcing v to zero and aligning
the x�y plane with the local terrain, we only need to consider the u and w component
when computing the surface momentum flux. More importantly, coordinate rotation
removes errors due to instrument tilt. The vertical velocity is especially sensitive to
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Fig. 2.1 The micrometeorological coordinate

tilt errors. If the anemometer is tilted at angle ˛, the mean vertical velocity measured
by the instrument, w1, will consist of two components:

w1 D w cos.˛/ C u sin.˛/

' w C u sin.˛/ (2.1)

To obtain a sense of how large the tilt error is, consider a tilt angle of ˛ = 1 degree
into the wind and a horizontal mean velocity of u D 3 m s�1. The second term on
the right side of Eq. 2.1 is 0.05 m s�1. In comparison, a typical true mean vertical
velocity in the surface layer is on the order of 0.01 m s�1 or less. Flux quantities
are also sensitive to tilt errors. After removal of the tilt errors, the resulting vertical
fluxes are in the correct reference plane, that is, a plane parallel to the local terrain
surface. The reader should consult the references listed at the end of this chapter on
how to perform coordinate rotation (e.g., Kaimal and Finnigan 1994; Wilczak et al.
2001).

If the interest is flow in the whole atmospheric boundary layer, an alternative
coordinate system may be deployed. In this system, the x-axis is aligned with the
geostrophic wind vector, which is given as a known external forcing parameter. The
lateral mean velocity v is zero at the top of the boundary layer but is non-zero in the
surface layer.

2.2 Principle of Momentum Conservation

The principle of momentum conservation is a direct consequence of Newton’s
second law of motion. It states that the time rate of change of the momentum of
an air parcel is equal to the sum of all the forces experienced by the parcel. Applied
to an air parcel, the conservation equation takes the general form:
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dv
dt

D 1

m

X
F D

X
f (2.2)

where m is mass, F is force, and f is force normalized by mass and has the
dimensions of acceleration (m s�2). In component form, Eq. 2.2 becomes
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where � is air density, p is pressure, f is the Coriolis parameter, � is kinematic
viscosity, g is gravitational acceleration, and

r2 D @2

@x2
C @2

@y2
C @2

@z2
(2.6)

is the Laplace operator. We have used the relationship between the total and partial
derivative operations:
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: (2.7)

Four forces appear in Eqs. 2.3, 2.4, and 2.5, all being normalized by mass and
having the dimensions of acceleration. They are the pressure gradient force, the
Coriolis force, the gravitational force, and the frictional force.

The pressure gradient force,

� 1

�
rp D �1

�

�
@p

@x
;

@p

@y
;

@p

@z

�
; (2.8)

is a body force, meaning that it acts on every part of the air parcel regardless of
whether the part is at the parcel’s boundary or whether it is in the interior. This
force is the ultimate reason for why the air moves from one place to another. The
horizontal pressure gradient associated with a mid-latitude high-pressure system
is about 1 hPa per 100 km, and the corresponding horizontal pressure gradient
force per unit mass is on the order of 1 � 10�3 m s�2. The pressure gradient force
associated with mesoscale circulations, such as the land-sea breeze, can be several
times larger.
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Pressure is not a standard prognostic variable in boundary-layer meteorological
research. Unlike in dynamic meteorology where p is an unknown quantity to be
solved from the equations of motion, in most situations encountered in boundary-
layer meteorology the pressure gradient force is taken as a known external parame-
ter. There are, however, at least two exceptions. First, the pressure gradient force
near windbreaks, forest edges, and other isolated obstacles is several orders of
magnitude larger than that at the synoptic scale. The exact value depends largely on
wind speed and morphology and geometric configuration of these obstacles. The set
of equations governing the flow disturbed by the obstacles must include the pressure
gradient force as part of its predicting variables. Second, in the air layer occupied
by a plant canopy, p is greater on the upstream side than on the downstream side of
plant elements. This microscale discontinuity in the pressure field manifests itself
as a retarding force on the flow and must be considered in the momentum equations
(Chap. 5).

The Coriolis force, also a body force, arises from the fact that our coordinate
frame is moving along with the rotating Earth. Its vector form is ff v; �fu; 0g. In
the atmospheric boundary layer, this force acts to deflect the momentum of the air
parcel in the x � y plane. Its vertical component is approximately zero because the
Coriolis effect on the vertical motion is negligible in comparison to the gravitational
force. The Coriolis parameter, f , is dependent on latitude, �, as

f D 2� sin � (2.9)

where �.D 7:27 � 10�5 s�1) is the Earth’s angular rotation velocity. According to
Eq. 2.9, the Coriolis effect vanishes at the equator and increases with increasing
latitude. In the northern hemisphere, the mid-latitude f value is approximately
1 � 10�4 s�1. In the southern hemisphere, f is negative. The Coriolis force increases
linearly with the horizontal velocity of motion. At a horizontal air velocity of
10 m s�1, the force per unit mass is approximately 1 � 10�3 m s�2 in magnitude,
which is comparable to that of the pressure gradient force.

The gravitational force, the second term on the right side of the Eq. 2.5, is the
third body force exerted on the air parcel. This force only appears in the vertical
momentum equation. It is always directed downward as indicated by its negative
sign. The gravitational force on a unit mass is equal to the gravitational acceleration
g (= 9.8 m s�2) and is much greater than the horizontal pressure gradient force and
the Coriolis force. In the mean atmospheric state, it is balanced by �.1=�/@p=@z,
the vertical pressure gradient force of equally large magnitude. This state of balance
is referred to as the hydrostatic equilibrium.

The viscous force, f�r2u; �r2v; �r2wg, is an internal force due to the action
of molecular friction. This force is local, existing only at the boundary of the air
parcel and acting to reduce the air parcel’s momentum. It is much smaller than the
pressure gradient force except in the thin interfacial layer very close to the surface
(Problem 2.3).
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2.3 Conservation of Mass

The concentration of carbon dioxide in the atmosphere can be expressed as mass
density, defined as mass per unit volume and denoted by �c, or mass mixing ratio,
defined as the ratio of the mass of carbon dioxide to the mass of dry air in the same
air volume and denoted as sc. They are related to one another, as

sc D �c

�d
; (2.10)

where �d is the mass density of dry air. The principle of dry air mass conservation
is written for �d, and that of carbon dioxide can be written for either �c or sc. The
principles established for carbon dioxide are equally applicable to other trace gases
in the atmosphere.

The mass conservation of dry air can be understood with a highly simplified
situation shown in Fig. 2.2 (top panel). Here the flow exists only in the x direction.
Let us consider, in the Cartesian coordinate, a small rectangular prism whose
dimensions are ıx, ıy, and ız, in the x, y, and z direction, respectively. At a
macroscopic scale, the prism is small enough to be considered essentially as a point
in space. At a microscopic scale, the fluid parcel enclosed in the prism still contains
numerous molecules. The continuum hypothesis states that properties of the fluid
parcel, such as temperature, humidity, and CO2 mixing ratio, vary between positions
in a continuous fashion. Inside the prism, dry air is neither produced nor destroyed.
Air enters the left side of the prism at velocity u1 and dry air density �d;1 and exits the
right side at velocity u2 and density �d;2. The net mass flux is �ıyız.u2�d;2 � u1�d;1/

and is balanced by the time change of the mass in the prism:

ıxıyız
ı�d

ıt
D �ıyız.u2�d;2 � u1�d;1/; (2.11)

or

ı�d

ıt
C ıu�d

ıx
D 0; (2.12)

where the notation ı is used for finite difference terms. Shrinking the prism to
infinitesimally small dimensions, we obtain the derivative form of Eq. 2.12:

@�d

@t
C @u�d

@x
D 0: (2.13)

Equation 2.13 can be easily extended to three dimensions, as
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@z
D 0: (2.14)
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Fig. 2.2 A rectangular prism in a one-dimensional flow illustrating the mass conservation of dry
air (top) and carbon dioxide (bottom)

Equation 2.14 is the general form of the continuity equation. Making use of
Eq. 2.7, we can also rewrite it as

d�d

dt
C �d

�
@u

@x
C @v

@y
C @w

@z

�
D 0: (2.15)

With two modifications, the conservation equation for the mass density of CO2,
�c, can be derived in a similar fashion. In the simplified situation shown in Fig. 2.2
(bottom panel), carbon dioxide enters or exits the prism both by mass flow u�c and
by molecular diffusion �c@�c=@x, where �c is molecular diffusivity of carbon dioxide
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in air. Furthermore, carbon dioxide can be produced by sources inside the prism.
Taking these two additional factors into account, the complete mass conservation
equation for �c is

@�c

@t
C @u�c

@x
C @v�c

@y
C @w�c

@z
D Sc C �cr2�c; (2.16)

where Sc is a source term.
Equation 2.16 can be rearranged to a form analogous to Eq. 2.15:
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�
D Sc C �cr2�c: (2.17)

Strictly speaking, the source term Sc is not zero because CO2 can be produced
by oxidation of other compounds, such as methane and carbon monoxide, in the
atmosphere. The rate of production is, however, negligible in comparison to the
diffusion and the transport terms. Non-air elements, such as plant foliage, can be
sources or sinks of CO2, but they are not allowed to exist in the infinitesimally small
prism depicted in Fig. 2.2. Later in Chap. 8, we will incorporate the plant source
term into the CO2 mass conservation by performing a volume-averaging operation.

Atmospheric modelers do not use Eq. 2.16 or 2.17 in their model calculations.
The primary reason is that �c is not a conserved quantity, meaning that its time rate
of change, d�c=dt, in a parcel-following coordinate is not zero in situations where
no sources are present, even with the molecular term being negligible. (Only by
introducing the additional condition of incompressibility is �c conserved.) Instead,
their models are based on the conservation equation for the mass mixing ratio, sc. It
can be shown from Eqs. 2.10, 2.15, and 2.17 that the sc conservation equation is

dsc

dt
D Sc

�d
C �cr2sc; (2.18)

(Problem 2.4; Lee and Massman 2011). Later in the book, we will show that eddy
fluxes based on the mass mixing ratio are consistent with this modeling principle,
but those based on the mass density are not (Chap. 9).

Water vapor is an important gas in the atmosphere. The conservation of its mass
density, �v , and mass mixing ratio, sv , is given by

@�v

@t
C @u�v

@x
C @v�v

@y
C @w�v

@z
D Sv C �vr2�v; (2.19)

and

dsv

dt
D Sv

�d
C �vr2sv; (2.20)
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where �v is molecular diffusivity of water vapor in air and Sv is a vapor source term.
If clouds are present in the boundary layer, the source term should be kept in the
conservation equation to account for phase changes of water (evaporation of cloud
droplets or condensation of water vapor to the liquid form). In a cloud-free boundary
layer, the source term Sv can be omitted.

In mesoscale and synoptic scale weather systems, the vertical scale of motion is
much smaller than the horizontal scale of motion. The continuity equation can be
simplified to

@u

@x
C @v

@y
C @w

@z
D 0: (2.21)

This is the incompressibility condition. In this book, we call Eq. 2.21 the strong form
of incompressibility, to distinguish it from the weak form of incompressibility at
eddy scales. Under the condition set by Eq. 2.21, �d becomes a conserved quantity,
and �c is also conserved in the absence of a source and molecular diffusion in the
flow domain. Equation 2.21 should be used with caution. Problems 2.7, 2.8, and 2.12
are three examples that do not satisfy this condition.

2.4 Conservation of Energy

In the previous section, we deployed an imaginary rectangular prism to construct
the mass conservation equations. In this Eulerian frame of reference, the prism is
rigid, the air moves through the prism, and the observer remains in a fixed position
keeping track of the mass balance between the mass flow, the diffusive flux, and the
local time rate of change. That the prism is rigid makes this reference frame less
ideal for constructing the heat conservation equation. Instead, we resort to a more
convenient Lagrangian frame of reference, a reference frame that moves along with
and at exactly the same speed of an imaginary air parcel. The time rate of change in
this coordinate is formally expressed as the total derivative d=dt.

According to the first principle of thermodynamics, the time rate of change of
the internal energy of the air parcel can be caused by energy added by an internal
or external source, by the loss of energy to its surroundings through molecular
diffusion, and by the work done to the environment through its volume expansion.
In their classic text Transport Phenomena, Byron Bird, Warren Stewart, and Edwin
Lightfoot express the principle of energy conservation as

�dcp
dT

dt
D dp

dt
C �dcpST C �dcp�Tr2T; (2.22)

(Bird et al. 2006), where cp is the specific heat of air at constant pressure, T is
temperature, ST is a heat source term, and �T is molecular diffusivity of heat in air.
The term on the left side of Eq. 2.22 is the time rate of increase in internal energy
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in the parcel-following Lagrangian frame. On the right side of the equation, the first
term represents the work done by volume expansion, the second term represents
energy source term, and the third term represents net energy exchange with the
surroundings via molecular diffusion.

The heat addition can come from an internal source, such as latent heat release
from cloud condensation, or from an external source, such as net absorption
of radiation energy. Small amounts of heat can also be generated internally by
dissipation of turbulent kinetic energy and by chemical reactions. The heat source
term is an important component of the energy conservation of a cloudy boundary
layer but is generally omitted in cloud-free conditions.

Using relationships for ideal gases and the continuity equation (Eq. 2.15), we
obtain from Eq. 2.22 another expression of the energy conservation:

�dcv

dT

dt
D �p

�
@u

@x
C @v

@y
C @w

@z

�
C �dcpST C �dcp�Tr2T; (2.23)

where cv is specific heat of air at constant volume. Equation 2.23 is less familiar
to us than Eq. 2.22. We will come back to Eq. 2.23 in the discussion of different
incompressibility constraints.

Equation 2.22 is awkward to use because it involves two prognostic variables, T
and p. To overcome this problem, we introduce a composite variable called potential
temperature:

� D T

�
p

p0

��Rd=cp

; (2.24)

where p0 is pressure at the mean sea level and Rd is the ideal gas constant for dry air.
Here � has the same dimension as T (K) and can be interpreted as the temperature
the air parcel would have if it were moved adiabatically to the sea level (Fig. 2.3).
The adiabatic process is a theoretical construct. It assumes that in the parcel’s
descent, no heat is lost via molecular diffusion to the surroundings, no molecules
escape from the parcel, no heat source exists within the parcel, and changes to its
temperature result only from the work done through its volume contraction. Despite
these simplifications, � is a useful variable for describing the thermal property of
the atmosphere. Combining Eqs. 2.22 and 2.24, we obtain the conservation equation
for � :

d�

dt
D S� C �Tr2�; (2.25)

where

S� D ST

�
p

p0

��Rd=cp

: (2.26)
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Fig. 2.3 In the adiabatic decent, an air parcel will shrink in response to increasing environmental
pressure with decreasing altitude. The compression causes the parcel’s temperature to rise

The superiority of working with � over T is now apparent. Besides the fact that
p has disappeared from the conservation equation, � is a conserved variable in the
adiabatic process.

2.5 The Ideal Gas Law

The deal gas law exists in several forms. The most common one relates pressure, a
state variable, to two other state variables, density and temperature, as

pd D �dRdT; (2.27)

for dry air,

pv D �vRvT; (2.28)

for water vapor, and

pc D �cRcT; (2.29)

for carbon dioxide, where pd, pv , and pc are partial pressure of dry air, water vapor,
and carbon dioxide, respectively. The ideal gas constants are

Rd D R

Md
; (2.30)
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for dry air,

Rv D R

Mv

; (2.31)

for water vapor, and

Rc D R

Mc
; (2.32)

for carbon dioxide, where R (= 8.314 J mol�1 K�1) is the universal gas constant
and Md (= 0.029 kg mol�1), Mv (= 0.018 kg mol�1), and Mc (= 0.044 kg mol�1) are
molecular mass of dry air, water vapor, and carbon dioxide, respectively.

Combining the first law of thermodynamics and the ideal gas law for dry air
(Eq. 2.27), we obtain the relationship

cp � cv D Rd: (2.33)

The mass mixing ratio can be obtained from the partial pressures, as

sc D Mc

Md

pc

pd
; (2.34)

for carbon dioxide, and

sv D Mv

Md

pv

pd
; (2.35)

for water vapor. Traditionally, sc is expressed in dimensions of �g g�1 or mg kg�1,
and sv in g kg�1.

Similarly, the CO2 molar mixing ratio, defined as the number of carbon dioxide
molecules to the number of dry air molecules, can be obtained from

	c D pc

pd
: (2.36)

The water vapor molar mixing ratio is given by

	v D pv

pd
: (2.37)

The standard dimensions for 	c and 	v are 
mol mol�1 or ppm and mmol mol�1,
respectively.

The Dalton’s law of partial pressures states

p D pd C pv C pc C : : : ' pd C pv; (2.38)
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where p is total atmospheric pressure and is approximated by the sum of pd and pv .
Contributions from carbon dioxide and other trace gases can be omitted without any
significant consequences.

Finally, denoting the mass density of moist air as � and its ideal gas constant as
Rm, we have the ideal gas law for moist air:

p D �RmT; (2.39)

Equation 2.39 is rarely used because the ideal gas “constant” Rm is no longer a
constant but rather depends on humidity. Instead, we use a modified version:

p D �RdTv; (2.40)

by introducing a new composite variable called virtual temperature

Tv D T.1 C 0:61q/; (2.41)

where q is specific humidity, defined as the ratio of the mass of water vapor to the
mass of moist air, and is related to the water vapor mixing ratio as

q D sv

1 C sv

: (2.42)

2.6 The Surface Energy Balance

In Sect. 2.4, we applied the energy conservation principle to the air moving above
the surface, focusing on the internal energy change. Energy conservation must also
be satisfied at the surface, in that the flows of energy from and to the surface should
be in balance. There are four forms of energy flow at the surface: (i) transfer of
energy by electromagnetic waves (radiation flux), (ii) heat removed from the surface
by evaporation or added to the surface by condensation of water (latent heat flux),
(iii) transfer of heat by air motion (sensible heat flux), and (iv) molecular heat
diffusion into or out of the surface (conduction heat flux).

Consider first a large, smooth, and bare soil surface. Let K# be the total solar
radiation incident on the surface. The radiation energy is in the shortwave band,
with a wavelength range from about 0.3 �m to about 3 �m. A fraction of K# is
reflected away from the surface:

K" D ˛K#; (2.43)

where ˛ is albedo. The rest of the radiation is absorbed by the topmost soil layer. The
surface also receives longwave radiation, L#, from the atmosphere, with wavelength
greater than 3 �m. The fourth stream of radiation energy, the outgoing longwave
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radiation from the surface, L", consists of a small portion of L# reflected by the
surface and radiation emitted by the surface:

L" D .1 � �/L# C ��T4
s ; (2.44)

where � is emissivity, � (= 5.67 � 10�8 W m�2 K�4) is the Stefan-Boltzmann con-
stant, and Ts is surface temperature. The surface net radiation, Rn;0, is the balance
of these four components:

Rn;0 D K# � K" C L# � L": (2.45)

Since soils do not allow radiation penetration, we can assume that the soil layer
that absorbs the solar radiation is infinitely thin and therefore has no mass or internal
energy. So energy conservation requires that the flows of energy be in balance
(Fig. 2.4a). Assuming no net horizontal energy flows in or out of the local domain,
we can describe the surface energy balance with

Rn;0 D H0 C E0 C G0; (2.46)

where H0 is the surface sensible heat flux, E0 is the surface latent heat flux, and G0

is the heat flux into the soil due to conduction.
Equation 2.46 follows the standard micrometeorological sign convention: Rn;0

is positive if the surface gains energy in the form of radiation and negative if the

Fig. 2.4 The surface energy balance. (a), an idealized surface; (b), vegetated land; (c), urban land;
(d), water surface
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surface loses radiation energy; H0, E0, and G0 are positive if the fluxes are directed
away from the surface and negative if they are directed toward the surface. Here E0

is the surface evaporation rate or water vapor flux. The surface latent heat flux is the
product of E0 and the latent heat of vaporization  (D 2466 J g�1 at temperature of
15 ıC).

Equation 2.46 and Fig. 2.4a depict an idealized situation in which all the energy
fluxes are computed or hypothetically measured at the surface. This is usually true
in a land surface model. In field campaigns, the net radiation and the sensible and
the latent heat fluxes are measured at some height above the surface and the soil heat
flux at a small depth beneath the surface, as shown in Fig. 2.4b. Some energy may
be converted into internal energy and stored in the biomass and in the top soil layer,
causing their temperatures to change. The appropriate energy balance equation is

Rn D H C E C G C Qs; (2.47)

where Qs is a heat storage term. The sign convention for Qs is that it is positive if
the system (soil plus biomass) has gained internal energy and negative otherwise.
We have dropped subscript “0” from the energy flux terms to indicate that they are
not measured at the surface.

In an urban land, anthropogenic heat release, QA, is an additional energy input.
The energy balance equation is

Rn C QA D H C E C G C Qs: (2.48)

The anthropogenic heat term is always positive.
Shifting attention now from land to water, we note that solar radiation, especially

that in the visible waveband (wavelength 0.4–0.7 �m), can penetrate deep into the
water column. We can no longer assume that shortwave radiation absorption occurs
in an infinitely thin surface water layer. Rather, the “surface” energy balance is
constructed for a water layer of finite thickness (Fig. 2.4d). The complete energy
balance equation is

Rn D H C E C G C Qs C ˇ.K# � K"/; (2.49)

where ˇ is the fraction of net shortwave radiation that transmits through the surface
water layer. Nearly all the solar radiation energy in the near-infrared waveband
(wavelength from 0.7 to about 3 �m) is absorbed in the top 0.6 m of the water
column, so the surface water layer in land surface models is conveniently set to
a thickness of 0.6 m.

In the above discussion, we have omitted minor energy sources and sinks in the
natural environment, such as the kinetic energy released by raindrops upon impact
on the surface, the chemical energy going into the biomass via photosynthesis, the
heat released by microbial and plant respiration, and the heat produced by viscous
dissipation of turbulent kinetic energy.
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2.7 Problems

2.1* A sonic anemometer is mounted with its orientation toward N and at a
downward tilt angle of 1ı from the horizontal plane (Fig. 2.5). The instrument
expresses the velocity in a right-handed Cartesian coordinate fx1; y1; z1g. Assume
that the true air velocity is 5.00 m s�1 and the velocity vector lies perfectly in a
horizontal plane. Determine the vertical velocity w1 in the z1 direction as a function
of wind direction. This would be the vertical velocity measured by the instrument.
Note that wind direction is 0ı if wind blows from N, 90ı if from E, and so on.

2.2 Show that the viscous terms in Eqs. 2.3, 2.4, and 2.5 have the dimensions of
acceleration.

2.3 The mean velocity profile in the surface layer under neutral stability is
described by the logarithmic function

u D u�
k

ln.
z

z0

/; (2.50)

where k (= 0.4) is the von Karman constant, u� is friction velocity, z is height, and
z0 is momentum roughness. Assume that the mean lateral and vertical velocity
components are zero, and u� = 0.52 m s�1. Calculate the viscous force for two
heights z = 0.05 and 10 m. Use a kinematic viscosity value of � D 1:48�10�5 m2 s�1

at temperature 15 ıC for your calculations.

2.4 Derive the conservation equation for the CO2 mass mixing ratio (Eq. 2.18) from
Eqs. 2.15 and 2.17.

2.5 Using the ideal gas law relations and the continuity equation, derive the energy
conservation Eq. 2.23 from Eq. 2.22.

Fig. 2.5 A tilted instrument coordinate fx1; y1; z1g



26 2 Fundamental Equations

Fig. 2.6 Movement of an air parcel from a cool lake to a hot cement parking lot

2.6 Derive the potential temperature conservation Eq. 2.25 from the energy conser-
vation Eq. 2.22.

2.7 Which of the following quantities of the air parcel are conserved during the dry
adiabatic process shown in Fig. 2.3: air pressure, dry air density, air temperature,
potential temperature, water vapor density, water vapor partial pressure, water vapor
mixing ratio, carbon dioxide density, carbon dioxide partial pressure, and carbon
dioxide mixing ratio? Is the incompressibility condition satisfied? (Note that no
phase change of water occurs in the dry adiabatic process.)

2.8 An air parcel moves horizontally from a lake surface to a hot paved parking lot
(Fig. 2.6). The situation is diabatic because the parcel can now exchange materials
and energy with the surface through its bottom boundary which is in contact with
the surface. Which of the quantities listed in Problem 2.7 are conserved? Is the
incompressibility condition satisfied?

2.9 Show that the diffusion term of the energy conservation equation (third term
on the right side of Eq. 2.22) has the same dimensions as the internal energy change
term (term on the left) and the volume expansion term (first term on the right). In
what dimensions should the source term ST be?

2.10 The atmospheric pressure is 1000.2 hPa, the water vapor molar mixing ratio is
19.27 mmol mol�1, and the carbon dioxide molar mixing ratio is 400.4 �mol mol�1.
Determine the partial pressures of dry air, water vapor, and carbon dioxide. What is
the mass density of dry air, water vapor, and carbon dioxide if the air temperature is
15.0 ıC?

2.11 CO2 is a well-mixed gas in the lower atmosphere, meaning that its long-
term mean mixing ratio does not vary with height. The global mean CO2 molar
mixing ratio was 396.5 �mol mol�1 in 2013. Estimate the vertical CO2 mass density
gradient in the atmospheric boundary layer of the standard atmosphere. (Hints:
In the standard atmosphere, the pressure and the temperature are 1013.2 hPa and
15.0 ıC at the sea level and 898.7 hPa and 8.5 ıC at the altitude of 1000 m. Use a
typical water vapor mixing ratio of 15 g kg�1 for both heights.)

2.12 An air parcel is adiabatically lifted upward from the sea level. Its initial
temperature is 20.0 ıC, its water vapor pressure is 6.22 hPa, and its CO2 mass
density is 800.0 mg m�3. What will be its temperature and CO2 mass density when
the parcel reaches the pressure height of 700 hPa?
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2.13 The annual mean carbon dioxide flux of a forest is �0.37 mg CO2 m�2 s�1.
Express the flux in the dimensions of �mol m�2 s�1, g C m�2y�1, g CO2 m�2y�1,
and t C ha�1y�1.

2.14 A typical CH4 flux in a mid-latitude wetland is 200 nmol m�2 s�1 in the warm
season. Express the flux in the dimensions of �g CH4 m�2 s�1 and mg CH4 m�2 d�1.

2.15 The daily mean water vapor flux is 0.074 g m�2 s�1. How much water, in mm
of water depth, is lost via evaporation in 1 day?

2.16 One estimate of the solar radiation incident on the Earth’s surface is
175 W m�2, the global means surface albedo is 0.126, and the mean incoming
and outgoing longwave radiations are 344 and 396 W m�2, respectively (Zhao et al.
2013). Determine the global mean surface net radiation. The global mean annual
precipitation is 1030 mm. If this precipitation water flux is balanced exactly by
the surface evaporation rate, what are the global mean surface latent heat flux and
sensible heat flux?

2.17 Bowen ratio, ˇ, is the ratio of the surface sensible heat flux to the latent heat
flux. A Bowen ratio apparatus determines ˇ of a surface by measuring the vertical
gradients of air temperature and humidity above the surface. The measured ˇ is
combined with simultaneous measurements of the available energy (net radiation
Rn;0, soil heat flux G0) to calculate the surface latent heat flux E0. On the basis of
the energy balance principle, derive an expression that relates E0 to ˇ, Rn;0, and
G0.

2.18 The incoming shortwave and longwave radiations are 750 and 419 W m�2,
respectively, at a subtropical lake at noon on a summer day. The lake surface
temperature is 25.3ıC, and the surface albedo is 0.06. Assuming that the lake surface
is a black body, calculate the surface net radiation.

2.19 The water vapor pressure is 12.2 hPa, the atmospheric pressure is
984.5 hPa, the air temperature is 17.6 ıC, and the molar mixing ratio of CO2 is
409.7 �mol mol�1. Find the CO2 mass density in mg m�3.

2.20 The air temperature is 15.9 ıC, the atmospheric pressure is 998.3 hPa, and
the water vapor mass density is 23.6 g m�3. Find the vapor mass and molar mixing
ratios.

2.21 The methane and nitrous oxide molar mixing ratios are 2.89 ppm and
401.2 ppb, respectively. Find their mass mixing ratios.
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Chapter 3
Governing Equations for Mean Quantities

3.1 Reynolds Decomposition

Motion in the atmospheric boundary layer is generally turbulent. The action
of turbulence is evident when we observe the smoke plume released from a
smokestack. The plume may whirl around, meander sideways, or loop up and down.
These erratic patterns are visual clues of eddies at work. If we measure the flow
with a fast-responding anemometer, we will find that the velocity fluctuates with
time in a seemingly random manner. Air temperature, humidity, and other scalars
also exhibit irregular temporal fluctuations. Details of the flow are impossible to
predict. We have no way of determining the exact travel path of a smoke puff or
predicting how the velocity changes from one second to the next. Rather our goal is
to quantify the mean state of the atmosphere by performing averaging operation on
the atmospheric properties.

Consider a continuous time series shown in Fig. 3.1. In a standard Reynolds
decomposition, the instant value, a, is decomposed into a mean (a) and a fluctuating
part (a0):

a D a C a0; (3.1)

where the mean part is given by

a D 1

T

Z T

0

a dt; (3.2)
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Fig. 3.1 Block averaging (top) and recursive filtering (bottom)

where T is averaging length and overbar denotes time averaging. This averaging
operation is called block averaging. The Reynolds mean and fluctuating parts
observe the following three rules:

a D a; (3.3)

a0 D 0; (3.4)

and

ba0 D 0; (3.5)

where b is the Reynolds mean of variable b. An alternative expression to Eq. 3.5 is
that the Reynolds mean of the product of a constant and the fluctuations of a variable
is zero.

If a is a continuous function of time and space, time averaging and partial
derivative operations are commutable:

@a

@t
D @a

@t
;

@a

@x
D @a

@x
;

@a

@y
D @a

@y
;

@a

@z
D @a

@z
: (3.6)
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These equations represent the fourth rule of Reynolds averaging. However, time
averaging is not commutable with the total time derivative operation (Problem 3.5).

In Reynolds notation, the variance of a is a02; and the covariance between a and
b is a0b0, where b0 is the fluctuating part of b.

In field observations or modeling studies, time series data are obtained at discrete
sampling intervals, tf . This interval is constant in field measurements but can
be variable in modeling studies. In the following, we only consider constant tf .
Operationally, the mean in the Reynolds decomposition is computed as

a D 1

n

nX

1

ai; (3.7)

where n is the number of samples in a given observation interval and is equal to T=tf
and subscript i denotes measurement at time step i. The fluctuating part is given by

a0
i D ai � a: (3.8)

The Reynolds properties (Eqs. 3.3, 3.4, and 3.5) still hold. The variance and
covariance terms are computed as

a02 D 1

n

nX

1

a02
i ; (3.9)

a0b0 D 1

n

nX

1

a0
ib

0
i: (3.10)

A typical averaging length is 30 min, and a typical sampling interval is 0.1 s.
The averaging length and the sampling interval can be optimized through an

ogive analysis on the covariance between temperature and the vertical velocity,
w0T 0 (Bradford et al. 2001). In the atmospheric boundary layer, eddies responsible
for fluctuations seen in the T and w time series come in different sizes. Their
contributions to the total covariance may be determined by a Fourier transformation
of the signals from the time domain to the frequency domain. In the frequency
domain, signals associated with larger eddies are registered at lower frequencies.
The averaging length should be long enough so that the captured eddy contributions
exceed some preset threshold, e.g., 99% of the total covariance. In practice, we
look for an asymptotic behavior of cumulative contribution starting from the high-
frequency end (Fig. 3.2a). The reciprocal of the frequency at which the cumulative
curve starts to flatten is a good choice for T . Similarly, an optimal sampling interval
should be short enough so that small eddies whose frequencies are greater than 1=tf
can be ignored. It can be determined by the asymptotic behavior of the cumulative
contribution, but this time with the summation starting from the low-frequency end
(Fig. 3.2b).
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Fig. 3.2 Two ogives

Recursive filtering is another form of time averaging operation. In this case,
measurement at previous time steps is used to compute a slow-varying trend at the
current time step, and the fluctuating component is taken as the deviation of the total
signal from this trend (Fig. 3.1). The most common recursive filter mimics the effect
of a simple R-C circuit and operates mathematically as

Qai D
�
1 � tf

�

�
Qai�1 C tf

�
ai; (3.11)

and

a0
i D ai � Qai (3.12)

where � is the filter’s constant or “averaging length.” The variance and covariance
statistics are then calculated with the fluctuating quantities according to Eqs. 3.9
and 3.10. This operation was attractive in the era of primitive computers because
computation of Reynolds statistics could be done online without the need to store
high-frequency raw data. A drawback is that it does not satisfy the Reynolds rules
(Eqs. 3.3, 3.4, and 3.5) because the filtered part Qai is not constant over time but
instead consists of a mean component and a slow-varying fluctuating component.
The mean governing equations, which form the theoretical basis for interpretation
of the flow and the associated diffusion processes, are however derived from these
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rules. So statistics resulting from recursive filtering are not consistent with these
equations, and their interpretation can be ambiguous.

Time averaging is the only practical choice of averaging operation for measure-
ments made at a single point in space. In a model domain, both time averaging and
spatial averaging can be used. A common spatial averaging operator involves data
in the x-y plane, as

< a >D 1

A

Z Z

DA

a dxdy; (3.13)

for the mean part, and

a00 D a� < a > (3.14)

for the fluctuating part, where A is area of the averaging domain DA in the x-y
plane. The variance and covariance are calculated similarly to Eqs. 3.9 and 3.10.
This averaging operation filters out unwanted horizontal variations, producing a
smooth vertical profile < a > as a function of time. The spatial averaging operation
satisfies the same Reynolds rules defined by Eqs. 3.3, 3.4, 3.5, and 3.6 except that
the temporal averaging is replaced by spatial averaging and temporal fluctuations by
spatial fluctuations.

Several situations call for other averaging operations in order to obtain the desired
mean properties of the flow. Line averaging is used for turbulence measurements
taken on an airplane, with each averaging path coinciding with a horizontal transect
of the airplane’s flight path. The fluctuating part is now a composite signal of
temporal and spatial variations. In large-eddy simulation of the flow, volume
averaging over the model’s grid spacing is applied to the governing equations to
obtain grid mean variables. Fluctuations associated with eddies smaller than the
grid size are not resolved; instead their roles in transport processes are captured
by subgrid parameterizations. Volume averaging is also used to formulate a canopy
drag force on the flow from pressure variations inside a plant canopy (Chap. 5).

3.2 Flow Incompressibility

Having established familiarity with the Reynolds rules, we are now ready to derive
governing equations for the mean flow quantities. Let us start with the simple
equation of incompressibility (Eq. 2.21) to illustrate how this is done. Decomposing
the velocity components into a mean and a fluctuating part, we can rewrite
Eq. 2.21 as

@.u C u0/
@x

C @.v C v0/
@y

C @.w C w0/
@z

D 0: (3.15)
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Performing block averaging on this equation, applying the Reynolds rules, and
noting the fact that averaging and addition are commutable, we obtain

@u

@x
C @v

@y
C @w

@z
D 0: (3.16)

This is the incompressibility equation for the mean velocities. Subtracting Eq. 3.16
from Eq. 3.15, we obtain the incompressibility constraint on the fluctuating
velocities:

@u0

@x
C @v0

@y
C @w0

@z
D 0: (3.17)

According to Eq. 3.16, a mean vertical motion must be present to compensate
for horizontal flow divergence. Non-zero flow divergence exists if the flow field
is not horizontally homogeneous. The relationship between w and horizontal flow
divergence, @u=@x C @v=@y, is

w.z/ D
Z z

0

�
�

@u

@x
C @v

@y

�
dz0 (3.18)

where w is zero at the surface.
The strong incompressibility condition (Eq. 2.21) allows us to study the dynam-

ics of atmospheric flows. In Chap. 2, we introduced three momentum equations.
There are however four unknowns (u, v, w, p) in these equations. With the addition
of Eq. 2.21, the number of equations is the same as the number of unknowns.
In mathematical terms, the system is now said to be closed. System closure is a
necessary condition before a solution can be sought. Similarly, Eq. 3.16 aids our
efforts to solve the mean momentum equations.

When dealing with the transport of heat and gases in the atmospheric boundary
layer, we should treat the incompressibility constraint with caution, or else erro-
neous results may arise. If we accept the strong incompressibility constraint, we
would not permit any work to be performed by an air parcel on its surroundings.
According to Eqs. 2.21 and 2.23, the heat conservation equation would be reduced to

�dcv

dT

dt
D �dcpST C �dcp�Tr2T: (3.19)

Applying the Reynolds averaging operation, we would obtain an eddy flux term,
�dcvw0T 0. This is an incorrect formulation for the surface sensible heat flux.

In the case of gaseous transport, if we accept Eq. 2.21, we would obtain from
Eq. 2.17 the following mass conservation equation:

d�c

dt
D Sc C �cr2�c (3.20)
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This equation has the same form as the conservation equation for the mixing ratio sc

(Eq. 2.18). Since Sc is negligible, Eq. 3.20 predicts erroneously that �c is a conserved
quantity, much like the potential temperature, during the adiabatic process. Later
in Chap. 9, we will show that Eq. 3.20 would lead to the wrong conclusion that
the eddy flux term w0�0

c is equivalent to the true surface-air exchange of carbon
dioxide under steady-state and horizontal homogeneity conditions. In other words,
density effects on the eddy flux of carbon dioxide would vanish completely under
the incompressibility assumption.

In the following derivation of mean governing equations, we will avoid using
Eq. 2.21, but will need Eq. 3.17 to obtain Reynolds covariance terms. Equation 3.17
is a weak form of the incompressibility constraint. Even though it can be derived
from Eq. 2.21, use of Eq. 3.17 does not imply that the instant velocity components
satisfy Eq. 2.21. At present, we do not know how to quantify the uncertainty
Eq. 3.17 may introduce to observational and modeling studies in boundary-layer
meteorology.

3.3 The Mean Equations for Velocity, Mixing Ratio,
and Potential Temperature

The derivation of governing equations on the mean velocity components is relatively
straightforward. Applying Reynolds decomposition to momentum Eqs. 2.3, 2.4,
and 2.5, performing block averaging, and using the Reynolds rules (Eqs. 3.3, 3.4,
3.5, and 3.6), we obtain

@u

@t
C u

@u

@x
C v

@u

@y
C w

@u

@z
D

�1

�

@p

@x
C f v C �r2u C

 
�@u02

@x
� @u0v0

@y
� @u0w0

@z

!
; (3.21)

@v

@t
C u
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and
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where we have used the weak incompressibility constraint (Eq. 3.17) to obtain the
Reynolds covariance terms. For example, to derive Eq. 3.21 from Eq. 2.3, we have
used

u0 @u0

@x
C v0 @u0

@y
C w0 @u0

@z
D @u02

@x
C @u0v0

@y
C @u0w0

@z
� u0

�
@u0

@x
C @v0

@y
C @w0

@z

�

D @u02

@x
C @u0v0

@y
C @u0w0

@z
: (3.24)

These mean equations bear strong similarity to the momentum equations for
the instant velocities (Eqs. 2.3, 2.4, and 2.5). The terms on the left side of
Eqs. 3.21, 3.22, and 3.23 represent mean acceleration, and on the right side of
the equations, the pressure gradient force, the Coriolis force, and the molecular
friction force are now expressed with mean flow quantities. The extra terms in
the parentheses consist of spatial derivatives of Reynolds variances (e.g., u02) and
covariances (e.g., u0w0). Like molecular friction, these terms act as retarding forces
on the mean motion. Thus, a consequence of velocity fluctuations is that they slow
down the air motion. Resulting from averaging of the nonlinear terms, such as
u.@w=@z/, in the original equations, the Reynolds velocity covariances represent
turbulent momentum fluxes or transport of momentum by turbulent eddies.

The governing equations for the carbon dioxide mean density (�c) and mixing
ratio (sc) and the mean potential temperature (� ) can be derived similarly from
Eqs. 2.16, 2.18, and 2.25
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!
; (3.25)
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and
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Once again, the Reynolds averaging operation has produced additional terms.
These terms consist of spatial derivatives of velocity-scalar covariances and are
given in the parentheses on the right side of the equations. In analogy to molecular
diffusion, these covariances represent turbulent transport of carbon dioxide and
sensible heat. In other words, the result of velocity and scalar fluctuations is a
diffusive transport of energy and materials in the atmosphere. Turbulent transport is
one factor contributing to the local time rate of change in the mean scalar quantities
(first term on the left side of Eqs. 3.25, 3.26, and 3.27). Other contributors of the
temporal change are horizontal (second and third term on the left) and vertical
advection (third term on the left) and molecular diffusion (first term on the right).

We have omitted the source terms in the above equations. This omission is
acceptable for CO2 because chemical production of CO2 in free air is negligible
and is a good approximation for heat in a cloud-free and clean boundary layer. If
clouds are present or if the boundary layer contains a large amount of aerosols, a
source term should be put back in Eq. 3.27 to account for absorption and emission
of radiation energy and phase changes of water.

The equation for the mean water vapor mixing ratio, sv , has the same form as
Eq. 3.26
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(Problem 3.8). In this equation, the Reynolds velocity-vapor mixing ratio covari-
ances represent turbulent diffusion fluxes of water vapor in the atmosphere.

Equations 3.16, 3.21, 3.22, 3.23, 3.26, 3.27, and 3.28 comprise the theoretical
framework that underpins quantitative analysis of phenomena in the atmospheric
boundary layer. Modelers use these equations to predict flow patterns and diffusion
transport in the atmospheric boundary layer. Experimentalists use them as guidance
to design field campaigns and for data interpretation.

3.4 Simplified One-Dimensional Equations

Surface boundary conditions strongly affect the vertical distributions of velocity,
temperature, and gaseous abundance in the atmospheric boundary layer. The
vertical gradients of these quantities are generally much larger than their horizontal
gradients. To emphasize the surface influence, we introduce two approximations,
(i) that horizontal velocity derivatives are zero:

@u

@x
D @v

@x
D @u

@y
D @v

@y
D 0; (3.29)
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and (ii) that horizontal derivatives of the temperature and the gaseous mixing ratios
are zero:

@sv

@x
D @sv

@y
D 0;

@sc

@x
D @sc

@y
D 0;

@�

@x
D @�

@y
D 0: (3.30)

The first approximation states that the flow is horizontally homogeneous, and the
second implies that the surface source strengths of heat, water vapor, and carbon
dioxide are invariant in the x � y directions. From now on, we will also ignore the
molecular terms because they are much smaller in magnitude than their turbulent
counterparts. With these approximations, the mean equations are reduced to the one-
dimensional form:
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; (3.31)
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and

@sc

@t
D �@w0s0

c

@z
: (3.35)

The vertical momentum equation is no longer needed because horizontal flow
homogeneity implies zero flow divergence and therefore zero mean vertical velocity
everywhere in the domain (Eq. 3.18). Except for pressure, quantities that appear in
these equations are functions of t and z but are invariant in the x � y plane.

At first glance, the assumption of horizontal flow homogeneity seems contradic-
tory. Air motion owes its existence to the pressure gradient force. The same force,
when interacting with the surface friction, will generate horizontal flow divergence.
So strictly speaking, the spatial velocity derivatives @u=@x and @v=@y cannot be zero
as long as the wind is blowing. Fortunately, in the absence of a local disturbance
to the flow, the effect of flow divergence is much weaker than the Coriolis and
the pressure gradient force and can be omitted from the momentum equations. In
Chap. 2, we said that these two forces are on the order of 1 � 10�3 m s�2. The flow
divergence rate frequently used for scale analysis of synoptic weather systems is on
the order of 1 � 10�5 s�1. Assuming that all divergence occurs in the x direction so
that @u=@x D 1 � 10�5 s�1 and that a typical u is 10 m s�1, the horizontal advection
term, u.@u=@x/, is on the order of 1 � 10�4 m s�2.
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We have now established a complete set of equations for the one-dimensional
atmospheric boundary layer. The choice of which equations to use will depend
on the task at hand. To study flow dynamics in a neutral boundary layer, the
two momentum equations (Eqs. 3.31 and 3.32) will suffice. In neutral stability,
turbulence is generated by vertical wind shear, and buoyancy does not play a
role. If the atmosphere is stratified, or if we are interested in heat and water
vapor transport, we will also need Eqs. 3.33 and 3.34 to account for buoyancy
generation and destruction of turbulence and to quantify the transport processes. The
study of transport of carbon dioxide will require all the five equations, relying on
Eqs. 3.31, 3.32, 3.33, and 3.34 for determining flow characteristics and on Eq. 3.35
for determining turbulent transport of carbon dioxide.

The surface influence is felt most strongly in the atmospheric surface layer.
Figure 3.3 shows typical mean profiles of wind speed, air temperature, humidity,
and carbon dioxide concentration over a plant canopy in the daytime. These profile
shapes can be used to infer how the associated Reynolds covariances should behave.

Fig. 3.3 Daytime profiles of mean quantities and Reynolds fluctuations in the atmospheric surface
layer over a vegetation canopy: u, horizontal velocity; T , temperature; sv , water vapor mixing ratio;
sc: CO2 mixing ratio; d, displacement height. The open and closed symbols indicate upward and
downward moving eddies, respectively, and the arrows indicate their directions of movement
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Turbulent motion is a mixture of upward and downward moving eddies. An upward
moving eddy creates a positive fluctuating vertical velocity (w0 > 0). It is imprinted
with conditions of its point of origin, which is characterized by lower horizontal
velocity, and is warmer, more humid, and less abundant in carbon dioxide than the
mean state at the observational height. The instrument will likely register u0 < 0,
T 0 > 0, s0

v > 0, and s0
c < 0. Conversely, there is a tendency that u0 > 0, T 0 < 0,

s0
v < 0, and s0

c > 0 in association with a downward moving eddy (w0 < 0).
Averaging over a large number of eddies, we expect u0w0 < 0, w0T 0 > 0, w0s0

v > 0,
and w0s0

c < 0.
We can also predict the behavior of those covariances that do not involve the

vertical velocity. In the situation shown in Fig. 3.3, the u � T covariance is negative.
More generally, the u � T covariance is in opposite sign as the w � T covariance in
the atmospheric surface layer.

3.5 The Closure Problem

A fundamental challenge in the studies of turbulent flow is that the number of
unknowns exceeds the number of mean equations. This closure problem arises from
the fact Reynolds averaging generates variances and covariances from nonlinear
terms in the instant equations. In the one-dimensional situation described above, ten
variables (u, v, � , sv , sc, u0w0, v0w0, w0� 0, w0s0

v , w0s0
c) are unknown, but we only have

five equations to constrain them. To circumvent the problem, we will need five more
equations. The additional equations, called turbulence closure parameterizations,
are not derived from fundamental laws of thermodynamics and physics. Rather
they are empirical expressions that capture our understanding on how Reynolds
covariances should behave in the atmospheric boundary layer.

The most common parameterization scheme relates a Reynolds covariance to the
spatial gradient of the relevant mean quantity. Specifically, the five covariances in
Eqs. 3.31, 3.32, 3.33, 3.34, and 3.35 are given as

u0w0 D �Km
@u

@z
; (3.36)

v0w0 D �Km
@v

@z
; (3.37)

w0� 0 D �Kh
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@z
; (3.38)

w0s0
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; (3.39)

w0s0
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@sc

@z
: (3.40)
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The free parameters in these equations, Km, Kh, Kv , and Kc, are termed eddy
diffusivities, all having the dimensions of m2 s�1. Subscripts m, h, v, and c are used
to denote eddy diffusivity for momentum, sensible heat, water vapor, and carbon
dioxide, respectively. Combining the parameterization Eqs. 3.36, 3.37, 3.38, 3.39,
and 3.40 with the governing Eqs. 3.31, 3.32, 3.33, 3.34, and 3.35, we have the same
number of equations as the number of unknowns, and it is now possible to seek
solutions. The Ekman wind profile in Chap. 6 is a good demonstration for how this
is done.

Equations 3.36, 3.37, 3.38, 3.39, and 3.40 state that the strength of turbulent
diffusion is proportional to the spatial gradient of the mean state quantity of interest.
The negative sign in these equations ensures that the diffusion flux is directed
down the gradient from a position of higher to a position of lower momentum,
temperature, or gaseous concentration. This flux-gradient relationship is consistent
with the inference we have made regarding the sign of the Reynolds covariances
(Fig. 3.3). If the surface source or sink is turned off, turbulent diffusion will
eventually destroy the vertical gradient. In these respects, turbulent and molecular
diffusion are similar. In molecular transport, diffusion is accomplished by Brownian
motion of molecules, with molecular diffusivity being proportional to the product
of molecular mean free path and mean vibration velocity. In turbulent transport,
diffusion is achieved by movement of eddies, and eddy diffusivity can be formulated
in a similar way, using a velocity scale for the eddies and a length scale for their
mean “travel path,” as we will demonstrate shortly.

Turbulent and molecular diffusion are different in two aspects. The first major
distinction is that molecular diffusivity is a property of the fluid, and eddy diffusivity
is a property of the flow. In an isothermal fluid, molecular diffusivity is constant
everywhere, whereas eddy diffusivity is highly variable in space and time depending
on local velocity and distance to the surface. Secondly, molecular diffusivity
depends on molecular mass. For example, molecular diffusivity of water vapor in
the atmosphere is 60% greater than that of carbon dioxide. In contrast, turbulent
diffusion is not discriminating. Turbulent eddies are equally efficient in transporting
heat, carbon dioxide, water vapor, and any other scalar quantities of interest. We can
safely assume

Kh D Kv D Kc: (3.41)

In the following, we will present formulations for Kh only, but it is understood that
the same formulations are also applicable to eddy diffusion of other scalars.

Experimental evidence shows that shear-generated eddies transport momentum
and scalars with equal efficiency, resulting in

Km D Kh; (3.42)

under neutral and stable conditions. Equation 3.42 does not hold in unstable con-
ditions where buoyancy-generated eddies transport scalars much more efficiently
than momentum and Km is smaller than Kh. In other words, the turbulent Prandtl
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Fig. 3.4 Eddy diffusivity for
momentum in a neutral
boundary layer, where u� is
friction velocity and zi is
boundary-layer depth. The
solid line represents
parameterization Eq. 3.52 and
the dashed line is its
asymptotic behavior in the
surface layer

number and the turbulent Schmidt number, defined as the ratio of the momentum
eddy diffusivity to the eddy diffusivity for heat and to the eddy diffusivity for mass,
respectively, are equal to unity in neutral and stable conditions and are less than
unity in unstable conditions.

Under neutral stability, eddy diffusivity over a smooth surface is parameterized as

Km D Kh D kzu� (3.43)

where the proportionality factor k is the von Karman constant, u� is friction velocity,
and z is height above the surface (Fig. 3.4). Extensive wind tunnel studies and
micrometeorological measurements have shown that the best value for k is 0.4. Here
u� is an eddy velocity scale and

l D kz; (3.44)

is an eddy length scale called Prandtl’s mixing length. Formally, u� is defined as

u� D .�u0w0/1=2; (3.45)

in the micrometeorological coordinate (Fig. 2.1) or

u� D Œ.u0w0/2 C .v0w0/2�1=4; (3.46)

in a general Cartesian coordinate. The u� definition is based on the velocity
covariances measured in the surface layer.
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If the surface upwind of the observational point is sufficiently large and uniform,
the turbulent fluxes will be nearly constant with height in the surface layer. It
follows from Eqs. 3.36, 3.43, and 3.45 that under the constant flux approximation,
the solution for u is given by

u D u�
k

ln
z

zo
(3.47)

where zo is momentum roughness. Equation 3.47 describes the classic logarithmic
wind profile. Other mean quantities are also logarithmic in the surface layer. For
example, the mean potential temperature is given by

� � �o D ��
k

ln
z

zo;h
; (3.48)

where zo;h is thermal roughness, �o is potential temperature at height zo;h, and �� is
a potential temperature scale defined as

�� D �w0� 0
u�

: (3.49)

We note that the logarithmic solutions for u and � are obtained only from the
turbulence parameterization scheme and the actual governing equations (Eqs. 3.31
and 3.33) are not used. Above the surface layer where the turbulent fluxes are no
longer constant with height, we will need the governing equations to predict the
vertical distributions of these mean quantities.

The eddy diffusivity parameterization given by Eq. 3.43 is valid only under
a restrict set of conditions: air stability is neutral, the surface is void of rough
elements, and z is small (< approximately 50 m). The parameterization can be
modified for other situations. In comparison to neutral stability, eddy diffusion is
more efficient in unstable conditions and less efficient in stable conditions. The
above parameterization is modified to

Km D kzu�
�m

; Kh D kzu�
�h

; (3.50)

where �m and �h are empirical stability correction functions. They are less than one
in unstable conditions and greater than one in stable conditions (Chap. 4).

In the middle and upper boundary layer, the eddy length scale is smaller than
predicted by the Prandtl’s mixing length model. Several modifications to Eq. 3.44
have been proposed to force a good match between calculated and observed wind
profiles in the upper boundary layer and in the free atmosphere. A frequently used
parameterization for neutral stability is

l D kz

�
1 � z

zi

�2

; (3.51)
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where zi is boundary-layer depth, and the momentum eddy diffusivity is given by

Km D kz

�
1 � z

zi

�2

u�; (3.52)

(Fig. 3.4).
Over a plant canopy, the correct eddy length scale is k.z � d/, and

Km D k.z � d/u�
�m

; Kh D k.z � d/u�
�h

; (3.53)

where d is the height of a displacement plane. The mean profiles are still logarithmic
but are offset upward by the displacement height, d (Fig. 3.3).

In statistics, Reynolds variances and covariances, such as u02 and u0w0, are
second-order moments, and mean state quantities, such as u, are first-order
moments. In the above flux-gradient relationships, the second-order moments
are determined by local gradients of the first-order moments. This parameterization
scheme is referred to as local first-order closure. The scheme has gained widespread
acceptance because it is a natural extension of our understanding of molecular
diffusion, is computationally simple, and is reasonably accurate in the surface layer.
However, if eddies involved in turbulent transport are larger than the scale of the
local gradient, the turbulent flux can be partially or totally decoupled from the local
gradient. In a convective boundary layer, eddies generated by thermal convection
are able to penetrate the whole boundary layer, and mixing is so efficient that the
vertical gradient of potential temperature in the middle of the boundary layer may
vanish completely. However, there can still exist a substantial upward heat flux,
which would not be possible according to Eq. 3.38.

A similar situation exists inside a plant canopy. Coherent eddies generated by
strong wind shear near the top of the canopy are large enough to impact the whole
canopy layer. The flux-gradient relationships are no longer accurate in the canopy
airspace. In the extreme case, the flux may flow against or counter the local gradient.
Counter-gradient flux is not permissible by local first-order parameterization unless
we adopt a physically meaningless negative eddy diffusivity.

In an alternative nonlocal first-order parameterization, the total flux is made
up of a local gradient flux contributed by small eddies and a nonlocal transport
contributed by large eddies. The x-component momentum flux is given by

u0w0 D �Km

�
@u

@z
� �m

�
; (3.54)

where �m is a positive correction factor representing large-eddy contribution (Hong
and Pan 1996). Similar expressions can be written for fluxes of heat, water vapor,
and trace gases.

Second-order closure is another alternative to local first-order closure. Instead
of directly parameterizing Reynolds covariances, we now derive from the instant
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budget equations for these second-order moments. We will discuss how this is done
in Chap. 4. New third-order moments, such as u0v0w0, will unavoidably emerge from
the Reynolds averaging operation. Closure parameterization is performed on the
third-order moments. For example, u0v0w0 is parameterized as

u0v0w0 D �l1e1=2

 
@u0v0

@z
C @u0w0

@y
C @v0w0

@x

!
; (3.55)

(Mellor 1973), where l1 is an eddy length scale and e is turbulent kinetic energy.
Generally, closure parameterization at the third order improves the realism of
calculated mean state quantities and can accommodate nonlocal transport to some
extent.

A drawback of second-order closure is that it contains many more free parameters
than first-order closure, some of which are impossible to verify experimentally. For
this reason, second-order closure is not suitable for experimental determination of
surface eddy fluxes.

3.6 Quantifying Eddy Fluxes

In the previous section, we may have left the impression that Reynolds covariances
are a source of frustration because they create a difficult closure problem. In this
section, we will show that they actually represent an opportunity for observational
studies of surface-air interactions. We will also exploit the surface-layer closure
parameterization for formulation of surface boundary conditions on the mean state
of the atmospheric boundary layer.

Experimental Strategies

In the micrometeorological literature, Reynolds covariances are synonymous with
eddy fluxes. The four most commonly used eddy flux quantities are

Eddy flux of momentum W Fm D �u0w0.D u2�/; (3.56)

Eddy flux of sensible heat W Fh D �dcpw0� 0; (3.57)

Eddy flux of water vapor W Fv D �d.w0s0
v/; (3.58)

Eddy flux of carbon dioxide W Fc D �d.w0s0
c/: (3.59)

The reader is reminded that in these eddy flux equations, all the covariance terms
are expressed in the micrometeorological coordinate. The mean dry air density, �d,
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and specific heat at constant pressure, cp, appear in Eq. 3.57 to ensure that Fh has
the energy flux dimensions of W m�2. For a similar reason, we have included �d in
Eqs. 3.58 and 3.59.

Because eddy covariance instruments measure T instead of � , we also define
eddy flux of sensible heat as

Fh D �dcp.w0T 0/: (3.60)

Equation 3.57 is the surface flux boundary condition for Eq. 3.33, while Eq. 3.60
is a more correct formulation for the true surface-air exchange of sensible heat.
The two formulations differ by the factor .p=p0/�Rd=cp (Eq. 2.24). This difference is
negligible at low altitudes but can be noticeable at high altitudes. At an altitude of
2 km, Fh from Eq. 3.60 is 7% smaller in magnitude than that from Eq. 3.57.

In steady-state and under advection-free conditions, Eqs. 3.58, 3.59, and 3.60 are
equivalent to the total surface source strength of water vapor, carbon dioxide, and
sensible heat (Chap. 8). This fact has motivated us to establish micrometeorological
methods for quantifying the eddy fluxes. The most direct method of measuring
the eddy fluxes, called eddy covariance, requires deployment of fast-responding
instruments for sampling the velocity components, the gaseous concentrations, and
temperature. The Reynolds covariances, w0s0

v , w0T 0, and w0s0
c are first computed from

the recorded high-frequency time series of w, sv , sc and T . The appropriate fluxes are
then converted from the covariances. An extensive discussion on eddy covariance
can be found in Chap. 8.

In absence of fast-responding instruments, we can determine the fluxes using the
first-order closure assumption and measurement of the mean state quantities at two
heights above the surface. The flux-gradient method computes the flux using the
flux-gradient relationships (Eqs. 3.36, 3.37, 3.38, 3.39, and 3.40). Expressing the
vertical gradients in finite difference form, we obtain

Fm D Km
u2 � u1

z2 � z1

; (3.61)

Fh D ��dcpKh
T2 � T1

z2 � z1

; (3.62)

Fv D ��dKv

sv;2 � sv;1

z2 � z1

; (3.63)

Fc D ��dKc
sc;2 � sc;1

z2 � z1

; (3.64)

where subscript 1 and 2 denote measurement at height z1 and z2. The eddy diffusivity
parameters are determined from

Km D kzgu�
�m

; Kh D Kv D Kc D kzgu�
�h

; (3.65)
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where zg is the geometric mean of the two measurement heights

zg D Œ.z2 � d/.z1 � d/�1=2: (3.66)

The stability correction functions, �m and �h, are also evaluated at height zg. We
use the geometric rather than arithmetic mean height to improve the accuracy of the
finite difference approximation.

An observant reader may notice that Eqs. 3.61, 3.62, 3.63, 3.64, and 3.65 involve
circular reasoning. Because �m and �h are functions of u� and Fh (Chap. 4),
calculation of Km and Kh requires that Fm and Fh be known before Fm and Fh can
be determined. In practice, this dilemma is resolved with an iterative procedure
(Problem 4.18, Chap. 4). First, an initial guess value for u� and one for Kh are
obtained from

u� D kzg
u2 � u1

z2 � z1

; Kh D kzgu�; (3.67)

by assuming neutral stability (�m D 1 and �h D 1). Next, a guess value for Fh is
calculated with Eq. 3.62. Third, the guess values of u� and Fh are used to obtain
updated �m, �h, Km, and Kh. Fourth, improved estimates of Fm and Fh are calculated
with Eqs. 3.61 and 3.62 using the updated Km and Kh. These steps are repeated until
a convergence criterion is met.

In some field campaigns, the flux-gradient method is deployed in combination
with the eddy covariance method. The eddy covariance method is used for the deter-
mination of Fm and Fh, and the flux-gradient method is used for the determination
of the gaseous fluxes. In this configuration, the gaseous eddy diffusivity is computed
with the eddy covariance data, and the interactive procedure is no longer required.

The Bowen ratio method, a variation of the flux-gradient method, is frequently
used to determine the water vapor flux. Bowen ratio, ˇ, is the ratio of the surface
sensible flux (Fh) to the surface latent heat flux (Fv). Dividing Eq. 3.62 by Eq. 3.63
and noting equality of eddy diffusivity for sensible heat and water vapor, we obtain

ˇ D �
T2 � T1

ev;2 � ev;1

; (3.68)

where � D pdcp=.0:621) is the psychrometric constant (' 0:66 hPa K�1) and
ev;2 and ev;1 are water vapor pressure measured at the two heights. In steady state,
H D Fh, and E D Fv . Combining these relations with energy balance Eqs. 2.47 and
3.68, we obtain

Fv D E D 1



Rn � G � Qs

1 C ˇ
: (3.69)

This method requires measurement of the available energy, in addition to the two-
level measurement of air temperature and humidity. Because it completely avoids
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Fig. 3.5 Schematic diagram of a modified Bowen ratio apparatus for carbon dioxide and methane
flux measurement. Air is drawn from intakes at two heights above the surface. A closed-path
analyzer subsamples the two air streams sequentially for simultaneous detection of water vapor,
methane, and carbon dioxide concentrations. The eddy flux of water vapor is measured separately
with an eddy covariance system. The buffer volumes are used to smooth out turbulent fluctuations
so representative samplings can be obtained. In this particular configuration, the switching interval
is 60 s, and the buffer time lasts about three switching intervals

eddy diffusivity calculation, the Bowen ratio method can be used in situations where
no accurate eddy diffusivity parameterization exists, such as in the air layer above
the floor of a forest, as long as there are reasons to believe that equality of eddy
diffusivity holds.

The modified Bowen ratio method, another extension of the flux-gradient method,
aims to determine the eddy flux of a trace gas (Businger 1986; Meyers et al.
1996). We will use carbon dioxide to demonstrate how it works. Let us suppose
that the carbon dioxide analyzer available for the experiment is not fast enough for
eddy covariance measurement, but produces accurate measurement of mean carbon
dioxide concentration at two heights above the surface (Fig. 3.5, sc;2, and sc;1). In
parallel to the carbon dioxide measurement, measurement is also made of water
vapor concentration at the same heights (sv;2 and sv;1) and of the water vapor flux
via eddy covariance (Fv). Manipulation of Eqs. 3.63 and 3.64 yields

Fc D sc;2 � sc;1

sv;2 � sv;1

Fv: (3.70)

On the assumption that eddy transport does not discriminate against either water
vapor or carbon dioxide, the eddy diffusivity parameter is canceled out. In this
respect, the method is no different from the traditional Bowen ratio method except
that it is modified for trace gas applications.
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Modeling Strategies

We have shown that the flux-gradient relationships, when expressed in finite-
difference form, enable us to devise three methods for quantifying experimentally
surface eddy fluxes. Our next task is to convert the relationships to integral forms
for use in modeling studies.

A key point to remember here is that Reynolds covariances or eddy fluxes are
constant with height in the surface layer. Dividing Eq. 3.36 by Km and integrating
with respect to z, we obtain

u0w0
Z z

zo

1

Km
dz0 D �u; (3.71)

This equation can be rearranged to

Fm D �u0w0 D u

ra;m
; (3.72)

where

ra;m D
Z z

zo

1

Km
dz0; (3.73)

is the aerodynamic resistance to momentum transfer. The integral form of the heat
flux relationship is

Fh

�dcp
D �o � �

ra;h
; (3.74)

where the aerodynamic resistance to heat transfer, ra;h, is given by

ra;h D
Z z

zo;h

1

Kh
dz0 (3.75)

and �o is the mean potential temperature at height zo;h. The water vapor and carbon
dioxide flux relationships can be rearranged into similar forms.

The resistance concept is based on Ohm’s law analogy. Ohm’s law states
that electric current, or flow of electrons, is inversely proportional to the electric
resistance of a load and is proportional to the voltage differential across the load.
This analogy has been put into good use in boundary-layer meteorology. In the case
of heat transfer, the heat flux is the equivalent of electric current, and the surface-
to-air temperature difference is the equivalent of voltage differential. Figure 3.6
is the schematic diagram of a simple “circuit” with a single “resistor” to describe
diffusion through the surface layer. Other situations require use of multiple resistors
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Fig. 3.6 Flow of electric current in a one-resistor circuit and the analogous transfer of momentum
and heat in the surface layer

(Chap. 10). The plant transpiration pathway consists of the stomatal opening, the
leaf boundary layer, and the atmospheric surface layer, and in Ohm’s law analogy,
water vapor diffusion encounters three resistances connected in series, the stomatal
resistance, the leaf boundary-layer resistance, and the aerodynamic resistance. Some
multilayer canopy evapotranspiration and photosynthesis models are represented
by a network of resistances with parallel and serial nodes of connection. One
important distinction between circuit analysis and turbulent diffusion is that electric
resistances are constant, whereas the diffusion resistances are highly variable. Being
an inverse property of eddy diffusivity, the aerodynamic resistance is a measure of
diffusion inefficiency: it is high if the diffusion layer is thick and decreases with
increasing wind speed, surface roughness, or air instability.

The integral relationships are the preferred choice for land surface models. The
main function of a land surface model is to compute the surface fluxes from forcing
variables prescribed at some height above the surface. In a fully coupled or online
mode, the forcing variables, such as u and � in Eqs. 3.72 and 3.74, are provided by
an atmospheric model at the first grid height. The computed fluxes then serve as the
surface boundary conditions for the atmospheric model.

In the literature on ocean atmospheric boundary layers, the surface fluxes are
often described with bulk formulations as

Fm D CDu2; (3.76)

Fh

�dcp
D CHu.�o � �/; (3.77)

Fv

�d
D CEu.sv;o � sv/; (3.78)
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where �o is assumed to be the same as the temperature of the water surface and sv;o

is vapor mixing ratio at the water surface, which is determined from the saturation
vapor pressure at temperature �o. In these equations, CD, CH , and CE are the
transfer coefficients for momentum, sensible heat, and water vapor, respectively.
These dimensionless parameters, also referred to as the drag coefficient, the
Stanton number, and the Dalton number, respectively, are related to the diffusion
resistances as

CD D 1

ura;m
; CH D 1

ura;h
; CE D 1

ura;v

; (3.79)

where ra;v is the aerodynamic resistance to water vapor transfer.

3.7 Problems

3.1 Prove the first three Reynolds rules (Eqs. 3.3, 3.4, and 3.5).

3.2 Calculate the variance of temperature (T) and vertical velocity (w) and the T�w
covariance using the time series data in Table 3.1.

3.3* Some people define the fluctuating part of quantity a as

a0
i D ai � Oai; (3.80)

where subscript i denotes measurement at time step i and Oa is the value from
the linear regression of a against time (Fig. 3.7). This procedure is called linear
detrending. It can be shown that

Oai D a C b

 
ti � 1

n

nX

1

ti

!
; (3.81)

Table 3.1 Time series of temperature T (ıC) and vertical velocity w (m s�1). Time t is in s

t 1 2 3 4 5 6 7 8 9 10 11 12

T 20.0 20.2 19.7 19.8 20.1 20.3 20.3 20.2 20.2 19.7 20.0 20.0

w �0.52 �0.02 �0.09 0.07 �0.01 �0.13 �0.41 �0.60 �0.72 �0.35 �0.26 �0.45

t 13 14 15 16 17 18 19 20 21 22 23 24

T 20.1 22.3 20.1 19.9 20.0 20.0 20.0 20.1 20.6 20.7 20.5 20.8

w 0.32 0.00 �0.10 0.43 �0.42 0.25 0.41 0.74 1.29 1.31 1.60 1.36
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Fig. 3.7 Linear detrending of a time series

where n is the number of observations, t is time, and b D b1=b2, with b1 and b2

given by

b1 D
nX

1

aiti � 1

n

nX

1

ai

nX

1

ti;

and

b2 D
nX

1

titi � 1

n

nX

1

ti

nX

1

ti;

(Gash and Culf 1996). The detrended fluctuations are then used to compute the
variance using Eq. 3.9 and covariance using Eq. 3.10. Show (i) that a0

i D 0 and
that (ii) the detrended variance and covariance are smaller in magnitude than their
counterparts computed from the standard block averaging procedure. Verify these
conclusions with the data given in Table 3.1.

3.4 The total kinetic energy per unit mass of air is given by

ET D 1

2
.u2 C v2 C w2/:

Using the Reynolds averaging rules, show that the mean total kinetic energy, ET , is
the sum of the mean flow kinetic energy, E, and the turbulent kinetic energy, e:

ET D E C e;
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where

ET D 1

2
.u2 C v2 C w2/;

E D 1

2
.u2 C v2 C w2/;

and

e D 1

2
.u02 C v02 C w02/:

3.5 Show that the time averaging and the total derivative operations are not
commutable, that is,

df

dt
¤ df

dt
: (3.82)

3.6 The horizontal velocity divergence @u=@x C @v=@y is 2 � 10�6 s�1 in a mid-
latitude anticyclone. Estimate the associated mean vertical velocity at the height of
20 m above the surface.

3.7 The momentum flux u0w0 is �0:36 and 0 m�2 s�2 at the surface and at the top of
a shear-dominated boundary layer (height D 1000 m), respectively. Find the vertical
divergence of the turbulent momentum flux, @u0w0=@z. Is the flux divergence much
larger in magnitude than the molecular term, �r2u? (Use your result for Problem 2.3
to answer this question.)

3.8 Using the Reynolds rules and the weak incompressibility constraint (Eq. 3.17),
derive from Eq. 2.20 the governing equation for the mean water vapor mixing ratio
(Eq. 3.28).

3.9 Derive from Eq. 2.16 the governing equation from the mean mass density �c
(Eq. 3.25). Do you need the weak incompressibility constraint for this derivation?

3.10 Show that the eddy sensible heat flux, Fh, has the dimensions of W m�2 and
the eddy water vapor flux, Fv , has the dimensions of kg m�2s�1.

3.11 In the situation shown in Fig. 3.3, do you expect the T � sv covariance to be
positive or negative? What about the u � sc covariance?

3.12 Figure 3.8 shows the relationship between friction velocity (u�) and horizontal
velocity (u) observed at a measurement height of 8.50 m above the surface of a
shallow lake and over a wheat field at a measurement height of 2.55 m above its
zero-plane displacement. Determine the surface momentum roughness and surface
drag coefficient from the slope of the regression. Which dataset represents the lake
experiment?
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Fig. 3.8 Relationship between friction velocity (u�) and horizontal velocity u over a lake surface
and a wheat field. Solid lines represent regression fit to the data and numbers next to the lines
indicate slopes of the regression

3.13 In some climate models, a grid cell can have multiple subgrid surface
types. Each surface interacts independently with the overlaying atmosphere through
forcing variables specified at the first model grid level. This level is usually at the
so-called blending height where the atmosphere is well mixed horizontally (i.e.,
no subgrid variations at this height). Assume that a grid cell consists of a smooth
(momentum roughness zo D 0:001 m) and a rough surface (zo D 0:50 m), air
stability is neutral, the blending height is 50 m, and wind speed at the blending
height is 5.00 m s�1. Calculate the friction velocity for each of the two surfaces.
What is the wind speed at the 2-m height above these surfaces?

3.14 Two temperature sensors are mounted at heights of 2.0 and 4.0 m above the
zero plane displacement of a grass surface whose momentum roughness is 0.02 m.
The sensors have a precision of 0.05 ıC. Wind speed at the upper measurement
height is 4.00 m s�1, and surface sensible heat flux is 35 W m�2. Assume that air
stability is neutral. What is the temperature difference between the two measurement
heights? Are these sensors good enough to resolve the difference? Repeat the
calculation for a forest whose momentum roughness is 1.0 m. Can you resolve the
temperature difference with the same sensors?

3.15 Air temperature is 22.3 and 21.9 ıC, and water vapor pressure is 18.1 and
17.4 hPa at heights of 1.0 and 2.3 m above a soil surface, respectively. What is the
Bowen ratio?

3.16 The carbon dioxide flux of a lake system is on the order of 0.01 mg m�2 s�1. If
a broadband carbon dioxide analyzer has a precision of 0.2 ppm, is it good enough
for the flux-gradient measurement of the flux? Assume that the carbon dioxide
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Fig. 3.9 Time series of carbon dioxide, methane, and water vapor molar mixing ratio obtained
with a modified Bowen ratio system (Data source: Xiao et al. 2014)

concentration measurement takes place at heights of 1.0 and 3.0 m above the water
surface, the friction velocity is 0.15 m s�1, and air stability is neutral.

3.17* Figure 3.9 shows the instant concentrations of three gases over a lake
surface measured by a gas analyzer using the configuration shown in Fig. 3.5.
The step changes correspond to times when the analyzer switched from one air
intake to another. The surface water vapor flux, measured by eddy covariance, is
0.082 g m�2 s�1 for the period shown in Fig. 3.9. Using the modified Bowen ratio
method, determine the surface flux of methane, in units of �g m�2 s�1, and the flux
of carbon dioxide, in units of mg m�2 s�1 with the data shown in Fig. 3.9.

3.18 Show that in neutral stability, the aerodynamic resistance to momentum
transfer and to heat transfer is given by

ra;m D 1

k2u

�
ln

z � d

zo

�2

; (3.83)

and

ra;h D 1

k2u
ln

z � d

zo
ln

z � d

zo;h
: (3.84)

Assume that wind speed is measured at a reference height of 10.0 m above the zero
plane displacement. Use the typical value of 0.14 for the roughness ratio zo;h=zo.
Plot these resistances as a function of wind speed for a grass surface (momentum
roughness zo D 0:10 m) and for a forest (zo D 1:00 m). Discuss how wind speed
and surface roughness affect the aerodynamic resistances.
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3.19 In neutral stability, even though equality of eddy diffusivity holds for heat
and for momentum (cf., Eq. 3.43) in the atmospheric surface layer, the aerodynamic
resistance to heat transfer, ra;h, is larger than that to momentum transfer, ra;m. The
difference, re D ra;h � ra;m, termed excess resistance, is explained by the fact that
in the laminar layer in immediate contact with the surface, momentum transfer is
much more efficient than heat transfer: the former is accomplished by a form drag
associated with pressure discontinuity, whereas the latter is carried out by molecular
diffusion. Show that the excess resistance to heat transfer is given by

re D 1

ku�
ln

zo

zo;h
:

Using the information provided in Problem 3.18, compare re and ra;h for the grass
surface and the forest surface over a wind speed range of 1–5 m s�1.

3.20 A typical value for CH and CE of lakes and oceans is 1 � 10�3. The surface
temperature of a lake is 18.0 ıC, and air at the height of 10.0 m above the lake has a
temperature of 17.0 ıC, a relative humidity of 65%, and a wind speed of 4.0 m s�1.
The lake is at the mean sea level. Calculate the surface sensible heat flux and the
latent heat flux. The saturation vapor pressure is given by

e�
v D 6:1365 exp

�
17:502t

240:97 C t

�
; (3.85)

(Licor 2001), where e�
v is in hPa and t is in ıC.
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Chapter 4
Generation and Maintenance of Atmospheric
Turbulence

4.1 Energy Pools and Energy Transfers

In this chapter, we study mechanisms by which turbulent eddies develop and
dissipate kinetic energy. The kinetic energy contained in turbulent eddies is a
measure of the vigor of atmospheric turbulence. Owing to the action of the viscous
force, kinetic energy is constantly and irreversibly transferred into internal energy
of the atmosphere. New kinetic energy must be supplied, or else turbulent motion
would be replaced by laminar flow, and the atmospheric boundary layer would lose
much of its diffusion power. Our approach is based on two principles introduced
in Chaps. 2 and 3: Reynolds decomposition and momentum conservation. We will
use them to derive budget equations governing the mean flow kinetic energy and
the turbulent kinetic energy. Energy transfer mechanisms are then examined in the
context of these equations.

Kinetic energy is the energy of motion. The kinetic energy of an air parcel with
mass m and moving at velocity V is 1

2
mjVj2: For convenience, we will drop m in our

discussion, and our formulations are for kinetic energy per unit mass of air.
Kinetic energy is a scalar and in theory is independent of the coordinate

frame chosen for the velocity vector V. However, practical situations dictate that
kinetic energy is transferred in preferred spatial directions, and a properly chosen
coordinate system can elucidate much deeper insights into the transfer processes
than an arbitrary coordinate. Here we use the pressure gradient force to help us orient
the coordinate axes, as shown in Fig. 4.1. In this right-handed Cartesian coordinate,
the x-axis is at a right angle to the force and is tangent to the isobars, the y-axis is
aligned with the direction of the force, and the z-axis is pointed upward. The total
kinetic energy per unit mass is the sum of the components in the three orthogonal
directions:

ET D 1

2

�
u2 C v2 C w2

	
: (4.1)
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Fig. 4.1 A Cartesian coordinate for the kinetic energy equations: bird’s eye view of a low-pressure
system in the Northern hemisphere (a) and an enlarged view of the same system (b). Lines are
isobars along which pressure is equal. V is horizontal velocity, F1 is pressure gradient force, F2 is
Coriolis force, and F3 is friction force

Using the Reynolds averaging rules, we can separate the total kinetic energy into
the mean flow kinetic energy (MKE), E, and the turbulent kinetic energy (TKE), e:

ET D E C e: (4.2)

where

ET D 1

2
.u2 C v2 C w2/; (4.3)

E D 1

2

�
u2 C v2 C w2

	
; (4.4)

and

e D 1

2
.u02 C v02 C w02/: (4.5)

(Problems 3.4 and 4.1). These quantities are in dimensions of m2 s�2. To obtain
kinetic energy density in the familiar SI energy units of J m�3, we should multiply
them by the air density � in kg m�3.

Energy in the atmosphere is conveniently divided into four pools: internal energy,
available potential energy, MKE, and TKE (Fig. 4.2). Internal energy, or heat energy,
is the kinetic energy of molecular motion. Available potential energy refers to
the portion of the potential energy in the atmosphere that can be converted to
kinetic energy. It is computed against a reference state in which the atmosphere
is statically neither stable nor unstable and no horizontal pressure gradient exists.
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Fig. 4.2 Transfer of energy between four pools. The TKE pool size is based on the study by Mellor
and Yamada (1982). Estimates of the other energy pools and of the fluxes are global mean values
from Peixoto and Oort (1992)

The available potential energy pool is maintained by uneven solar radiation heating,
which generates horizontal pressure gradients and static instability. Globally, the
majority of solar radiation flux (239 W m�2) is either directly converted to internal
energy by atmospheric absorption or is redistributed to the atmosphere from the
surface by latent heat and sensible heat exchanges. Only a small fraction of the solar
radiation flux, about 1 W m�2, passes through the intermediary mechanical energy
pools before being converted to internal energy. Atmospheric motions, whether
large or small, are supported by this small stream of solar radiation flux. The TKE
pool is the smallest of these pools. The total TKE in the atmospheric boundary layer
is about 300 J m�2. Although no reliable estimates exist, the TKE in the air column
above the boundary layer is probably several times smaller than the TKE in the
boundary layer. It is this small energy pool that makes the boundary layer uniquely
different from the rest of the atmosphere.

In the atmosphere, the mean motion and the turbulent motion occur in two
nonoverlapping scale ranges separated by a large scale gap (Fig. 4.3; Wyngaard
2004). This scale gap is the basis for the idea that atmospheric kinetic energy can
be divided into the mean and the turbulent pools. Models of the mean motion, or
Reynolds averaging models, require that the two motions be cleanly isolated from
one another. In the model domain, model grid spacings are strategically chosen to
coincide with the scale gap. Energy transfer between the two pools and the effect of
turbulence on the mean motion are expressed through turbulence closure schemes.
The predicted quantities are grid mean values and carry no information on details
of the turbulent motion. With today’s computing power, it is tempting to use small
horizontal grid sizes. However, too small a grid spacing would contaminate the mean
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Fig. 4.3 A schematic diagram showing the cascade of kinetic energy. Here �1 is grid spacing of
a Reynolds averaging model, and �2 is grid spacing of a large-eddy simulation model

flow with the energy contained in large eddies and thus violate the principle of two-
pool compartmentalization. In this regard, Reynolds averaging models are different
from large-eddy simulation models. In large-eddy simulation, the grid spacing is
much smaller than the scale gap so that large eddies are explicitly resolved.

The relationship between the MKE and the TKE pools represents a simple
form of energy cascade. Energy cascade is the process in which kinetic energy is
transfered from motions of larger scale to motions of smaller scale. The largest
eddies obtain their energy from the mean flow. These large eddies will deform and
break up, and the energy is then passed onto smaller eddies. The process continues
down the scale, in a fashion similar to a waterfall cascading down a hill slope,
until the kinetic energy turns into energy of molecular motion or internal energy. In
eddy motion, even at the smallest scale, molecules are moving in groups. Molecular
motion, on the other hand, is totally erratic, with each molecule moving randomly
and independently of its neighboring molecules.

Atmospheric stability is another important concept in connection with mechanic
energy transfer. Turbulent eddies can obtain their energy via two pathways, with
one from the mean flow and the other from the potential energy pool. This latter
pathway is bidirectional, meaning that eddies can also convert kinetic energy to
potential energy. As we will demonstrate shortly, atmospheric stability is a measure
of the relative strength of these two pathways.

4.2 Budget of the Mean Flow Kinetic Energy

We consider a one-dimensional atmosphere in which Reynolds averages can vary
in the vertical direction but are invariant in the horizontal directions. Multiplying
both sides of Eq. 3.31 by u, we obtain the budget equation for the mean flow kinetic
energy in the x direction:
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1

2

@u2

@t
D f u v C u0w0 @u

@z
� @u0w0 u

@z
C �ur2u: (4.6)

In this derivation, we have applied the chain rule of differentiation:

u
@u0w0

@z
D @u0w0 u

@z
� u0w0 @u

@z
:

The viscous term has been put back in this equation for the sake of completeness.
The pressure gradient term has disappeared from this equation because the x-axis is
orthogonal to the pressure gradient force (Fig. 4.1).

The budget equation for the mean flow kinetic energy in the y direction can be
derived in a similar way, such that

1

2

@v2

@t
D �v

�

@p

@y
� f u v C v0w0 @v

@z
� @v0w0 v

@z
C �vr2v: (4.7)

Adding Eqs. 4.6 and 4.7 and noting that there is no mean kinetic energy in
the z direction in this one-dimensional flow, we obtain the complete MKE budget
equation:

@E

@t
D �v

�

@p

@y
C
�

u0w0 @u

@z
C v0w0 @v

@z

�

�
 

@u0w0 u

@z
C @v0w0 v

@z

!
C �

�ur2u C �vr2v
	

: (4.8)

The time rate of change of the MKE in the boundary layer is a net balance
of four terms. The top portion of Fig. 4.4 provides a summary of various MKE
transfer mechanisms. The first term on the right side of Eq. 4.8 is always positive,
representing production of mean kinetic energy from the work done by the pressure
gradient force on the moving air. As you may recall, an uneven pressure field is
indicative of the existence of available potential energy. Through the interaction
of the pressure gradient force with the flow, the available potential energy is
transformed to kinetic energy.

Mathematically, the MKE production term is the inner product of the horizontal
velocity vector V and the pressure gradient force vector F1 (Fig. 4.1):

�v

�

@p

@y
D V �

��rH p

�

�

D 1

�
jVj j �rH pj cos ˛;
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Fig. 4.4 Mechanisms of kinetic energy transfer in the atmospheric boundary layer. Pathway
1: production of mean flow kinetic energy (MKE) by the pressure gradient force. Pathway 2:
shear destruction of MKE and production turbulent kinetic energy (TKE). Pathway 3: buoyancy
production and destruction of TKE (Modified from Shaw 1987)

where ˛ is the angle between V and F1 and rH D f@=@x; @=@yg is the horizontal
gradient operator. In order for the mean flow to extract energy from the available
potential energy pool, ˛ must be less than 90ı. The most efficient production of
MKE occurs when ˛ D 0ı or when the air is moving in the exact direction of
the pressure gradient force. In contrast, there is no MKE production if the flow is
geostrophic or orthogonal to the pressure gradient force.

Unlike the pressure gradient force, the Coriolis force does not produce kinetic
energy. Its role is reversed in the two component equations. In Eq. 4.7, the Coriolis
term, the second term on the right of the equation, is negative, representing removal
of energy. This term also appears in Eq. 4.6 (the first term on its right side), but
is positive, representing production of energy. The effect is canceled out in the
derivation of the complete MKE equation (Eq. 4.8). In other words, the role of
the Coriolis force is merely one of kinetic energy redistribution: it deflects energy
in the y direction to the x direction. In a typical atmospheric boundary layer, this
redistribution effect is very strong, so much so that more kinetic energy is found in
the x direction than in the y direction, recalling that the y-axis is aligned with the
pressure gradient force, or the direction along which MKE is first produced, and the
x-axis is tangent to the isobars. We expect

1

2
u2 >

1

2
v2:

Graphically, this means that angle ˛ in Fig. 4.1 is greater than 45ı.
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The second term on the right side of Eq. 4.8 represents shear destruction of
mean kinetic energy. Because the momentum fluxes, u0w0 and v0w0, and the velocity
gradients, @u=@z and @v=@z, are opposite in sign (Eqs. 3.36 and 3.37), this term
is negative. In the next section, we will learn that the same term appears in the
TKE budget equation but is positive. So the vertical wind shear plays two roles:
it maintains a downward momentum flux (Fig. 3.3; Eq. 3.36) and at the same time
cascades kinetic energy from the mean motion to the turbulent motion.

The third term on the right side of Eq. 4.8 acts to redistribute the MKE energy.
This can be demonstrated by integrating it with respect to z from the surface to the
top of the boundary layer (zi):

Z zi

0

 
@u0w0 u

@z
C @v0w0 v

@z

!
dz D �

u0w0 u C v0w0 v
	 jzi � �

u0w0 u C v0w0 v
	 j0

(4.9)
This integral is zero because the velocities are zero at the ground and the Reynolds
covariances vanish at the top of the boundary layer. Therefore, the term represents
transport of mean kinetic energy between different vertical positions. It does not
destroy nor create kinetic energy.

The last term, viscous dissipation of mean kinetic energy to internal energy, can
be simplified in the one-dimensional flow to

�ur2u C �vr2v D �

�
u

@2u

@z2
C v

@2v

@z2

�
: (4.10)

It is generally much smaller than the other terms and is also much smaller than
viscous dissipation of TKE (Problem 4.2).

Two examples in Fig. 4.5 illustrate the size of the MKE and the TKE pools and
the strength of the energy transfer pathways in a shear-driven (left) and a buoyancy-
driven boundary layer (right) based on a large-eddy simulation study. The two cases
are set up similarly in the study except for the surface sensible heat flux. In the first
case, the heat flux is zero, and all turbulence is produced by shear. In the second
case, a moderate heat flux of 240 W m�2 is prescribed in the model domain, and
turbulence is dominated by buoyancy production. The shear destruction of MKE
differs by a factor of 4.5 between the two cases. An inference from the MKE budget
equation is that the angle ˛ between the velocity vector V and the pressure gradient
force vector F1 in Fig. 4.1 is larger in the buoyancy-driven boundary layer than in
the shear-driven boundary layer, because only a small MKE production is required
to balance the shear destruction of MKE in the buoyancy-driven flow. To put it
differently, a larger surface heat flux will bring the flow in the boundary layer closer
to being geostrophic.
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Fig. 4.5 Kinetic energy budget in a shear-driven (left) and a buoyancy-driven (right) boundary
layer. All values are column means for the air layer between the ground surface and the top of the
boundary layer. Results are based on Moeng and Sullivan (1994)

4.3 Budget of the Turbulent Kinetic Energy

The derivation of budget equations for the TKE components, 1
2
u02, 1

2
v02, and 1

2
w02,

which are second-order moments, is time consuming. Here we outline the essential
steps, using 1

2
u02 as an illustration. The same steps are used in the derivation of

budget equations for 1
2
v02 and 1

2
w02 and for other second-order moments, such as the

Reynolds stress (u0w0) and the temperature variance (� 02), from the corresponding
instant equations given in Chap. 2. First, we replace every quantity in the instant
momentum Eq. 2.3 by the sum of its Reynolds mean and fluctuating part:

@.u C u0/
@t

C .u C u0/
@.u C u0/

@x
C : : : D � 1

� C �0
@.p C p0/

@x
C : : : (4.11)

Second, we obtain the governing equation for u0 by subtracting the mean momentum
Eq. 3.21 from Eq. 4.11:

@u0

@t
C u

@u0

@x
C u0 @u

@x
C u0 @u0

@x
: : : D �1

�

@p0

@x
C �0

�2

@p

@x
C : : : (4.12)

Third, we obtain the full governing equation for 1
2
u02 by multiplying Eq. 4.12 with

u0 and performing Reynolds averaging:

1

2

@u02
@t

C 1

2
u

@u02
@x

C u02 @u

@x
C u02 @u0

@x
C : : : D �1

�

@u0p0
@x

C 1

�
p0 @u0

@x
C : : : (4.13)
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where we have omitted the small term

u0�0

�2

@p

@x
;

and have used the chain rule of differentiation,

1

�
u0 @p0

@x
D 1

�

@u0p0
@x

� 1

�
p0 @u0

@x
:

Fourth, in the one-dimensional boundary layer, all horizontal spatial derivatives of
Reynolds means can be dropped from Eq. 4.13. The final result is

1

2

@u02
@t

D �u0w0 @u

@z
� 1

2

@u02w0
@z

C 1

�
p0 @u0

@x
C f u0v0 C �u0r2u0: (4.14)

Application of the same steps to momentum Eqs. 2.4 and 2.5 yields budget
equations for 1

2
v02 and 1

2
w02:

1

2

@v02
@t

D �v0w0 @v

@z
� 1

2

@v02w0
@z

C 1

�
p0 @v0

@y
� f u0v0 C �v0r2v0; (4.15)
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C �w0r2w0: (4.16)

The first term on the right side of Eq. 4.16 is a consequence of the hydrostatic
relation

1

�

@p

@z
D �g;

and the ideal gas law approximation

�0

�
D �� 0

�
:

The complete TKE budget equation is obtained by summing Eqs. 4.14, 4.15,
and 4.16:

@e

@t
D
�

�u0w0 @u

@z
� v0w0 @v

@z

�
C g

�
w0� 0 � @ew0

@z
� 1

�

@w0p0
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� �; (4.17)

where

� D ��u0r2u0 � �v0r2v0 � �w0r2w0; (4.18)
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and

e D 1

2

�
u02 C v02 C w02	 : (4.19)

The weak incompressibility Eq. 3.17 has been used to eliminate the pressure
fluctuation terms, as

p0 @u0
@x

C p0 @v0
@y

C p0 @w0
@z

D p0
�

@u0
@x

C @v0
@y

C @w0
@z

�
D 0: (4.20)

In the atmospheric surface layer, it is customary to express Reynolds statistics in
the micrometeorological coordinate (Chap. 2), and the TKE budget equation can be
simplified to

@e

@t
D �u0w0 @u

@z
C g

�
w0� 0 � @ew0

@z
� 1

�

@w0p0
@z

� �: (4.21)

Because the x-axis is now aligned with the mean surface wind vector, the mean
velocity in the y direction (v) is numerically zero.

The TKE budget in the atmospheric boundary layer can now be understood
by examining Eq. 4.17. The first term on the right side of the equation is always
positive, representing shear production of turbulent kinetic energy, and is balanced
exactly by shear destruction of MKE (Fig. 4.4). The energy generated supports
velocity fluctuations in the horizontal directions (Eqs. 4.14 and 4.15). In a shear-
dominated flow, shear generation is stronger in the x direction than in the y direction,
so kinetic energy in the x direction is greater than kinetic energy in the y direction,
that is, 1

2
u02 > 1

2
v02.

The second term on the right side of Eq. 4.17 represents buoyancy production
and destruction of turbulent kinetic energy. This energy transfer pathway is
restricted to the vertical direction and does not directly affect kinetic energy in the
horizontal directions, since the term appears only in the vertical component equation
(Eq. 4.16). In unstable conditions, because the covariance w0� 0 is positive, turbulent
eddies gain kinetic energy from the potential energy pool via the buoyancy effect.
To understand this connection, we should remember that in unstable conditions, air
parcels have a tendency to rise continuously after a slight upward perturbation. Let
us imagine a warm air parcel being pushed upward by a positive buoyancy force.
Continuity requires that some cooler air must come down to fill its place. As a result,
the center of gravity of the air column will be lowered ever so slightly, causing a
reduction in the potential energy. The opposite occurs in stable conditions, in which
w0� 0 is negative and kinetic energy is converted to potential energy via the buoyancy
effect. Over the 24-h cycle, the buoyancy term is generally a net source of TKE on
land because the 24-h mean w0� 0 is positive.

The third and fourth terms on the right side of Eq. 4.17 represent turbulent and
pressure transport of turbulent kinetic energy, respectively. Like the transport term
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in the MKE budget Eq. 4.8, they move energy between different levels but do not
create or destroy energy in the flow domain.

The last term on the right side of Eq. 4.17 represents viscous dissipation of
turbulent kinetic energy into internal energy or kinetic energy of molecular motion.
An important distinction between eddy motion and molecular motion is that eddy
velocities, u0, v0, and w0, are molar properties of macroscopic nature that describe
movement of groups of molecules, whereas molecular motion is of microscopic
nature and characterized by total randomness. The quantity � given by Eq. 4.18 is
always positive. To demonstrate this, let us consider the first term on the right side
of the equation. The chain rule of differentiation yields
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�

@2u0
@x2

C @2u0
@y2

C @2u0
@z2

�

D ��

"
@

@x

 
u0 @u0

@x

!
C @

@y

 
u0 @u0

@y

!
C @

@z

 
u0 @u0

@z

!#

C�

"�
@u0
@x

�2

C
�

@u0
@y

�2

C
�

@u0
@z

�2
#

� �

"�
@u0
@x

�2

C
�

@u0
@y

�2

C
�

@u0
@z

�2
#

> 0: (4.22)

The same rearrangement can be made to the other two terms on the right side of
Eq. 4.18 to show that they are also positive.

According to Eq. 4.22, � can be determined from spatial gradients of the velocity
fluctuations. Most of the data on � found in the literature, however, have been
derived indirectly as a residual from measurements of other terms in Eq. 4.17.

Examination of the component Eqs. 4.14, 4.15, and 4.16 reveals additional
insights. We have already noted that wind shear produces TKE only in the horizontal
directions and that buoyancy produces TKE only in the vertical direction. An inter-
esting situation exists under neutral stability, in which w0� 0 is zero, and therefore
there is no buoyancy production of TKE. Since the two transport terms in Eq. 4.16
(the second and third terms on the right side) do not produce TKE either, it seems
logical to suggest that no kinetic energy can be maintained in the vertical direction
or that the vertical velocity variance, w02, should be close to zero. The truth is that
vertical velocity fluctuations can be quite vigorous in neutral stability. The kinetic
energy in this case is supplied by pressure redistribution via the covariance between
pressure fluctuations and w gradient fluctuations, the fourth term on the right side
of the vertical component Eq. 4.16, which must be positive. Since the net effect of
pressure fluctuations is zero as required by the continuity constraint (Eq. 4.20), a
positive covariance involving the vertical velocity, p0.@w0=@z/, must be balanced by
negative covariances involving the horizontal velocities, p0.@u0=@x/ C p0.@v0=@y/,
the latter of which appear in the horizontal component Eqs. 4.14 and 4.15. In other
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words, pressure fluctuations act to redistribute to the vertical direction the kinetic
energy produced by wind shear in the horizontal directions. The mechanism of
pressure redistribution is also referred to as return to isotropy. In isotopic turbulence,
the strength of velocity fluctuations is equal in all three orthogonal directions.

Pressure redistribution can reverse its direction. In a buoyancy-dominated bound-
ary layer, buoyancy production of TKE is much stronger than shear production
(Fig. 4.5). Some large-eddy simulations show that the two horizontal kinetic energy
components ( 1

2
u02, 1

2
v02) are approximately equal to the vertical component ( 1

2
w02)

despite the low rate of shear production, suggesting that some of the kinetic
energy produced by buoyancy in the vertical direction is redistributed by pressure
fluctuations to the horizontal directions (Fig. 4.4).

Similar to the MKE discussion, the Coriolis force appears in the two horizontal
component Eqs. 4.14 and 4.15 (the fourth term on the right side), but its effect is
canceled out in the total TKE equation. Measurements in a forest landscape indicate
that the covariance between the two horizontal velocities, u0v0, is slightly positive at
a mean value of 0.05 m2 s�2. So the term f u0v0 is on the order of 5 � 10�6 m2 s�3,
which is much smaller than the other TKE budget terms (Fig. 4.5) and can be safely
ignored.

4.4 Air Stability

Air stability refers to the vertical moving tendency of an air parcel in response to
a small disturbance. The parcel’s vertical movement can be assumed adiabatic,
meaning that no heat is lost from the parcel via molecular diffusion to the
surroundings, no molecules escape from the parcel, no heat source exists within the
parcel, and its internal pressure is always the same as the environmental pressure.
The parcel’s temperature will decrease as it moves upward due to its volume
expansion. In hydrostatic equilibrium and without condensation or evaporation, the
first law of thermodynamics predicts that the vertical rate of change in the parcel’s
temperature, or the dry adiabatic lapse rate, should be �9:8 K km�1. Now consider
a situation where the environmental temperature displays a faster decrease with
height than the dry adiabatic lapse rate (Fig. 4.6a). Let us suppose that a small
parcel at height z1 is displaced upward to height z2 by an external disturbance. After
reaching height z2, the parcel will be slightly cooler than its original state at z1 but
warmer than the environmental air at z2. So the parcel will act as if it were a hot
air balloon because it feels an upward buoyancy force and will have the tendency to
continue the upward movement. (If the parcel is displaced downward in the thought
experiment, it will be become denser than the surrounding air and will continue to
sink downward.) The situation is statically unstable.

The amplification of a small vertical disturbance represents the mechanism by
which buoyancy produces turbulence (Fig. 4.7a). To an observer at height z2, the
rising air parcel in the thought experiment is essentially a turbulent eddy causing
fluctuations in observed time series.
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Fig. 4.6 Determining air stability using profiles of air temperature (a and c) and potential
temperature (b and d). Solid lines indicate environmental profiles. Dashed lines indicate the
temperature that an air parcel originating from height z1 would have in its vertical movement

Fig. 4.7 Production of
turbulence: (a) buoyancy
production and (b) shear
production
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If the environmental temperature decreases more slowly with height than the dry
adiabatic lapse rate, the air is statically stable (Fig. 4.6c). An air parcel displaced
from z1 to z2 will be cooler than the surrounding air. As a consequence, buoyancy
will force the parcel downward to its original position. In other words, any small
perturbation will be damped out by buoyancy. Suppression of vertical perturbations
is a universal characteristic of stable stratification and explains why turbulence is
weakened in stable conditions. Inversion layers, in which air temperature increases
with height, are particularly stable and are barriers to turbulent transport.

An air layer is called neutral if its environmental temperature changes with height
at a rate equal to the dry adiabatic lapse rate. Under neutral conditions, turbulence is
generated mechanically by wind shear (Fig. 4.7b). In the presence of wind shear
and a viscous force, the flow is dynamically unstable such that a small initial
perturbation will become amplified, leading to overturning motion. Shear generation
of turbulence also occurs in unstable air and is possible in stable air if the gradient
Richardson number, defined in Eq. 4.27 below, is smaller than the critical value
of 0.25.

The diagnosis of air stability is often made with potential temperature profiles
(Fig. 4.6b, d). Since the potential temperature of an air parcel is constant in the dry
adiabatic process, the stability criteria can be stated as

< 0 unstable

@�

@z
D 0 neutral (4.23)

> 0 stable

where � is the potential temperature of the atmosphere.
So far, our description of air stability has remained qualitative. If @�=@z is

negative, we know that the air layer is unstable, but we do not know how unstable it
is. Under weak wind conditions, a slightly negative potential temperature gradient
can allow formation of deep, penetrating eddies, so the air layer can be very
unstable. If the wind is strong, energetic eddies are less likely to take shape, even
under conditions of a large negative potential temperature gradient. Quantitative
stability parameters are needed to capture the combined effect of wind and thermal
stratification.

One such parameter, called the flux Richardson number, expresses the combined
effect by comparing the relative strength of buoyancy production and destruction
and shear production of turbulence according to the TKE budget Eq. 4.17:

Rf D buoyancy production

shear production
D

g

�
w0� 0

u0w0 @u

@z
C v0w0 @v

@z

: (4.24)
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For historical reasons, the negative sign in the shear production term is omitted. In
the surface layer, Eq. 4.24 can be simplified to

Rf D
g

�
w0� 0

u0w0 @u

@z

: (4.25)

Since the denominator of Eq. 4.24 is negative, Rf is opposite in sign to the eddy
sensible heat flux. The stability criteria can be stated as

< 0 unstable

Rf D 0 neutral (4.26)

> 0 stable

In a type of motion called forced convection, shear-generated turbulence dominates
the flow, and Rf approaches zero. Both buoyancy and wind shear contribute to
turbulence generation if Rf is negative, and buoyancy destroys turbulence if Rf

is positive. A Rf value of �1 occurs when buoyancy production of turbulence is
at the same level as shear production, indicating strong instability. Numerically,
Rf does not have a lower bound. In the limit of free convection, at which shear
production vanishes, Rf approaches negative infinity. However, Rf is bounded by
the theoretical upper limit of 1, beyond which turbulence cannot exist because
buoyancy destruction of turbulence would exceed shear production of turbulence.
Experimental data suggest that the actual upper limit is about 0.21, on the account
that viscous dissipation is a sink of TKE in addition to buoyancy destruction.

The flux Richardson number is strongly dependent on height. In a typical
convective boundary layer, the buoyancy production term decreases linearly with
height, but the shear production term is highest near the surface, where the wind
shear is strongest, and decreases more rapidly with height (Fig. 4.8). We expect Rf

to be close to zero near the surface and to approach large negative values in the
upper boundary layer.

Some people prefer to determine air stability with vertical gradients of the
mean temperature and the wind speed because their measurements are more readily
available than measurements of the heat and the momentum fluxes, especially in
the upper boundary layer. The gradient Richardson number, Ri, serves this purpose,
where

Ri D
g
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Fig. 4.8 Profiles of shear
production and buoyancy
production of turbulence in a
convective boundary layer

or

Ri D
g
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@z
�

@u

@z

�2
; (4.28)

in the surface layer. Using the first-order closure parameterization discussed in
Chap. 3 (Eqs. 3.36, 3.37, and 3.38), it is straightforward to show that the gradient
Richardson number is related to the flux Richardson number, as

Ri D Km

Kh
Rf ; (4.29)

where Km and Kh are eddy diffusivity for momentum and for heat, respectively. The
stability criteria now become

< 0 unstable

Ri D 0 neutral (4.30)

> 0 stable

Consistent with Eq. 4.23, Eq. 4.30 indicates that stability classes are solely deter-
mined by the vertical potential temperature gradient. Field observations show that
Ri ' Rf under neutral and stable conditions. In unstable conditions, the turbulent
Prandtl number, Km=Kh, is less than one owing to the fact that convective eddies
are less efficient in transporting momentum than heat, so Ri is smaller in magnitude
than Rf .



4.4 Air Stability 73

Even though air stability is a strong function of height, neither Rf nor Ri shows
explicitly the height dependence. This deficiency is circumvented by the Monin-
Obukhov stability parameter, �. In contrast to the gradient Richardson number,
the � formulation avoids gradient quantities but relies instead on flux quantities
to determine air stability. This parameter is for use in the atmosphere surface layer
where measurement of fluxes is relatively easy. Even if direct measurement of fluxes
is not available, we can constrain � with an iterative routine and the flux-gradient
relationships (Problem 4.18). Essentially � is a variation of the flux Richardson
number. Differentiating Eq. 3.47 with respect to z and omitting stability effects, we
obtain an approximation to @u=@z:

@u

@z
' u�

kz
: (4.31)

Eliminating @u=@z from Eq. 4.25 with Eq. 4.31 and noting that u0w0 D �u2�, we
obtain an approximation to Rf ,

Rf ' � D z

L
; (4.32)

where the Obukhov length, L, is given by

L D � u3�

k

�
g

�

�
w0� 0

:

Equation 4.32 indicates that air stability (or instability) increases linearly with
height. This is because L is determined with the surface friction velocity and heat
flux and therefore is invariant with height. The sign of L determines stability classes:
air is unstable if L is negative and stable otherwise. The magnitude of L is a measure
of the vertical extent of shear dominance in turbulence production. In unstable
conditions, shear production and buoyancy production are approximately equal at
height z D �L, shear production dominates over buoyancy production below the
height z D �L, and vice versa above z D �L. An infinitely large L indicates neutral
stability, under which shear production dominates throughout the boundary layer.

We can also derive the Monin-Obukhov stability parameter, a dimensionless
number, from the Monin-Obukhov similarity theory. The theory states that turbu-
lence in a horizontally homogeneous surface layer is controlled by four dimensional
variables: z, u�, w0� 0, and g=� . Dimensional analysis reveals that � is the simplest
dimensionless combination of these four basic variables and that many Reynolds
quantities after normalization with one or more of these variables are functions of
�. For example, the normalized velocity gradient is a function of �. This function is
denoted by �m, as

�m.�/ D kz

u�
@u

@z
: (4.33)
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Manipulation of Eq. 4.33 and the flux-gradient Eq. 3.36 yields Eq. 3.50, indicating
that �m is a function that corrects stability effects on the momentum eddy diffusivity.
Likewise, the normalized potential temperature gradient,

�h.�/ D kz

��
@�

@z
; (4.34)

is a stability correction function for the heat eddy diffusivity. Both �m and �h

are equal to one in neutral stability, are less than one in unstable conditions,
and are greater than one in stable conditions. Their forms have been determined
experimentally, as

�m D .1 � 16 �/�1=4; (4.35)

and

�h D .1 � 16 �/�1=2; (4.36)

for �5 < � < 0, and

�m D �h D 1 C 5 � (4.37)

for 0 � � < 1 (Fig. 4.9). In these functions, the von Karman constant k takes the
value of 0.4.

Fig. 4.9 Monin-Obukhov stability functions
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Equation 4.32 is valid in the surface layer above a smooth surface. If the surface
is occupied by vegetation or buildings, the height is measured in reference to the
displacement height, so

� D z � d

L
: (4.38)

4.5 Problems

4.1 Generate a synthetic time series dataset for the three instant velocity compo-
nents. Calculate the mean total kinetic energy, the mean flow kinetic energy, and the
turbulent kinetic energy. Verify that your results satisfy Eq. 4.2.

4.2 The friction velocity is 0.32 m s�1, and stability is neutral. (a) Calculate the
shear destruction and viscous dissipation of MKE and (b) the viscous dissipation
of TKE, at the height of 10.0 and 0.5 m in the surface layer. Assume that the
TKE transport terms are negligible, the atmosphere is at steady state, and the
mean velocity profile can be described by the logarithmic model with a momentum
roughness of 0.1 m (Eq. 2.50). How much larger is the viscous dissipation of TKE
than the viscous dissipation of MKE?

4.3 The normalized TKE dissipation in the surface layer is defined as

�� D kz�

u3�
:

Obtain an expression for �� as a function of the Monin-Obukhov stability parameter
� from the surface layer TKE budget Eq. 4.21, assuming that the transport terms
are negligible and the atmosphere is in a steady state. Plot this expression for the
stability range �1:0 < � < 0:2. Some field observations show that �� D 1:24 in
neutral stability. If this is true, is TKE transported into or out of the surface layer?

4.4 The horizontal pressure gradient is 0.02 hPa km�1. The horizontal velocity
is 10.0 m s�1. The angle between the horizontal velocity vector and the pressure
gradient force vector is 60ı. Calculate the MKE production.

4.5 Calculate column total rates of shear and buoyancy production of TKE, in units
of W m�2, for the convective boundary layer depicted in Fig. 4.5 (right panel).
Assume that the depth of the boundary layer is 1000 m and the air density is
1.20 kg m�3.

4.6 It has been frequently observed that a convective boundary layer collapses
quickly in late afternoon after the surface stops producing sensible heat flux. The
collapse time can be approximated by the time needed for viscous dissipation to
consume all the TKE. Estimate the collapse time using the data shown in Fig. 4.5 for
the buoyancy-driven boundary layer. In your calculation, ignore shear and buoyancy
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production of TKE after the surface sensible heat flux has vanished and assume that
viscous dissipation continues at the initial rate of 0:37 � 10�2 m2 s�3.

4.7* Improve the collapse time calculation in Problem 4.6 by deploying a time-
dependent parameterization for the dissipation term, as

� D e3=2

ƒ
(4.39)

where ƒ is a length scale and is related to the eddy mixing length (Eq. 3.52; Fig. 3.4)
as

ƒ D Bl

with the coefficient B D 5:0.

4.8 Let us define a dimensionless TKE as

�e D e

u2�
:

Obtain an expression for �e as a function of the Monin-Obukhov stability parameter
� for the surface layer from the parameterization Eq. 4.39 and the surface TKE
budget Eq. 4.21. Assume in your derivation that the air is at steady state and that the
transport terms are negligible. Use the expression to estimate e for the following
conditions: (1) u� D 0:28 m s�1; � D �0:5; (2) u� D 0:28 m s�1; � D 0; (3)
u� D 0:15 m s�1; � D 0; (4) u� D 0:15 m s�1; � D 0:2. Comment on how friction
velocity and air stability affect TKE in the surface layer.

4.9 The vertical TKE flux, ew0, is 0.825 and 0.044 m3 s�3 at the heights of 300 and
600 m above the ground, respectively, in a shear-driven boundary layer. Calculate
the vertical turbulent TKE transport. Does the transport term contribute to a gain or
a loss of local TKE in the 300–600 m air layer?

4.10 Determine if each of the air layers indicated in Fig. 4.10 is unstable, neutral,
or stable.

4.11 Show that the flux Richardson number and the gradient Richardson number
are dimensionless and that the Obukhov length has the dimension of length.

4.12 Calculate the Monin-Obukhov stability parameter � and the eddy diffusivity
for momentum (Km) and for heat (Kh) using the data shown in Table 4.1.

4.13* Integration of Eqs. 4.33 and 4.34 with respect to z yields

u.z/

u�
D 1

k



ln

z

zo
� ‰m.�/

�
; (4.40)
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Fig. 4.10 Profile of air temperature in a forest at midday (a) and profile of potential temperature
in a daytime convective boundary layer (b)

Table 4.1 Observed friction velocity u� (m s�1) and sensible heat flux Fh (W m�2) at a measure-
ment height of 3.5 m above the surface of a shallow lake and at 15.2 m above the displacement
height of a forest

Lake Forest

Time u� Fh � Km Kh u� Fh � Km Kh

00:10 0.09 0.1 0.14 21.6

12:40 0.24 33.4 0.32 436.8

�.z/ � �o

��
D 1

k
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z

zo;h
� ‰h.�/

�
; (4.41)

where
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are called integral similarity or stability functions (Paulson 1970). The mean
wind and potential temperature profiles now deviate from the logarithmic relations
(Eqs. 3.47 and 3.48) due to stability effects. Show that

‰m D ‰h D �5 �; � � 0

‰m D ln

"�
1 C x2

2

��
1 C x

2

�2
#

� 2 arctan x C �

2
; � < 0 (4.42)

‰h D 2 ln

�
1 C x2

2

�
; � < 0

where x D .1 � 16 �/1=4.

4.14 Show from Eqs. 3.75, 3.79, 3.83, and 4.40, 4.41, 4.42 that the aerodynamic
resistances and the transfer coefficients in stratified air can be expressed as

ra;m D 1

k2u



ln

z

zo
� ‰m.�/

�2

; (4.43)
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� ‰m.�/
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ln

z
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� ‰h.�/

�
; (4.44)
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; (4.45)
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� ‰m.�/
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ln

z

zo;h
� ‰h.�/

��1

: (4.46)

Calculate the resistances and the transfer coefficients for a grass (momentum
roughness zo D 0:02 m) and a bare soil (zo D 0:002 m) at � D �0:5, 0, and 0.2.
Assume in your calculation that wind speed is 3.0 m s�1, the roughness ratio zo;h=zo

is 0.14, and reference height z is 5.0 m. Which surface is more sensitive to stability
effects?

4.15 Using the data in Table 4.2, compute the gradient Richardson number for the
air layer between the heights of 0 and 100 m and between the heights of 100 and
200 m.

Table 4.2 Horizontal velocities (u and v) and potential temperature (� ) in an atmospheric
boundary layer. Observation height is denoted by z

z (m) u (m s�1) v (m s�1) � (K)

0 0 0 287.0

100 6.9 0.8 285.2

200 7.3 1.0 284.6



References 79

4.16 Show that the gradient Richardson number in the surface layer is related to the
Monin-Obukhov stability parameter as

Ri D ��h=�2
m: (4.47)

Plot this relationship over the stability range �2 < � < 2.

4.17 Plot the turbulent Prandtl number, defined as the ratio of the eddy diffusivity
for momentum (Km) to the eddy diffusivity for heat (Kh), as a function of the Monin-
Obukhov stability parameter (�) over the stability range �2 < � < 2.

4.18* In an observation in a potato farm, air temperature and wind speed are
19.86 ıC and 1.46 m s�1 at the height of 1.57 m and 19.39 ıC and 1.85 m s�1 at
the height of 2.91 m above the ground. The displacement height is 0.70 m. (1) Use
an iterative method to determine the Monin-Obukhov stability parameter (�), the
momentum flux (Fm), and the eddy sensible heat flux (Fh) from the flux-gradient
Eqs. 3.61 and 3.62. In your calculation, you should use the geometric mean height
(Eq. 3.66) for �. (2) Calculate the gradient Richardson number and compare it with
that predicted by Eq. 4.47.

4.19 The following conditions are reported for an atmospheric surface layer: sen-
sible heat flux �dcpw0� 0 D 350:2 W m�2, momentum flux �u0w0 D 0:12 m�2 s�2,
vertical velocity gradient @u=@z D 0:03 s�1, and potential temperature � D 298:1

K. Find (1) the buoyancy and the shear production of turbulent kinetic energy and
(2) the flux Richardson number.

4.20 (1) Find the momentum and the heat eddy diffusivity at the height of 3.5 m
above the surface if the friction velocity u� is 0.25 m s�1 and the Monin-Obukhov
stability parameter � is �0:3. (2) Repeat the calculation but with a � value of 0.3.
How does thermal stratification impact turbulent diffusion?
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Chapter 5
Flow in Plant Canopies

5.1 Canopy Morphology

Vegetation habitats occupy a large portion of the terrestrial land on earth, their total
area equaling the area of all smooth surfaces (glaciers, deserts and lakes) combined.
Forming a porous medium called the canopy layer, plant elements alter the air
flow in several significant ways. They slow down the air motion by absorbing its
momentum, increase turbulence intensity by generating small eddies in their wakes,
enhance atmospheric humidity by water evaporation, exchange radiation energy and
sensible heat with the atmosphere, and serve as sources and sinks of numerous trace
gases. In this chapter, we will investigate the dynamic aspects of the canopy flow
and leave treatment of the energy and gaseous exchanges to Chap. 8.

We use three parameters, canopy height, h, plant area index, L, and plant area
density, a, to describe canopy morphology. Here a refers to the amount of one-sided
plant surface area in a unit volume of space, and L is the total plant surface area
above a unit ground area. They are related to one another as

L D
Z h

0

a dz: (5.1)

In the growing season, L is approximately equal to leaf area index.
Other plant morphological attributes are not considered by our canopy flow

theory. In the canopy layer between the ground surface and the height h, the fraction
of space occupied by plant elements is small, typically less than 0.05%, and is
ignored. Even though leaves in a real canopy are clustered along stems and branches,
we assume that our averaging volume is sufficiently large so that the clumping does
not influence volume mean flow. We also assume that interactions of plant elements
with the mean flow do not depend on their orientation or shape.
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5.2 Canopy Volume Averaging

The Reynolds mean equations derived in Chap. 3 are still valid at any point in
the air pocket between plant elements. But the problem becomes intractable if we
attempt to solve the equations directly. We would need to deal with pressure and
velocity variations between neighboring plant elements. We would also face the
insurmountable difficulty of specifying boundary conditions at the surface of every
single plant element. Even if we were able to overcome these challenges, such
microscale details of the flow would be of little value to most practical problems.

A more fruitful strategy is to perform one additional averaging operation, called
canopy volume averaging, on the Reynolds mean equations (Raupach and Shaw
1982). Let ˆ be a Reynolds mean quantity. It can be decomposed into a volume
mean part, Œ ˆ �, and a deviation from the volume mean, ˆ

00
,

ˆ D Œ ˆ � C ˆ
00
; (5.2)

where

Œ ˆ � D
ZZZ

Q
ˆ dQ: (5.3)

The averaging volume, Q, imagined here as a thin rectangular prism (Fig. 5.1), is
small enough so that macroscopic features of the flow are preserved and is big
enough so that microscale variations associated with individual plant elements are
smoothed out (Finnigan 2000). The vertical dimension of the averaging volume
is much smaller than its horizontal dimensions to help resolve vertical variations
of the flow. In canopies where plants are regularly spaced, such as in row crops,
the horizontal dimensions extend several rows of plants. In natural habitats, the
averaging volume encompasses a distance that is several times the average plant
spacing.

Similar to the Reynolds averaging rules (Eqs. 3.3, 3.4, and 3.5), the canopy
volume averaging operation observes the following properties:

Œ Œ ˆ � � D Œ ˆ �; (5.4)

Œ ˆ
00

� D 0; (5.5)

Fig. 5.1 An averaging volume in the canopy air space
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and

Œ Œ ‰ � ˆ
00

� D 0; (5.6)

where ‰ is the Reynolds mean of quantity ‰. Reynolds mean variables are
continuous functions of time, so differentiation with respect to time and volume
averaging are commutable:

"
@ˆ

@t

#
D @Œ ˆ �

@t
; (5.7)

However, commutation between volume averaging and spatial differentiation

"
@ˆ

@x

#
D @Œ ˆ �

@x
;

"
@ˆ

@y

#
D @Œ ˆ �

@y
;

"
@ˆ

@z

#
D @Œ ˆ �

@z
; (5.8)

cannot be automatically assumed because some Reynolds mean quantities are not
continuous in the canopy airspace.

A classic example is pressure discontinuity. Let us consider a hypothetical
canopy whose plant elements are thin vertical plates arranged at a regular interval
in the x direction (Fig. 5.2). The mean pressure, p, is low in the wake of the first
element and increases with x until the upwind face of the next element. The pattern
repeats itself, with discontinuity occurring at each plant element. In the gap between
two adjacent elements, @p00=@x is positive. It follows then:



@p

@x

�
D



@.Œ p � C p00/
@x

�
D



@Œ p �

@x

�
C



@p00

@x

�
D



@p00

@x

�
> 0:

However, Eq. 5.8 gives rise to:



@p

@x

�
D



@.Œ p � C p00/
@x

�
D @ŒŒ p � C p00 �

@x
D @ŒŒ p ��

@x
C @Œ p00 �

@x
D 0;

which is clearly an erroneous result.

Fig. 5.2 Pressure variation in a hypothetical canopy. Modified after Raupach and Shaw (1982)
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Fig. 5.3 Vertical profiles of Reynolds mean velocity and temperature and their vertical derivatives
above and below a horizontal leaf

Fig. 5.4 Vertical profiles of Reynolds mean CO2 mixing ratio, the product of the mixing ratio
and the mean velocity, and their vertical derivatives above and below a photosynthesizing
hypostomatous leaf

Three more examples of discontinuity, all concerning a horizontal leaf, are
illustrated in Figs. 5.3 and 5.4. The mean velocity, u, is zero at the surface on both
sides of the leaf due to the no-slip condition. But its vertical derivative, @u=@z, is
discontinuous at the surface. The commutation property (Eq. 5.8) holds for u but
not for @u=@z, that is,



@u

@z

�
D @Œ u �

@z
; (5.9)

and



@2u

@z2

�
¤ @

@z



@u

@z

�
: (5.10)

A consequence of Eq. 5.10 is that the Laplace operator and volume averaging do not
commute on u or u00. Similarly, if we assume that the leaf is a good heat conductor,
the property holds for the mean temperature, T , but not for its vertical derivative.
The third example describes CO2 distribution at the leaf, which we suppose is a
hypostomatous type with stomata present on its lower side and is photosynthesizing.
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The product of the CO2 mass mixing ratio and the velocity, scu, observes the
commutation property owing to the no-slip condition, but the mean mass mixing
ratio itself, its vertical derivative, and the vertical derivative of scu do not.

In the above examples, the criterion for judging whether a variable observes the
commutation property is based on continuity because our imaginary plant elements
are infinitely thin. For a real canopy consisting of plant elements of finite thickness
or volume, a more general criterion can be stated as follows: volume averaging and
spatial differentiation are commutable if the variable is constant on the surface of
each plant element, and are not commutable otherwise. This result is a consequence
of Slattery’s averaging theorem on fluid motion in porous media (Whitaker 1969; Li
et al. 1990). The theorem is expressed as

"
@ˆ

@x

#
D @Œ ˆ �

@x
� 1

Q

XZZ

Ai

ˆ nx dA; (5.11)

for flow in canopies, where Ai is the surface of plant element i; the summation is
performed to include all the elements in the space bounded by volume Q (Fig. 5.1),
and nx is the x-component of the unit normal vector of the surface pointing outward
to the canopy airspace. Similar expressions can be written for the y and the z
derivative. The surface integral, the second term on the right of Eq. 5.11, can be
interpreted as an emergent property arising from canopy volume averaging and is
zero if ˆ is constant on Ai according to the divergence theorem in calculus.

In the next section and later in Chap. 8, we will show that non-zero surface
integrals are mathematical expressions of canopy effects on the volume mean flow.
In momentum conservation, surface integrals of p00 and the spatial derivatives of u00
are equivalent to canopy momentum sinks. Likewise, surface integrals of the spatial
derivatives of T and sc represent a canopy heat source and a carbon dioxide source,
respectively.

5.3 The Mean Momentum Equations

Following tradition, we express the momentum equations in the micrometeorolog-
ical coordinate system (Fig. 2.1). Unlike the Cartesian coordinate anchored by the
pressure gradient force vector in Chap. 4 (Fig. 4.1), here the x-axis is aligned with
the mean wind direction in the surface layer above the canopy.

Applying canopy volume averaging to Eq. 3.16 and noting that the commutation
property (Eq. 5.8) holds for Reynolds mean velocities, we obtain the incompress-
ibility equation for the volume mean flow:

@Œ u �

@x
C @Œ v �

@y
C @Œ w �

@z
D 0: (5.12)
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Subtraction of Eq. 5.12 from Eq. 3.16 yields the governing equation on the spatial
fluctuations of Reynolds mean velocities:

@u00

@x
C @v00

@y
C @w00

@z
D 0: (5.13)

Under the canopy volume averaging scheme, the Reynolds mean momentum
Eq. 3.21 becomes

@Œ u �

@t
C Œ u �

@Œ u �

@x
C Œ v �

@Œ u �

@y
C Œ w �

@Œ u �

@z
D

� 1

Œ � �

@Œ p �

@x
C �r2Œ u � C

 
�@Œ u02 �

@x
� @Œ u0v0 �

@y
� @Œ u0w0 �

@z

!

� 1

Œ � �
Œ

@p00

@x
� C �Œ r2u00 � C

�
�@Œ u00u00 �

@x
� @Œ u00v00 �

@y
� @Œ u00w00 �
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�
: (5.14)

In the derivation, we have used the new incompressibility Eq. 5.13 and have ignored
the Coriolis force. We also note that the first four canopy volume averaging
properties (Eqs. 5.4, 5.5, 5.6, and 5.7) hold without exception, and the fifth property
(Eq. 5.8) holds except for the pressure term and the viscous term as explained
above. Similar equations can be written for momentum conservation in the y and
z direction.

In comparison to the original Reynolds Eq. 3.21, Eq. 5.14 contains three addi-
tional terms. The last term on the right side of the equation consists of spatial
derivatives of Œ u00u00 �, Œ u00v00 �, and Œ u00w00 �. Called the dispersive fluxes, these spatial
covariances arise from correlation of spatial variations of Reynolds mean variables.
In some wind tunnel studies, small dispersive fluxes (less than 10% of the Reynolds
fluxes) are detected in the air layer near the ground in spare canopies made of
regularly spaced plants. But in natural canopies, they are negligibly small and will
be omitted from now on.

Arising from pressure discontinuity, the term �1=Œ � �Œ @p00=@x � represents a form
drag or momentum sink associated with plant elements. For the hypothetical canopy
depicted by Fig. 5.2, it can be shown from Eq. 5.11 that

�



@p00

@x

�
D 1

Q

XZZ

Ai

p00 nx dA D �
P

Ai

Q
.p00C � p00�/; (5.15)

where p00C and p00� are perturbation pressure at the windward and lee surface of
individual plant elements, respectively, and Ai is one-sided area of one plant
element. The pressure deficit is proportional to the kinetic energy of the flow:

p00C � p00� D CdŒ � �Œ u �V; (5.16)
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where Cd is a canopy drag coefficient, and V D .Œ u �2 C Œ v �2 C Œ w �2/1=2: Noting
that a D P

Ai=Q by definition, we obtain from Eqs. 5.15 and 5.16:

� 1

Œ � �



@p00

@x

�
D �CdaŒ u �V (5.17)

Even though it is derived for a hypothetical canopy, Eq. 5.17 is a standard form drag
parameterization for real canopies. A typical Cd value is 0.2.

The term �Œ r2u00 � represents a viscous drag force imposed by plant elements on
the flow. It is much weaker than the form drag force and, along with the term �r2Œ u�,
is generally omitted. Alternatively, the canopy drag coefficient can be adjusted
slightly upward so that Eq. 5.17 includes the viscous contributions.

In the canopy airspace, volume mean quantities vary much more in the vertical
direction than in the horizontal directions. To acknowledge this fact, we now assume
that the flow is horizontally homogeneous. For convenience of presentation, from
now, on we will drop the volume averaging operator Œ �, but keep in mind that
all Reynolds mean quantities have undergone canopy volume averaging. The x-
component momentum conservation is given by

@u

@t
D �1

�

@p

@x
� @u0w0

@z
� CdauV C �.r2u C Œ r2u00 �/: (5.18)

The local time rate of change of momentum per unit mass is balanced by the pressure
gradient force (the first term on the right side of the equation), vertical gradient of
the momentum flux (second term), the canopy drag force (third term), and the total
viscous drag force (fourth term).

Similarly, the y component momentum conservation is given by

@v

@t
D �1

�

@p

@y
� @v0w0

@z
� CdavV C �.r2v C Œ r2v00 �/: (5.19)

5.4 Analytical Wind Profiles in the Canopy

In order to establish analytical solutions, it is necessary to introduce two additional
assumptions: (1) the pressure gradient force is negligible; (2) there is no wind
direction shear so that the lateral mean velocity (v) is zero. Although they are not
valid in the open trunk space of a forest (Sect. 6.2, Chap. 6), these assumptions
are reasonable for the foliage layer. Under these assumptions and in steady state,
Eq. 5.19 is not needed, and Eq. 5.18 is reduced to a balance between the momentum
flux divergence and the canopy drag force:

� @u0w0
@z

D Cdau2; (5.20)
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where the viscous force has been omitted. Equation 5.20 indicates that the momen-
tum flux in the canopy is equal to the cumulative canopy drag:

� u0w0 D
Z z

0

Cdau2dz0; (5.21)

and the friction velocity squared is equal to the total canopy drag:

u2� .D �u0w0jzDh/ D
Z h

0

Cdau2dz0: (5.22)

Solution of the canopy wind profile is aided by first-order closure. Manipulation
of Eqs. 3.36 and 5.20 yields

Km
@2u

@z
C @Km

@z

@u

@z
D Cdau2: (5.23)

Two classic solutions to Eq. 5.23, both assuming constant a, can be found in the
literature (Raupach and Thom 1981). The first solution takes the exponential form:

u.z/

u.h/
D exp

h
˛1.

z

h
� 1/

i
; (5.24)

where a1 is a constant. This solution is based on the mixing length parameterization
for Km:

Km D l2
@u

@z
: (5.25)

where l is a mixing length. Equation 5.24 approximates reasonably well wind speed
in the middle and upper canopy but does not work close to the ground.

Based on the assumption of proportionality,

Km / u; (5.26)

the second solution is given by

u.z/

u.h/
D



sinh.˛2z=h/

sinh ˛2

�1=2

; (5.27)

where ˛2 is a constant. Equation 5.27 is more attractive than Eq. 5.24 because it
satisfies the no-slip condition at the ground surface where the wind speed vanishes
(Fig. 5.5).

The very restrictive conditions under which Eqs. 5.24 and 5.27 are derived
are rarely satisfied. In practice, these equations should be regarded as empirical
descriptions of the canopy wind profile and ˛1 and ˛2 as empirical coefficients
chosen to ensure a good fit to observational data.
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Fig. 5.5 Vertical profile of plant area index (a), momentum flux (�u0w0), and wind speed (u)

5.5 Budgets of Mean Flow and Turbulent Kinetic Energy

We assume one-dimensional flow and no wind directional shear in the canopy
airspace. Under these simplifications, the budget equation for mean flow kinetic
energy is obtained simply by multiplying Eq. 5.18 with u, as

@E

@t
D � u

�

@p

@x
C u0w0 @u

@z
� Cdau3 � @u0w0 u

@z
C �u.r2u C Œ r2u00 �/: (5.28)

We can interpret this equation in a similar way as we did of the MKE Eq. 4.8
for flow in the boundary layer. The first term on the right side of the equation
represents production of MKE from the work done by the pressure gradient force;
the second and the third term represent removal of MKE by shear and by canopy
drag, respectively; the fourth term describes transport; and the fifth term represents
viscous dissipation. The transport term is always positive. The total transport is
found by integrating the term with respect to z:

Z h

0

�@u0w0 u

@z
dz D u2� u.h/: (5.29)

The primary source of MKE in the canopy airspace is the MKE transported from
above the canopy (Fig. 5.6). To demonstrate this, we note that the MKE budget
terms differ by several orders of magnitude. The pressure production is on the order
of 1 � 10�3 m2 s�3; the shear, the wake, and the transport term are on the order of
0.1 m2 s�3 (Problem 5.15); and the viscous term is negligible. So in steady state, the
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Fig. 5.6 Transfer of kinetic energy in a plant canopy. Solid and dashed lines indicate major and
minor pathways, respectively

MKE budget can be written as a balance between the transport term and the MKE
loss due to shear and wake destruction:

� @u0w0 u

@z
D �u0w0 @u

@z
C Cdau3: (5.30)

Equation 5.30 can also be derived from the simplified momentum conservation
Eq. 5.20.

The TKE budget equation is derived from the Reynolds mean TKE equations and
canopy volume averaging. In one-dimensional flow, the equation is

@e

@t
D �u0w0 @u

@z
C Cdau3 C g

�
w0� 0 � @ew0

@z
� 1

�

@w0p0
@z

� �: (5.31)

This equation has the same form as the surface layer TKE budget Eq. 4.21 except for
the second term on its right side. Called wake production of turbulent kinetic energy,
this term represents the work done against the canopy form drag. Wake production
and shear production (the first term on the right) are on the same order of magnitude
(Problem 5.14), but differ in the size of eddies they generate: eddies produced by
shear have a characteristic horizontal dimension of several times the canopy height,
whereas eddies shed by plant elements in their wakes are much more fine-grained,
at sizes no greater than the elements themselves. A complete MKE and TKE budget
diagram is shown in Fig. 5.6.

If the canopy drag coefficient (Cd) is given, wake production can be calculated
from the canopy wind profile (Problem 5.14). But more often than not, Cd is
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an unknown empirical coefficient. However, if the momentum flux is measured
at multiple levels in the canopy, Eq. 5.20 indicates that wake production can be
approximated as

Cdau3 D �u
@u0w0

@z
: (5.32)

5.6 Shear Instability and Transition to Turbulence

The discussion on the TKE budget is based on the premise that the flow is turbulent
to begin with, or else Reynolds decomposition would make little sense. However,
neither the TKE budget equations nor the Reynolds momentum equations provide
insights on the question about how turbulence is initiated in the first place. To
seek the answer, we resort to theory on flow instability. There are two classes of
flow instability: convective instability and shear instability. Convective instability
is intuitive. It occurs when an air layer is statically unstable (Fig. 4.6). As long as
a negative @�=@z is maintained, slight perturbations, which always exist in nature
due to either small variations in the background state or irregularities of the surface
boundary, will grow into detectable eddy motion. Criteria for determining shear
instability are, however, less straightforward. How the flow transitions from laminar
to turbulent state under the influence of wind shear is the focus of this section.

We wish to identify conditions under which small perturbations may persist
and grow into turbulent eddies and characteristics those eddies may possess. The
background state is a stratified hydrostatic atmosphere with potential temperature
�0, the x-component of the horizontal velocity u0, and atmospheric pressure p0, all
of which are functions of z only. The background vertical velocity w0 is zero. Small
perturbations, denoted by Q� , Qu, Qp, and Qw, are superimposed on the background state
variables �0, u0, p0, and w0 and are expressed in the form of a two-dimensional wave
in the x � z plane, or a plane wave, which propagates in the x direction (Fig. 5.7).
The flow is inviscid. Under the Boussinesq approximation and the assumption
of incompressibility, and with the omission of higher order terms, the general
momentum Eqs. 2.3 and 2.5, the continuity Eq. 2.21, and the energy conservation
Eq. 2.25 are reduced to a set of linear equations:

@Qu
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C u0

@Qu
@x

C Qw@u0

@z
D � 1

�0
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� CdaQuu0; (5.33)
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� Cda Qwu0; (5.34)

@Qu
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C @ Qw
@z

D 0; (5.35)
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Fig. 5.7 A plane wave with wavelength  and period T: depiction of the wave in the three-
dimensional space (top) and time series observed at a fixed location (bottom)

@ Q�
@t

C u0

@ Q�
@x

C Qw@�0

@z
D �Cha Q�u0; (5.36)

(Lee 1997), where Ch is a canopy heat exchange coefficient. The last terms on the
right side of Eqs. 5.33 and 5.34 represent the damping effect of canopy drag on the
wave motion, and the term on the right side of 5.36 is a parameterization of damping
on the temperature perturbation due to the exchange of heat with plant elements.
Because the air layer is assumed statically stable, convective instability can be ruled
out, at least in the early stage of wave development. Equations 5.33, 5.34, 5.35, and
5.36 are the foundation for linear instability analysis.

To seek a solution using the method of separation of variables, we assume

. Qw; Q�; Qu; Qp/ D . Ow; O�; Ou; Op/.z/ expŒi.kx � � t/�; (5.37)

where k is wavenumber, � .D �r C i�i/ is complex wave angular frequency,
and . Ow; O�; Ou; Op/ are dependent on z only. The complex functions are used for
mathematical convenience, but only their real parts are true solution to the problem.
For example, noting that Ow can be written in exponential form as

Ow D j Ow.z/j expŒi�w.z/�; (5.38)

where j Ow.z/j is the magnitude and �w.z/ the phase of Ow, the physically meaningful
solution of Qw is

Ref Qwg D j Ow.z/j e�it cosŒkx � �rt C �w.z/�: (5.39)
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Similar expressions can be written for the solutions of Q� , Qu, and Qp, all having the
same wavenumber and angular frequency but different amplitude and phase. The
speed of wave propagation or wave speed (cr), wave period (T), and wavelength ()
are related to k and �r as:

cr D �r

k
; T D 2�

�r
;  D 2�

k
: (5.40)

The phase of the vertical velocity oscillation, �w.z/, is a function of z, and the
amplitude, j Ow.z/j e�it, is a function of z and t.

The wave growth rate, �i, is a critical parameter in controlling wave behaviors.
The shear instability criteria can be stated as

> 0 unstable

�i D 0 neutral (5.41)

< 0 stable

If �i is positive, the wave is unstable because its amplitude will grow exponentially
with time (Fig. 5.8), which will lead to wave breaking and eventually generation of
turbulence. In this unstable mode, the background laminar flow may transition to
turbulent motion. In contrast, if �i is negative, the wave is in stable mode: any initial
perturbation will die away with time, and no turbulence can emerge. The status is
neutral if �i D 0.

According to Raupach et al. (1996), one unstable wave mode, linked to inflection
point instability, can be understood through a plane mixing layer analogy. Mathe-
matically, an inflection point is the height across which the double derivative of wind
speed with respect to z changes sign or at which wind shear is at its maximum. A
plane mixing layer forms downstream of two air layers separated by a horizontal
and frictionless plane, each having its own constant velocity before arriving at the

Fig. 5.8 An unstable or growing wave near the inflection point of the canopy wind profile
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Fig. 5.9 Velocity profile in a plane mixing layer

edge of the plane (Fig. 5.9). Mixing of the two layers generates a velocity profile that
bears strong resemblance to the canopy wind profile (Fig. 5.8), the most important
feature being an inflection point in the middle of the mixing layer where the shear
is at a maximum. According to Rayleigh’s theorem on parallel shear flows, having
an inflection point in the background velocity profile is a necessary condition for
shear instability. Linear instability analysis reveals that the wavelength of the fastest-
growing unstable mode is 3 to 5 times the depth of the mixing layer. The mixing
layer depth of a canopy flow is proportional to canopy height h, and the inflection
point instability theory explains why coherent eddies found in the canopy flow are
scaled with h.

The plane mixing analogy can be further refined by including the canopy and
the static stability effects. Two major tasks of linear instability analysis are (i)
to determine the types of the background flow that permit unstable modes and
(ii) to characterize the wavelength and wave speed of the permitted wave motion.
Substitution of Eq. 5.37 into Eqs. 5.33, 5.34, 5.35, and 5.36 yields a set of equations
for . Ow; O�; Ou; Op/. Elimination of variables from these equations leads to

d2 Ow
dz2

C 1

b1

.Cdau0/
d Ow
dz

�
 

N2k2

b1b2

C ik

b1

d2u0

dz2
C k2

!
Ow D 0; (5.42)

where N is the Brunt-Väsäla frequency defined as

N D
�

g

�0

d�0

dz

�0:5

;

and

b1 D ik
�

u � �

k

�
C Cdau0; b2 D ik

�
u � �

k

�
C Chau0:

In the absence of a plant canopy, Eq. 5.42 is reduced to the Taylor-Goldstein
equation.
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Fig. 5.10 Boundary of unstable mode in the wavenumber-static stability plane (solid line) and
relationship between the minimum gradient Richardson number and the wavenumber of the fastest-
growing wave (dashed line)

Equation 5.42 allows numerous solutions. We are interested in a parameter bound
or eigenmode, usually in the parameter space of the minimum gradient Richardson
number (Ri;min) versus k, that delineates unstable solutions from stable solutions for
a specific background profile of u0 and of �0 (or N). Search for the parameter bound
is accomplished with a numerical procedure applied to Eq. 5.42.

An eigenmode example is illustrated in Fig. 5.10. The corresponding background
u0 and N profiles are given in Problems 5.19 and the leaf area density profile in
Problem 5.10 (L D 4). Miles theorem states that a necessary condition for shear
instability is that Ri;min is smaller than 0.25. For flow in this idealized canopy,
the critical Richardson number is about 0.20, which is smaller than the theoretical
value of 0.25 due to the canopy drag effect on the wave motion. Above the critical
value, no unstable solution can be found, but below the critical value, a range of
unstable solutions is permissible. For example, at Ri;min D 0.06, a wave solution
whose wavenumber falls anywhere between 0:15=h and 1:20=h is unstable, meaning
that small perturbations will grow with time.

Among all the unstable waves, only the fastest-growing one is believed to be
able to dominate the flow and to become observable. The wavenumber of the
fastest-growing wave is approximately 0:6=h (Fig. 5.10), and the corresponding
wavelength is

 ' 10 h: (5.43)

The linear analysis also predicts that the fastest-growing wave should propagate at
the speed given by

cr ' 1:6u0.h/: (5.44)
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Fig. 5.11 (a) Idealized temperature ramps: a gradual rise with time in air temperature followed by
an abrupt drop; (b) temperature ramps observed over a forest

Despite the simplistic representation of the background state and canopy mor-
phology, these predictions are in reasonable agreement with observed wave features.
For example, field observations show that the wavelength of canopy waves is
proportional to canopy height, although with a lower proportionality coefficient
of about 4 than the predicted value of 10. Observations also confirm an implicit
assumption of the linear analysis: that the wave propagates in the direction of the
mean wind (Lee and Barr 1998).

Shear instability is proposed as the main mechanism for the generation of
coherent eddies in the canopy flow in stable as well as in neutral and unstable
conditions. These eddies are coherent as opposed to totally random because in the
resulting time series, we find orderly, nearly repeatable patterns, such as temperature
ramps (Fig. 5.11; Gao et al. 1989). Believed to have grown out of shear instability,
they retain the essential features predicted by the linear wave theory: their horizontal
length scale and time scale are comparable to the wavelength and the wave period of
the fastest-growing wave, and they propagate in the direction of the mean wind and
at a speed slightly faster than wind speed at the canopy top. These coherent eddies
are highly energetic. They play a prominent role in the transport of momentum, heat,
and gases between the canopy and the overlaying atmosphere.

In summary, plant elements play two roles in the shear instability mechanism.
The first role is the creation, through the canopy drag force on the background
flow, of an inflection point, which triggers instability and the subsequent waves and
coherent eddies. The persistent nature of the inflected profile explains why coherent
eddies are a common occurrence near the top of the canopy. The second role is
related to the damping effect of canopy drag on wave motions. A linear analysis
shows that this role is minor, limited to waves whose wavelengths are shorter than
that of the fastest-growing wave.
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Fig. 5.12 Vertical
distribution of plant area
density measured in a
Douglas-fir forest

5.7 Problems

5.1 Estimate the plant area index from the vertical distribution of plant area density
shown in Fig. 5.12.

5.2 Are spatial differentiation and volume averaging commutable for Reynolds
covariances, such as u0w0 and w0T 0, in a plant canopy? Why or why not?

5.3 Explain why spatial differentiation and volume averaging are not commutable
for the mean CO2 mixing ratio, sc, but are commutable for the velocity and the
mixing ratio product, u sc.

5.4 Derive from Eq. 3.16 the continuity equation for the spatial fluctuating veloci-
ties (Eq. 5.13).

5.5 Show that under the canopy volume averaging scheme, the total kinetic energy
consists of three parts:

ŒET � D MKE C DKE C TKE;

where

MKE D 1

2
.Œ u �2 C Œ v �2 C Œ w �2/;

DKE D 1

2
.Œ u00u00 � C Œ v00v00 � C Œ w00w00 �/;
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Table 5.1 Wind profile observed in a wind tunnel canopy made of uniform rods (Data source:
Raupach and Thom 1981)

z=h 1.0 0.93 0.81 0.70 0.55 0.35 0.20 0.15 0.05 0.02

u.z/=u.h/ 1.0 0.89 0.70 0.61 0.45 0.23 0.18 0.17 0.15 0.11

and

TKE D 1

2
.Œ u02 � C Œ v02 � C Œ w02 �/:

The term DKE represents dispersive kinetic energy.

5.6* Verify that under the assumption of Eqs. 5.25 and 5.26, respectively, Eqs. 5.24
and 5.27 are solutions to Eq. 5.23.

5.7 Compare in a profile plot the wind speed predicted by Eqs. 5.24 and 5.27 (˛1 D
2:0 and ˛2 D 4:0) with the wind speed observed in a wind tunnel canopy (Table 5.1).

5.8 The canopy drag coefficient is 0.2, the wind profile is given by Eq. 5.27
(˛2 D 4.4), the plant area density is given in Fig. 5.12, and the wind speed at the
top of the canopy is 1.82 m s�1. Calculate the canopy drag force at the height of
z=h D 0.5.

5.9* A corn pollen grain dislodged from the top of the canopy is transported by
the mean wind and falls at a settling velocity of 0.31 m s�1. The canopy height is
2.2 m, wind speed at the canopy top is 2.3 m s�1, and wind speed inside the canopy
is described by Eq. 5.24 with ˛1 D 3:0. How far does the pollen grain travel before
it settles on the ground? (Assume that it will not be intercepted by plant elements.)

5.10* Some people interpret the displacement height, d, as the effective height of
the mean canopy drag force, such that

d D
Z h

0

zCdau2 dz =

Z h

0

Cdau2 dz; (5.45)

(Shaw and Pereira 1982). Use a numerical procedure to quantify d as a function of
plant area index, L, according to Eq. 5.45. The plant area density is given by

ah D L

0:125
p

2�
expŒ�.z=h � 0:65/2=.2 � 0:1252/�; (5.46)

where a has the dimensions of m�2 m�3, and the wind profile is given by Eq. 5.24,
with the wind extinction coefficient related to L (0:5 < L < 7) as ˛1 D �0:0296L2C
0:6565L C 0:7010:

5.11 The plant area of a forest is evenly distributed between the ground and the top
of the canopy, with the plant area index of 4.0. The mean wind speed at the top of
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the canopy is 1.82 m s�1, and the friction velocity is 0.42 m s�1. Assume that wind
speed inside the canopy can be described by Eq. 5.24 with ˛1 D 2:4. What is the
canopy drag coefficient?

5.12 Wind load on an individual tree in a forest can be estimated as

Wind load D �CdAu2
m;

where � is air density, A is total plant area of the tree, and um is wind speed at the
middle point of its canopy. Calculate wind load on a tree with A of 80 m2 distributed
between heights z D 0:5h and z D 1h in a forest stand whose mean wind profile is
given by Eq. 5.24 with ˛1 D 2:2. Use a value of 0.2 for Cd, 1.20 kg m�3 for �, and
2.6 m s�1 for u.h/ for your calculation.

5.13 Estimate MKE production by the pressure gradient force and MKE destruc-
tion by canopy drag given @p=@x D 0.01 hPa km�1, u D 1.0 m s�1, a D 0.4 m�1, and
Cd D 0.2.

5.14 The plant area density is described by Eq. 5.46, the plant area index is 3.0, the
canopy drag coefficient is 0.2, the wind profile is given by Eq. 5.27 (˛2 D 4.0), and
the wind speed at the top of the canopy is 2.5 m s�1. (1) Determine the momentum
flux profile using Eq. 5.21 for heights between the ground and the top of the canopy,
(2) calculate shear production and wake production of TKE, and (3) present your
results in a profile plot.

5.15 Using the information provided in Problem 5.14 and Eq. 5.30, (1) evaluate the
transport, the shear destruction, and the wake destruction term in the MKE budget
equation; and (2) compare these terms in a profile plot.

5.16 The wavenumber and the angular frequency of a wave event observed in a
forest are 0.102 rad m�1 and 0.126 rad s�1, respectively. Calculate the wave speed,
wavelength, and wave period.

5.17 Derive Eq. 5.39 from Eqs. 5.37 and 5.38.

5.18 Provide an order-of-magnitude estimate for wavelength and period expected
of the waves occurring in a 2-m tall corn canopy.

5.19 The background state is specified as

N2.z/=N2.h/ D .1 � �1/ expŒ��2.z=h � 1/� C �1; (5.47)

and

u0.z/=u0.h/ D
�

expŒ˛2.z=h � 1/�; z=h � 1

˛1 tanhŒ.˛2=˛1/.z=h � 1/� C 1; z=h > 1
(5.48)
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where N2.h/ D 0.002 s�2, u0.h/ D 2.5 m s�1, ˛1 D 3.0, ˛2 D 2.85, �1 D 0.2 and
�2 D 2.0, and h= 18.0 m. Determine the height of the inflection point and produce a
profile plot of the gradient Richardson number for the air layer between z D 0 and
z D 3h, where h is canopy height. Is shear instability likely to occur?

5.20 The growth rate of a wave observed in a forest is 0.0012 rad s�1. How long
does it take for the wave amplitude to grow twofold, tenfold, and 100-fold?
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Chapter 6
Balance of Forces in the Atmospheric Boundary
Layer

6.1 Atmospheric Layers

The lower atmosphere is conveniently divided into several layers with varying
degrees of turbulent mixing and with different mechanisms of turbulence produc-
tion. The framework for our depiction of these layers is the set of one-dimensional
governing equations given in Chap. 3. Forces that dominate the flow in each layer
are different, so we can make strategic approximations in order to obtain simplified
relationships between state and process variables. Diagnosis on where one layer
ends and where another begins is made with profiles of potential temperature, wind,
humidity, or trace gas concentrations and is refined with observed patterns of time
variations of these variables on the 24-h cycle. The distinct vertical structure exists
because of strong influences the ground surface exerts on the overlaying atmosphere
through momentum absorption and exchanges of energy and materials. However, if
the land cover is inhomogeneous, the terrain is sloped, or if the flow is disturbed by
mesoscale phenomena (e.g., land-lake breezes) and synoptic weather events (e.g.,
cold front passage), some of the one-dimensional vertical layering may become
indiscernible.

Convective Conditions

Figure 6.1 shows the structure of a typical daytime convective boundary layer on
land. The topmost layer is called the free atmosphere. Here the air is relatively
clean and is void of turbulent motion. Its temperature and moisture do not vary
through the diurnal cycle as the heat and moisture sources are normally at the
surface. Other variables, such as wind speed and carbon dioxide concentration,
also lack appreciable diurnal changes. The potential temperature increases linearly
with height, at an average rate of approximately 3.3 K km�1 which is equivalent
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Fig. 6.1 Vertical structure of the atmospheric boundary layer in convective conditions and the
corresponding profiles of potential temperature (� ) and two horizontal velocity components (u and
v). Layer thickness is not drawn to scale

to an air temperature lapse rate of 6.5 K km�1 for the standard troposphere. The
air motion follows the geostrophic balance. In the absence of vertical variations of
the horizontal pressure gradient, the vertical wind shear is too weak to generate
turbulent kinetic energy.

Separating the free atmosphere from the convective boundary layer is a thin
interfacial layer called the capping inversion. The potential temperature gradient
in the capping inversion is much larger than that in the free atmosphere. The
large gradient forms in part because energetic convective eddies push air of low
potential temperature into the warmer free atmosphere, so when averaged over
time, the potential temperature in the interface is lower than one would obtain
by extrapolating downward the linear potential temperature profile of the free
atmosphere. In some large-eddy simulation studies of midafternoon, fully developed
convective boundary layers, the interface is prescribed with an inversion strength of
75 K km�1. A typical height of the capping inversion is about 1 km and a typical
thickness is 50 m.

The capping inversion is a barrier to pollution diffusion and is the reason for
why the free atmosphere is much cleaner than the boundary layer air, especially in
an urban environment. The contrast is most evident on a cloud-free but hazy day,
during which time the position of the capping inversion is visually marked by the
top of the haze layer. In other words, the inversion layer height controls the vertical
extent of pollution dispersion. Bad air quality is often associated with conditions of
a capping inversion being close to the ground.

The capping inversion is a leaky barrier in the sense that energy and material
transport does occur there, albeit very slowly. The process by which air in the
free atmosphere is mixed into the boundary layer is referred to as entrainment.
One contributor to entrainment is organized eddy structures called thermals. These
eddies are essentially large hot air bubbles detached from the ground. Having high
buoyancy, they are able to rise energetically to the capping inversion, pushing the
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inversion interface upward and causing it to fold. Air of higher potential temperature
in the free atmosphere may get pulled under the air in the boundary layer that has
lower potential temperature. In the spots where the interface is folded, conditions
are statically unstable, leading to formation of small turbulent eddies and mixing of
the two air pools (Sullivan et al. 1998). The process repeats itself in an intermittent
fashion. As a consequence of entrainment, the height of the inversion layer increases
with time.

Below the capping inversion is the Ekman layer, named after the Swedish
oceanographer V. W. Ekman whose work led to an analytical solution of wind
profile in the boundary layer. Air motion in the layer is turbulent owing to shear
and buoyancy production of eddies associated with the surface. Because of the
nonstopping eddy motion, the surface and the Ekman layer are tightly coupled. The
influences of ground surface can rapidly alter, on time scales of minutes, physical
properties and chemical compositions of the Ekman layer. Likewise, conditions in
the Ekman layer can regulate surface processes. The Ekman layer exists in unstable
as well as in neutral and stable conditions. Forced by diurnally changing solar
radiation, the surface sensible heat, latent heat, and carbon dioxide fluxes vary
through the 24-h cycle. In response, temperature, humidity, and carbon dioxide
concentration in the Ekman layer exhibit strong diurnal oscillations.

The upper portion of the Ekman layer is the mixed layer. It gets the name
because physical and chemical properties are well mixed vertically in this air layer.
The best diagnostic indicator of the mixed layer is a uniform potential temperature
profile ubiquitous of sounding measurements (Fig. 6.1). Vertical variations in carbon
dioxide concentration are also very small, typically less than 1 ppm. The well-mixed
situation is found in convective conditions and ceases to exist in a stably stratified
Ekman layer.

The lower portion of the Ekman layer is the surface layer, also referred to as
the constant-flux layer. Fluxes of momentum, heat, and gases are approximately
constant with height in the surface layer, which spans a depth of tens of meters.
Feeling the direct impact of the ground, the surface layer is characterized by
diurnal variations in state variables, including temperature, humidity, wind speed,
and trace gas concentrations, which are much larger than anywhere else in the
atmosphere. The vertical gradient of potential temperature is negative, indicating
unstable conditions.

In the thin skin layer in immediate contact of a smooth surface, the motion is
dominated by the viscous effect. For this reason, we call it the viscous sublayer.
According to laboratory studies on channel flow and pipe flow, its thickness is
given by

ıl D 5�=u�: (6.1)

Equation 6.1 indicates that ıl is on the order of 1 mm (Problem 6.3). Within the
viscous sublayer, the flow is essentially laminar. Above a height of about z D 6ıl,
the flow becomes fully turbulent and the viscous effect is negligible. In the natural
environment, mud flats and ice fields are examples of smooth surfaces where a
viscous sublayer can be identified.
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Fig. 6.2 Air layers in and
above a forest

In a vegetated landscape, viscous effects are confined to thin boundary layers
enveloping the individual plant elements, but no viscous sublayer exists at the whole
canopy scale. Here the lowest portion of the flow is found in the canopy layer
(Fig. 6.2). Immediately above the canopy, there exists a roughness sublayer whose
thickness is on the order of one canopy height, where turbulence is characterized
by coherent eddies generated by inflection point instability (Chap. 5). These eddies
transport momentum and scalars more efficiently than eddies found in a smooth-wall
surface layer. Because of this fact, the eddy diffusivity parameterization (Eq. 3.53),
whose similarity functions are based on observations made in smooth-wall surface
layers, has a tendency to underestimate true diffusion efficiency in the roughness
sublayer.

Stable Conditions

Figure 6.3 depicts the vertical structure of the boundary layer in early morning
hours. The sun is yet to rise. A surface inversion layer has developed near the
ground as a consequence of longwave radiative cooling of the surface, its depth
varying roughly in the range of 100–300 m. Mixing is caused by wind shear and
must overcome the negative buoyancy effect. Eddy diffusion is too weak to mix
uniformly in the vertical direction either the potential temperature or any other scalar
quantity.

The Ekman layer is slightly thicker than the surface inversion layer, but not by
much. We know this because the Ekman layer is turbulent. If it were much deeper,
turbulent diffusion would have brought heat down to the surface from a greater
height and therefore would have extended the inversion layer further upward.
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Fig. 6.3 Vertical structure of the atmospheric boundary layer at night and the corresponding
potential temperature profile

Above the surface inversion layer is the residual layer. Potential temperature in
the residual layer often lacks a vertical gradient, leaving the impression that the air
is well mixed. But the fact that this layer retains features of a mixed layer of the
daylight hours in the previous day indicates just the opposite, that turbulent mixing
is nearly absent. At later times, the well-mixed structure left from the previous
afternoon may get gradually eroded from the bottom by shear-generated eddies,
evolving by the early morning hours into a weak inversion layer with a positive
potential temperature gradient falling in the transitional range between those of
the surface inversion layer and the tropospheric background. This occurs when the
wind shear is moderately strong. In steady state, the flow in the residual layer is
geostrophic. In non-steady-state conditions, wind speed can exceed the geostrophic
wind speed.

The tropospheric background layer is found above the residual layer. Here
the flow is geostrophic. The potential temperature gradient is approximately
3.3 K km�1.

Diurnal Evolution

Figures 6.1 and 6.3 are snapshots of the boundary layer representing conditions
typical of midafternoon and early morning hours, respectively. A complete pattern
of diurnal evolution is shown in Fig. 6.4 for midlatitudes in the summer. Erosion
of the surface inversion layer starts shortly after sunrise, and by 9 am local time, a
shallow mixed layer has developed. The mixed layer continues to grow with time,
to a maximum depth of approximately 1.5 km at around 4 pm. Thereafter buoyancy
generation of turbulent kinetic energy begins to slacken. The mixed layer collapses
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Fig. 6.4 Diurnal evolution of the atmospheric boundary layer

rapidly at around 6 pm, owing to the fact TKE generation cannot overcome TKE
viscous dissipation. At this time, the surface longwave radiation flux is still quite
high due to a high surface temperature, but the incoming solar radiation is nearly
zero, resulting in a negative net radiation and a negative surface sensible heat flux.
The reversal in the direction of the surface heat flux marks the onset of surface
inversion. The surface inversion layer grows as time progresses into the night, but at
a much slower rate than the rate of mixed layer development in the daytime, reaching
a depth of about 300 m at midnight. The residual layer, identified from a uniform
potential temperature profile, is quite deep at the time of mixed layer collapse and
slowly shrinks due to mixing with the tropospheric background air from above and
with the surface air from below. The pattern repeats itself the next day.

The temporal pattern shown in Fig. 6.4 is constructed by averaging observations
over multiple diurnal cycles to filter out day-to-day weather fluctuations. This
smooth composite time evolution is the basis for the concept of an equilibrium
atmospheric boundary layer over land (Chap. 11).

Large-scale horizontal advection, not considered in the idealization, can transport
heat to the boundary layer from outside of the local domain. In extreme heatwave
events, the added heat can sustain through the night a thick residual layer, which
then merges with the mixed layer being developed beneath it in the next day. After
several days of persistent heat advection, a uniform potential temperature can extend
up to 4 km into the atmosphere, creating the impression of a super deep mixed layer
(Problem 6.2). A transitional, deep “mixed layer” has also been observed on the
Tibetan Plateau. Whether such a thick layer of uniform potential temperature can
be called the atmospheric boundary layer is debatable because in the strict fluid
mechanic sense, the boundary layer is characterized as a thin layer of fluid at the
flow boundary. So far there has been no experimental confirmation that the Ekman
layer, and hence the influence of the surface, can extend to a height of 4 km.
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6.2 Balance of Forces in Neutral and Convective Conditions

Let us consider a boundary layer in neutral to unstable conditions. The horizontal
pressure gradients, @p=@x and @p=@y, are prescribed parameters and are assumed
to be independent of height and time. The local time rate of change in the mean
momentum Eqs. 3.31 and 3.32 is negligible in comparison to other terms in the
equations, so the atmosphere is in quasi-steady state.

In the free atmosphere, the Reynolds covariances vanish. The momentum
equations are reduced to the geostrophic relation or a balance between the pressure
gradient force and the Coriolis force:

0 D �1

�

@p

@x
C f v; (6.2)

and

0 D �1

�

@p

@y
� f u: (6.3)

The two wind components are therefore given by

u D ug; v D vg; (6.4)

where ug and vg, components of the geostrophic wind vg D fug; vgg, are given by

ug D �1

f

1

�

@p

@y
; vg D 1

f

1

�

@p

@x
: (6.5)

In the Ekman layer, the Reynolds terms cannot be omitted. With the help of
parameterization Eqs. 3.36 and 3.37, we obtain from Eqs. 3.31 and 3.32:

f .v � vg/ C @

@z

�
Km

@u

@z

�
D 0; (6.6)

� f .u � ug/ C @

@z

�
Km

@v

@z

�
D 0: (6.7)

These equations express a three-way balance between the pressure gradient force,
the Coriolis force, and the momentum flux divergence. The flux divergence terms
represent the frictional force arising from horizontal and vertical velocity cross
correlations and ultimately originating from the surface.

If we assume that the momentum eddy diffusivity, Km, is invariant with height,
we obtain the famous Ekman spiral solution:

u D Vg.1 � e��z cos �z/; v D Vg e��z sin �z; (6.8)
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where � D .f =2Km/1=2 and Vg D .u2
g C v2

g/1=2: At height:

zi D �=�; (6.9)

vg D 0, and ug is nearly equal to Vg. Height zi is regarded as the top of the boundary
layer. Equation 6.9 shows that zi increases with increasing Km, implying a deeper
boundary layer in the daytime than at night. The Ekman spiral solution satisfies the
no-slip boundary condition at the surface:

u ! 0; v ! 0; as z ! 0:

The wind vector below zi is veered to the left of the geostrophic wind vector in the
northern hemisphere at the angle given by

ˇ D tan�1 v

u
:

In the limit z ! 0, ˇ ! 45ı. This is the predicted angle between surface wind
direction and wind direction above the boundary layer. A hodograph of the solution
is shown in Fig. 6.5. Arrows in the plot represent wind vectors below height zi. The
tips of the arrows form a spiral-shaped locus line.

The Ekman spiral agrees qualitatively with field observations and numerical
modeling results. The prediction that the boundary layer should deepen with increas-
ing Km has been confirmed experimentally. The Ekman solution approximates
reasonably well the neutral wind speed profile above the surface layer.

The prediction about wind directional turning is also in qualitative agreement
with observed flow patterns in the lower atmosphere. In a low-pressure system
in the northern hemisphere, wind motion in the free atmosphere is tangent to the
isobars in a counterclockwise rotation and that near the surface is deflected at an
angle toward the center resulting in flow convergence (Fig. 6.6 left panel). In a high-
pressure system, the surface wind is deflected outward, and flow divergence takes
place in the boundary layer (Fig. 6.6 right panel).

Fig. 6.5 A hodograph
showing the Ekman spiral
solution for the northern
hemisphere
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Fig. 6.6 Flow patterns in a low- (left panel) and a high-pressure system (right panel) in the
northern hemisphere

The cross-isobaric transport of momentum and masses is an important mecha-
nism by which the boundary layer influences large-scale atmospheric flows. Flow
convergence in the low-pressure system causes rising motion at the top of the
boundary layer, a phenomenon called Ekman pumping. The rising motion is com-
pensated by sinking motion over a neighboring high-pressure system, thus forming
a secondary circulation that interacts with the counterclockwise and clockwise
rotations in these systems.

The Ekman solution should be used with caution in the surface layer because it
differs from reality in two important details. First, the predicted wind directional
shear is too strong. A typical angle of deflection ˇ in the surface layer is about 30ı
in neutral and stable conditions and is even smaller in unstable conditions. Obser-
vational and numerical studies also show that the angle decreases with decreasing
surface roughness, approaching zero over the sea and large lakes (Problem 6.9).
Second, the predicted wind speed profile in the surface layer is sinusoidal rather
than logarithmic (Eq. 3.47), a defect of the constant Km assumption. The logarithmic
solution based on the constant flux assumption is a more accurate description of air
motion near the ground.

The standard Ekman solution does not apply to the plant canopy layer where
the Coriolis force is negligible due to smallness of the wind speed. The pressure
gradient force can also be omitted because it is an order of magnitude smaller
than the canopy drag force and the momentum flux divergence. In steady state, the
momentum conservation is approximated by a balance between the canopy drag and
the momentum flux divergence (Eq. 5.20). The wind speed solution is an exponential
function of height (e.g., Eq. 5.24).

The trunk space in some forests is quite open either because of active forest
management, such as removal of lower tree branches to promote tree growth, or
because low light conditions prevent understory growth. Air in this layer can move
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more freely than in the canopy airspace. Here the momentum flux divergence is
negligible, and the momentum Eqs. 5.18 and 5.19 are simplified to:

0 D �1

�

@p

@x
� CdauV; (6.10)

0 D �1

�

@p

@y
� CdavV: (6.11)

The result is a gradient wind solution whose direction is aligned with the pressure
gradient force and whose magnitude is given by:

V D 1

.� Cda/1=2
jrH pj1=2; (6.12)

(Lee et al. 1994).
Figure 6.7 shows an extended Ekman spiral for the northern hemisphere. Let us

suppose that the pressure gradient force is directed toward north. We expect wind
to move from south to north in the trunk space and from west to east in the free
atmosphere, with a total directional change of 90ı.

The Ekman model predicts that the wind in the boundary layer should always
be directed toward lower pressure (Fig. 6.6). Observational studies show that air
in the surface layer can in fact move in the opposite direction (Sun et al. 2013).
Two situations are known to cause this counter-intuitive phenomenon. The Ekman
model is restricted to the conditions of constant pressure gradient and steady state. In
a baroclinic atmosphere where the horizontal pressure gradient varies significantly
with height and where there exists advection of warm air toward the local domain,
solution of the complete momentum equations allows the possibility of wind being
directed toward higher pressure. If the boundary layer is not in steady state, inclusion
of time-varying terms in the momentum equations can also explain the phenomenon
of “wind toward higher pressure” (Sect. 6.3).

6.3 Balance of Forces in Stable Conditions

The balancing of forces changes as air stability switches from being unstable in the
day to being stable at night. Let us first consider the upper boundary layer in late
afternoon transition. We continue to use the assumption that the pressure gradient
force is invariant with height and time. For convenience of discussion, we divide
the transition into three stages. In the initial stage, balance is maintained among
the Coriolis force, the pressure gradient force, and the momentum flux divergence
(Fig. 4.1). The wind profile, a deep Ekman spiral denoted by V0 in Fig. 6.8, is
characterized by weak shear in the upper boundary layer and strong shear near the
surface, and the dominant source of TKE in the upper boundary layer is buoyancy
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Fig. 6.7 An extended Ekman
spiral in the northern
hemisphere, showing wind
directional shear from the
open trunk space of a forest to
the top of the boundary layer

generation. The second stage begins shortly before sunset. At this time, buoyancy
generation ceases, leading to a decline in turbulence intensity. We still expect a
small amount of TKE being transported upward from the lower air layer where
strong wind shear continues to produce turbulence, so the decay of turbulence in
the upper boundary layer is not as rapid as if viscous dissipation of TKE were to
operate on its own. In stage three, as time progresses into early evening, a surface
inversion has taken shape. The strong stability associated with surface inversion
prevents upward transport of TKE. The upper boundary layer, being essentially cut
off from the surface influences, has transformed into the classic residual layer with
virtually no turbulent motion. The Coriolis force is now temporarily out of balance
with the pressure gradient force. However, the atmosphere has the tendency to reach
a new equilibrium state in which balance is restored between the two forces so that
the wind speed is equal to the geostrophic speed, Vg, as shown in Fig. 6.8.

In reality, the new equilibrium state is rarely fully established in the residual layer
because time change terms in the momentum Eqs. 3.31 and 3.32 can no longer be
omitted. In the process of adjustment to the new equilibrium conditions, the wind
tends to overshoot beyond the geostrophic wind. This inertial effect, first proposed
by Blackadar (1957), leads to a time-dependent inertial oscillation solution.
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Fig. 6.8 Evolution of wind speed profile in a stable boundary layer: V0, initial profile in late
afternoon (V0 D jv0j, v0 D fu0; v0g); Ve, new equilibrium profile (Ve D jvej, ve D fue; veg);
Vg, magnitude of the geostrophic wind. Modified after van de Weil et al. (2010)

Using Eq. 6.5, we can express the momentum conservation for the residual
layer as

@

@t
.u � ug/ D f .v � vg/; (6.13)

and

@

@t
.v � vg/ D �f .u � ug/: (6.14)

In these equations, the horizontal pressure gradient is assumed constant with time
and height, and turbulence is negligible. The initial condition is

u D u0; v D v0 at t D 0:

The solution to Eqs. 6.13 and 6.14 is periodic with time, as

u � ug D .v0 � vg/ sin.ft/ C .u0 � ug/ cos.ft/; (6.15)

v � vg D .v0 � vg/ cos.ft/ � .u0 � ug/ sin.ft/: (6.16)

Figures 6.8 is a graphic illustration of the inertial oscillation expressed by the
solution. The velocity at a given height is determined by time elapsed from onset of
the oscillation and deviation of the initial velocity at this height from the geostrophic
wind and is independent of the velocity at other heights. The magnitude of the wind
speed oscillates between the lower limit of V0 and a super-geostrophic upper limit.
The strongest wind speed occurs near the top of the surface inversion layer.
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Fig. 6.9 Inertial oscillation solution of the velocity in the residual layer (top) and in the surface
inversion layer (bottom) in the northern hemisphere: v0, velocity vector at initial time t D 0; ve,
velocity vector in the new equilibrium state; vg, the geostrophic velocity vector

Figure 6.9 (top panel) is another graphic illustration of the inertial oscillation
solution at some height in the residual layer. For simplicity, we have adopted a
coordinate system whose x-axis is aligned with the geostrophic wind vector and
whose y-axis is in the cross-geostrophic direction (Fig. 4.1). The solution is shown
in a vector form. The tip of the wind vector falls on a circle in a counterclockwise
rotation at successive time steps since t D 0. The center of the circle is the tip of the
geostrophic wind vector, and the radius is given by

Vr D �
.Vg � u0/2 C v2

0

1=2
: (6.17)

In this illustration, the wind becomes super geostrophic at t ' �=2f . The maximum
wind speed is Vg C Vr and occurs at the time:

tm D .� � ˇ0/=f (6.18)

elapsed since the onset of inertial oscillation, where ˇ0 is the angle between the
initial wind vector v0 D fu0; v0g at the height of interest and the geostrophic wind
vector vg D fug; vgg.

In the example shown in Fig. 6.9, the y component of the velocity is negative after
t becomes greater than about .3�=4f /. At these times, the wind is directed toward
higher pressure. Flow that counters the horizontal pressure gradient can also exist in
the surface layer (Problem 6.20).
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Let us now turn attention to the surface inversion layer. The above Blackadar’s
solution is valid only in the residual layer. In the surface inversion layer, the
momentum conservation must include the momentum flux divergence. If we omit
the time change terms, a new equilibrium state would be achieved by a three-
way balance between the pressure gradient force, the Coriolis force, and the flux
divergence, as described by Eqs. 6.6 and 6.7. The new equilibrium solution, denoted
by ve (D fue; veg), satisfies the Ekman Eq. 6.8 on the assumption of a constant eddy
diffusivity Km. Because Km in stable stratification is much smaller than Km in late
afternoon, the equilibrium Ekman spiral is more compressed in the vertical than the
initial profile, and Ve.D jvej/ is greater than V0 (Fig. 6.8) in the surface layer.

In order to obtain a true solution for the wind profile, we must include the time
change terms in the conservation equations, similar to the situation encountered in
the residual layer. The complete momentum equations are

@u

@t
D f .v � vg/ C @

@z

�
Km

@u

@z

�
; (6.19)

@u

@t
D �f .u � ug/ C @

@z

�
Km

@v

@z

�
: (6.20)

Unfortunately, no analytical solution to Eqs. 6.19 and 6.20 has been found so far.
But it is reasonable to extend Blackadar’s argument and assume that the wind
in the surface inversion layer also oscillates around the new equilibrium state ve.
Mathematically, this is accomplished by replacing fug; vgg with fue; veg in Eqs. 6.13
and 6.14, giving an approximation for the wind solution in the surface inversion
layer:

u � ue D .v0 � ve/ sin.ft/ C .u0 � ue/ cos.ft/; (6.21)

v � ve D .v0 � ve/ cos.ft/ � .u0 � ue/ sin.ft/; (6.22)

(van de Weil et al. 2010). Owing to frictional damping effects, the inertial oscillation
in the surface inversion layer (Fig. 6.9 bottom panel) is weaker than in the residual
layer (Fig. 6.9 top panel). It is useful to point out that Eqs. 6.21 and 6.22 give
virtually the same result as Eqs. 6.15 and 6.16 for the frictionless residual layer
because ve is nearly equal to vg above the surface inversion layer.

Inertial oscillations are an important mechanism underlying the formation of low-
level jets (LLJs), the phenomenon of a local wind maximum at a level typically in
the range of 100–500 m above the ground. Although LLJs have been observed in
the daytime, they are usually better defined at night. A number of inferences can be
made from the inertial oscillation theory:

• The height of nocturnal LLJs is found just above the surface inversion layer.
At this height, the inertial oscillation is the strongest. Below this height, the
inertial oscillation is damped by frictional effects, and far above this height, the
deviation of the initial wind from the geostrophic wind is too weak to cause
strong oscillations (Eq. 6.17).
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• Nocturnal LLJs are more likely to be observed in early morning than in early
evening according to Eq. 6.18. The time of occurrence of the strongest nocturnal
LLJ is dependent on latitude. If the inertial oscillation starts at 6 pm local time,
the strongest wind is expected at approximately 2:30 am at 55ıN and at 6 am at
25ıN in the following day.

• In tropical latitudes, the oscillation period is too long to allow the formation
of nocturnal LLJs. For example, at 10ıN it would take 34 h, a duration longer
than the night period, to reach the maximum wind speed. Nocturnal LLJs can
still occur, but the mechanisms involved are not related to inertial oscillations.
Gravitational acceleration on sloped terrain, for example, is known to cause
nocturnal LLJs.

• Clear sky conditions and large surface roughness are two factors that favor
the formation of nocturnal LLJs. Surface inversion, a necessary condition for
Blackadar’s inertial oscillation mechanism, forms more quickly under clear skies
than under cloudy skies due to a stronger surface radiative cooling. If the surface
is rougher, we expect a greater departure from the geostrophic wind at the onset
of the oscillation and therefore a greater wind maximum at a later time (Eq. 6.17).

Figure 6.10 is a conceptual summary of the time progression of events occurring
in a typical nocturnal boundary layer (Mahrt 1999). Once a nocturnal LLJ is
formed, we expect shear generation of turbulence near the height of the jet where
wind shear is maximal and where the air is only weakly stratified. Some of the
TKE generated at the jet level is transported downward, intermittently increas-
ing turbulence intensity and weakening thermal stratification near the surface.

Fig. 6.10 Sequence of events occurring in a nocturnal boundary layer. Modified after Mahrt
(1999)
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The situation has the appearance of an upside-down boundary layer because the
main TKE source is elevated instead of being at the surface. Experimental studies
show that surface friction velocity is enhanced in the presence of a nocturnal LLJ,
creating favorable conditions for eddy covariance measurement of surface-air fluxes
of carbon dioxide and other scalar quantities. Conversely, the absence of inertial
oscillations in low latitudes is one reason for why surface friction velocity is very
weak in tropical eddy covariance sites at night.

6.4 Problems

6.1 Figure 6.11 shows composite profiles of potential temperature observed in
Saskatchewan, Canada, in a summer season. Identify (1) the surface inversion layer
and the residual layer at 06:15 local time, (2) determine the depth of the boundary
layer at 09:15, 13:15, and 17:15, and (3) estimate the vertical potential temperature
gradient in the free atmosphere.

6.2 Figure 6.12 shows representative profiles of potential temperature before and
during a heatwave event in Voronezh, Russia. Identify the surface inversion layer
and the residual layer early in the morning and the “mixed layer” in the afternoon
before and during the heatwave event.

Fig. 6.11 Composite profiles
of potential temperature in
Saskatchewan, Canada, in the
summer of 1994. Time marks
are local time (Data source:
Barr and Betts 1997)
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Fig. 6.12 Profiles of
potential temperature before
and during a mega heatwave
event in Voronezh, Russia
(Data source: Miralles et al.
2014)

6.3 Estimate the depth of the viscous sublayer using a typical value for surface
friction velocity.

6.4 The horizontal pressure gradient is 0.01 hPa km�1. Find the geostrophic wind
speed.

6.5 The geostrophic wind speed is 6.0 m s�1. What is the horizontal pressure
gradient?

6.6 Calculate the Ekman layer depth using three different values for the momentum
eddy diffusivity (15, 1.0, and 0.3 m2 s�1).

6.7 The Ekman layer depth is 1200 m at midday and 300 m at midnight. What are
the corresponding momentum eddy diffusivity values according to the Ekman spiral
solution?

6.8 Using the eddy diffusivity values found in Problem 6.7, calculate the u and v

velocity for the air layer between the ground and the 1500 m height. Present your
results in a profile plot. (Hint: use the coordinate shown in Fig. 4.1 and a geostrophic
wind speed of 10 m s�1.)

6.9* (1) Obtain a numerical solution to the momentum Eqs. 6.6 and 6.7 using
the eddy diffusivity parameterization given by Eq. 3.52, a geostrophic wind speed
Vg D 10:0 m s�1, a surface roughness zo D 1:0 m, and a boundary layer depth
zi D 1100 m (Blackadar 1962). The surface and the upper boundary conditions are

u D v D 0 at z D 0;
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and

u D Vg; v D 0 at z D zi:

Air stability is neutral. Surface friction velocity is constrained by the Rossby
similarity relation:

.u�=Vg/2 D k2=fŒln.Ro u�=Vg/ � A�2 C B2g; (6.23)

where Ro [D Vg=.fzo/] is Rossby number, A ' 2, and B ' 4:5. Present your result
in an Ekman spiral plot similar to Fig. 6.5. (2) Repeat your calculation for zo D
0:001 m, representing a smooth surface, such as a lake or the ocean, but with the
other parameters unchanged. How does surface roughness affect the angle between
wind direction near the surface and wind direction in the free atmosphere?

6.10 Estimate wind speed in the trunk space of a forest using the pressure gradient
value found in Problem 6.5, a canopy drag coefficient of 0.2 and a plant area
density of 0.05 m2 m�3. What is the ratio of the wind speed in the trunk space to
the geostrophic wind speed?

6.11 In a dispersion experiment in a forest, your instruments are mounted on a
tower. Wind measurement above the forest indicates that air is moving from north,
so you place a smoke source at some distance due north of the tower, hoping to
observe the center of the smoke plume (Fig. 6.13). Will the smoke plume follows a
trajectory in the direction of the tower, or is it more likely to veer to the left or right
of the tower? Why?

Fig. 6.13 A bird’s eye view of a forest site showing tree crowns, a smoke source, and an
observational tower. Smoke is released on the ground at some distance away from the observational
tower
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6.12 Derive Eqs. 6.13 and 6.14 from the full momentum Eqs. 3.31 and 3.32. What
assumptions are made in your derivation?

6.13 Verify that Eqs. 6.15 and 6.16 are a solution to Eqs. 6.13 and 6.14 and satisfy
the proper initial condition.

6.14 The initial velocity in the residual layer is 4.0 m s�1, and the geostrophic
velocity is 9.0 m s�1. The angle between the two velocity vectors is 10.0ı. Produce
a vector plot of the inertial oscillation similar to the one shown in Fig. 6.9. At about
what time does the wind becomes super geostrophic? What is the highest wind speed
expected?

6.15* The inertial oscillation starts at time t D 0 with a momentum eddy diffusivity
of 12.5 m2 s�1, and the eddy diffusivity in the new equilibrium state is 0.5 m2 s�1.
The Coriolis parameter f D 1:14 � 10�4s�1 (latitude 52ıN). Produce a profile of
the magnitude of the velocity in the boundary layer for t D 0 h, 2 h 11 min, 4 h
23 min, 6 h 35 min, and 8 h 36 min. At what time(s) do you expect the occurrence of
a low-level jet?

6.16 Repeat the calculation in Problem 6.15 for a tropical latitude of 8ıN.
According to your result, is it possible for a low-level jet to establish at this latitude
in the evening? Why or why not?

6.17 Can we use the Ekman spiral solution to describe wind profiles in a tropical
boundary layer near the equator? Why or why not?

6.18 The wind is blowing from due south above the atmospheric boundary layer.
Provide an estimate of the wind direction at the top of a forest and near the forest
floor. (Hint: An open airspace exists between the ground and the forest canopy
layer.)

6.19 Do you expect a larger wind directional shear in the boundary layer over an
urban landscape or over a snow-covered pasture land? Why?

6.20* The geostrophic wind speed Vg is 10.00 m s�1, the initial velocity fu0; v0g
in the surface layer is f1:56; 1:34g m s�1, and the equilibrium velocity fue; veg is
f5:53; 3:11g m s�1. Find the velocity at successive time steps after sunset. Present
your result in a vector form similar to those shown in Fig. 6.9. Does your result
suggest that the surface wind is directed toward higher pressure for some portion of
the evening?
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Chapter 7
Tracer Diffusion in the Lower Boundary Layer

7.1 Basic Constraints

This chapter is concerned with the advection and dispersion of materials released in
the atmospheric boundary layer. Historical interest in the diffusion problem has been
motivated primarily by the need for predicting concentration of air pollutants from
smokestacks. Further advances are made by micrometeorologists engaged in surface
flux measurement in heterogeneous landscapes. They find it necessary to map out
a source footprint impacting their measured flux, using footprint models which
are essentially extensions of the traditional diffusion theory concerning pollution
sources located at the ground level.

We assume that the release occurs in a trace amount so that dynamics of the flow
are unaffected by the source strength and source placement in the boundary layer.
Once airborne, the tracer is neither generated nor destroyed by chemical reactions,
and the ground is nonabsorbing, so the total mass of the tracer is conserved over
time.

The tracer diffusion is subject to four basic constraints (Blackadar 1997; Seinfeld
and Pandis 2006). The first one is that of linear superposition. The principle of linear
superposition states that the total concentration at a given location and time resulting
from multiple sources is simply the sum of the concentration resulting from each
individual source operating independently of the others. The principle allows us
to build diffusion models for more complex source configurations from those for
simpler ones. The concentration from a continuous point source can be obtained by
time integration of the concentration from an instant point source. A line source can
be considered as a large number of point sources arranged next to each other along
a linear transect, and its concentration can be derived by spatial integration of the
point-source concentration over the transect. An area source problem can be solved
by linear superposition of line sources. A canopy source can be viewed as multiple
area sources stacked up vertically, and so on.
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The second constraint is provided by mass conservation. In one-dimensional
flow, the mean tracer mass density, c, satisfies the local mass conservation equation
at all locations except that of the source:

@c

@t
C u

@c

@x
D �@u0c0

@x
� @v0c0

@y
� @w0c0

@z
; (7.1)

where c is in dimensions of kg m�3. This equation is obtained by performing
Reynolds averaging on the instant mass conservation Eq. 2.16 (with �c replaced by
c) and is used in conjunction with the first-order closure assumption:

u0c0 D �Kx
@c

@x
; v0c0 D �Ky

@c

@y
; w0c0 D �Kz

@c

@z
; (7.2)

where Kx, Ky, and Kz are eddy diffusivity in the along-wind, the crosswind, and
the vertical direction, respectively. In the atmospheric boundary layer, Kz can be
described with the same parameterizations given in Chap. 3 for scalar quantities.

While Eq. 7.1 is rigorous, Eq. 7.2 has the same drawbacks as any first-order clo-
sure parameterization (Chap. 3), including the difficulty in describing the diffusion
process in the region very close to the source (Sect. 7.2).

The matter at hand is a forward problem, which starts with a source of known
strength and aims to quantify the resulting concentration. In a departure from the
standard practice of using the mixing ratio in model equations, tracer diffusion
equations are traditionally expressed with the mass density. One advantage of using
the mixing ratio over the mass density is that artificial diffusion arising from spatial
variations in air density is avoided. Artificial diffusion is undesirable if we wish to
solve an inverse problem, for example, to infer source strength from measurements
of atmospheric concentration using the flux-gradient or the eddy covariance method.
However, in the forward problem, errors due to artificial diffusion are not severe in
comparison with other sources of error, such as those associated with dispersion
parameters.

The third constraint, termed here as global mass conservation, is the mass
conservation principle applied to the whole flow domain. Because the tracer is inert,
its total mass must be conserved over time. If the total emitted mass from an instant
source is Q (in kg), the concentration at any subsequent time satisfies

Z 1

�1

Z 1

�1

Z 1

�1
c dx dy dz D Q: (7.3)

This constraint appears in different forms for a continuous point source (Eqs. 7.25
and 7.27) and a line source (Eq. 7.30). Equation 7.3 and the like are a useful
consistency check on statistical models and empirical parameterizations: if your
solution violates global mass conservation, you would know that something has
gone wrong.
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Equation 7.3 does not hold if the tracer is reactive or can be removed by the
ground surface or other obstacles in the flow field.

The last constraint states that the probabilities of particle position in the three
orthogonal directions (x, y, and z) are independent of each other. Statistical
independence is an assumed property of turbulent diffusion in the Lagrangian
framework, in which we follow fluid particles through space and time and imagine
that each particle carries with it a small and equal amount of the tracer material.
This is in contrast to the Eulerian framework in which tracer advection and
dispersion are described in reference to a fixed coordinate system, such as the
Cartesian coordinates used by Eqs. 7.1 and 7.2. It is not possible to calculate
a particle’s trajectory of movement in a deterministic manner, so we resort to
statistical description of its behaviors. Let pz be the probability distribution so that
the probability that the particle’s position falls between z and zCdz is given by pzdz.
By definition, pz satisfies

Z C1

�1
pz dz D 1: (7.4)

The probability distributions in the x and y directions, px and py, are defined
similarly. The statistical independence assumption states that the probability of a
particle’s position in one direction is independent of its positions in the other two
directions. Mathematically, this is expressed as

p D px py pz: (7.5)

Here p dx dy dz is the probability that the particle will fall in the space bounded by
x to x C dx, y to y C dy, and z to z C dz. Again by definition and in agreement with
global mass conservation, we have

Z 1

�1

Z 1

�1

Z 1

�1
p dx dy dz D 1: (7.6)

Equation 7.5 is a necessary simplification in order for us to derive analytical
expressions for flux footprint and for tracer concentration in multiple dimensions. It
strictly does not hold in shear-driven flow in the surface layer because the vertical
and horizontal velocities of fluid particles are correlated. An upward moving particle
whose vertical velocity is positive is likely associated with a negative fluctuating
horizontal velocity, and vice versa (Fig. 3.3). In practice, this shortcoming is not
too serious as stochastic models that do not invoke the simplification yield similar
results.
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7.2 Point-Source Diffusion in Homogeneous Turbulence

Instant Point Source

We start with an instant point source located at x D y D z D 0 that releases a tracer
in the amount of Q (in kg) at time t D 0 (i.e., a “puff”). Our goal is to determine the
tracer mass density, c, as a function of space and time. In the Lagrangian framework,
diffusion of the tracer is accomplished by a large ensemble of fluid particles moving
along their own independent trajectories (Fig. 7.1). The position of a particle at time
t is given by

X.t/ D
Z t

0

uLdt0; Y.t/ D
Z t

0

vLdt0; Z.t/ D
Z t

0

wLdt0; (7.7)

where fuL; vL; wLg are the three velocity components of the particle. Because the
flow field is turbulent, the velocities and the particle position coordinates are random
variables.

Although we cannot determine precisely the trajectory of an individual particle,
we can use statistical means to study the collective behavior of the particle plume.
The center position of the plume is given by fX; Y; Zg; and the plume size is
measured by the standard deviations of particle position:

�x.t/ D .X2/1=2; �y.t/ D .Y2/1=2; �z.t/ D .Z2/1=2: (7.8)

Here the overbar denotes averaging over the ensemble of the particles. The standard
deviations of the position variables, �x, �y, and �z, termed dispersion parameters,
become larger with time.

Fig. 7.1 Trajectories of
tracer particles dispersing
simultaneously from a point
source at the origin. Each
particle carries an equal
amount of tracer material and
moves along a random and
independent path
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The probability distribution function, p.x; y; z; t/, describes the likelihood that
a particle is in location fx; y; zg at time t. When a large ensemble of particles are
considered, p is equivalent to particle number density (in m�3). Recalling that each
particle carries an equal amount of the tracer, the mean tracer concentration is
given by

c.x; y; z; t/ D Qp.x; y; z; t/: (7.9)

So the task of determining c is shifted to finding the probability distribution
function p.

The turbulence field is assumed to be homogeneous and unbounded. In homo-
geneous turbulence, Reynolds mean statistics of the flow field, such as the mean
velocity and the velocity variance, are invariant in space. It is generally believed
that the distributions of particle velocities are Gaussian in homogeneous turbulence.
The vertical position of the particle Z is also Gaussian according to the central limit
theorem, because Z at time t can be regarded as the sum of wL values at infinite
number of time steps before t (Eq. 7.7), each wL value being a Gaussian variable and
independent of the velocity values at preceding steps. The probability distribution
for Z is therefore given by

pz D 1p
2��z

exp
�

� z2

2�2
z

�
; (7.10)

(Fig. 7.2). The probability distributions for the particle’s horizontal positions X and
Y have an identical form to Eq. 7.10. Using the statistical independence constraint
(Eq. 7.5), we obtain the three-dimensional probability function in absence of a mean
flow velocity:

p.x; y; z; t/ D 1

.2�/3=2�x�y�z
exp

�
� x2

2�2
x

� y2

2�2
y

� z2

2�2
z

�
; (7.11)

where the time dependence on the right-hand side of the equation is in �x, �y, and �z.

Fig. 7.2 Gaussian distribution function for particle vertical position
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It follows from Eqs. 7.9 and 7.11 that the expression for the mean concentration is

c.x; y; z; t/ D Q

.2�/3=2�x�y�z
exp

�
� x2

2�2
x

� y2

2�2
y

� z2

2�2
z

�
: (7.12)

Note that the center of the plume in this case remains fixed at the origin.
If there is a mean velocity u, the center of the plume will be transported at the

speed of the moving fluid, and Eq. 7.12 is modified to

c.x; y; z; t/ D Q

.2�/3=2�x�y�z
exp

�
� .x � ut/2

2�2
x

� y2

2�2
y

� z2

2�2
z

�
: (7.13)

Let us now check Eqs. 7.12 and 7.13 against the constraints introduced in the
previous section. We have already used the statistical independence constraint in
their derivation. Linear superposition requires that if the amount of tracer release
is doubled, the concentration should also be doubled everywhere in space, a
requirement that both equations satisfy. These equations also satisfy the global mass
conservation Eq. 7.3 (Problem 7.1). With regard to local conservation, it can be
shown that, by relating the dispersion parameters to the eddy diffusivities as

�2
x D 2Kxt; �2

y D 2Kyt; �2
z D 2Kzt; (7.14)

Equations 7.12 and 7.13 are solutions to Eqs. 7.1 and 7.2.
Before we can evaluate Eqs. 7.12 and 7.13, we must determine the dispersion

parameters. For this purpose, we employ the theory of G. I. Taylor on diffusion in
stationary turbulence to establish a relationship of �z to turbulent velocity of the
fluid. The result can be easily extended to �x and �y.

In stationary turbulence, origin in time does not matter to statistical properties
of the fluid particles. To put it differently, the correlation of particle velocity wL at
time t and that at t C t0 depends only on time difference t0 and not on t or t C t0. The
Lagrangian autocorrelation can be written as

RL.t0/ D wL.t/wL.t C t0/
w2

L

: (7.15)

Its value is unity for t0 D 0 and zero for t0 ! 1. The function adopted here that
satisfies these requirements is

RL.t0/ D exp.�t0=TL/; (7.16)

where TL is the Lagrangian integral time scale. It follows from Eq. 7.7, its derivative
counterpart wL D dZ=dt, and Eqs. 7.8 and 7.15 that
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w2
L

Z t

0

RL.t0/dt0 D wL.t/
Z t

0

wL.t C t0/dt0

D wL.t/Z.t/

D dZ.t/

dt
Z.t/

D 1

2

d

dt
�2

z .t/: (7.17)

Combining Eqs. 7.16 and 7.17 yields an ordinary differential equation for �2
z :

w2
LŒ1 � exp.�t=TL/�TL D 1

2

d

dt
�2

z .t/: (7.18)

The solution to Eq. 7.18 is

�2
z .t/ D 2w2

L T2
L Œt=TL � 1 C exp.�t=TL/�: (7.19)

In practice, the Lagrangian velocity variance is approximated by the Eulerian
velocity variance,

w2
L D �2

w;

where �2
w D w02. But the Lagrangian time scale must be determined empirically.

Figure 7.3 depicts the time evolution of vertical diffusion of a tracer released by
an instant point source. Two distinct regions exist. In the region close to the source
called the near field, the plume size grows linearly with time because according to
Eq. 7.19,

�z.t/ ' �wt for small t: (7.20)

In the far field or large t, the plume size is proportional to the square root of time:

�z.t/ ' �w.2TLt/1=2 for large t: (7.21)

A paradoxical situation arises from these asymptotic limits. Earlier, we said that
the flow we are dealing with is spatially homogeneous. This requires that eddy
diffusivity Kz is invariant with location. In the far field, comparison of Eqs. 7.14
and 7.21 yields

Kz D �2
wTL; (7.22)
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Fig. 7.3 Vertical diffusion of a tracer released by an instant point source into air that moves at a
constant speed

so Kz is indeed a constant. In the near field, however, Kz varies with time or advection
distance:

Kz D 1

2
�2

wt D 1

2

�2
wx

u
: (7.23)

The contradiction reveals that tracer dispersion in the near field is not completely
random and cannot be described accurately by the simple Fick’s law type of closure
parameterization (Eq. 7.2). The near-field influence is sometimes called effects of
persistence.

Continuous Point Source

Another important source category is the continuous point source. Let us suppose
that a source at the origin emits a tracer at a constant rate Q (in kg s�1). After long
enough time, the tracer concentration c will be in steady state. According to the
linear superposition principle, c can be obtained by time integration of the instant
source solution

c.x; y; z/ D
Z 1

0

Q

.2�/3=2�x�y�z
exp

�
� .x � ut0/2

2�2
x

� y2

2�2
y

� z2

2�2
z

�
dt0

' Q

2�u�y�z
exp

�
� y2

2�2
y

� z2

2�2
z

�
: (7.24)

Equation 7.24 is the standard Gaussian plume model. In performing the time
integration, we have assumed that spread of the plume caused by diffusion in the
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along-wind direction is negligible in comparison to transport by the mean wind.
The dependence on x is implicit because the dispersion parameters are expressed as
functions of downwind distance from the source. (In Eq. 7.19, t is replaced by x=u.)

To conserve mass, the total mean transport across the y�z plane at any downwind
location must be equal to Q:

Z 1

�1

Z 1

�1
u c dy dz D Q: (7.25)

This global mass conservation requirement is met by Eq. 7.24.

7.3 Gaussian Plume Model for Elevated Sources
in the Boundary Layer

Smokestacks are the most common continuous point sources in the atmospheric
boundary layer. We use the Gaussian plume model to relate the smoke concentration
from a stack with wind speed and dispersion conditions in the boundary layer. Let
the z-axis be height above the ground, the x-axis be distance downwind from the
source, and the y-axis be distance in the crosswind direction from the centerline of
the smoke plume. The source is elevated above the ground, at the stack height of
z1. The source coordinates are f0; 0; z1g. The smoke plume bears some resemblance
to a cone suspended in midair (Fig. 7.4). Its vertical cross section has an elliptical-
shaped outline, whose vertical and crosswind radius are approximately 2�z and 2�y,
respectively.

Fig. 7.4 Smoke plume from a smokestack in the atmospheric boundary layer. Ground reflection
is achieved by adding a mirror source below the surface
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Two modifications are made to the model to improve its realism for air quality
modeling. First, we must consider the presence of the ground surface. Unlike
the unbounded flow discussed in the previous section, the flow is now confined
above the ground which is a physical barrier to smoke diffusion. We assume that
the ground does not absorb smoke pollutants. It simply redirects the smoke back
to the atmosphere when impinged upon by the smoke plume. This “zero-flux”
boundary condition is met by adding a fictitious mirror source with identical strength
below the ground surface (Fig. 7.4). The actual smoke concentration is the sum of
contributions from the real and the mirror source:

c.x; y; zI z1/ D Q

2�u�y�z
exp

�
� y2

2�2
y

�

n
exp

h
� .z � z1/2

2�2
z

i
C exp

h
� .z C z1/2

2�2
z

io
; (7.26)

where Q is the rate of smoke emission in kg s�1 and u is mean wind speed in the
boundary layer.

The mass is conserved in the space bounded by z > 0, so global mass
conservation is expressed as

Z C1

�1

Z C1

0

u c dz dy D Q: (7.27)

Equation 7.26 satisfies this constraint.
If the boundary layer is shallow, or if the smokestack is tall, some smoke particles

will be redirected downward by the capping inversion. The reflective effect can be
modeled with addition of another mirror source above the inversion layer.

Often for ecosystem and human health considerations, we are concerned with
pollution concentration at the ground level. The expression for the ground-level
concentration is obtained from Eq. 7.26 by setting z to zero,

c.x; y; 0I z1/ D Q

�u�y�z
exp

�
� y2

2�2
y

�
exp

�
� z2

1

2�2
z

�
: (7.28)

The second modification made to the Gaussian plume model accounts for
influences of wind shear and air stability, two other features that are absent in
homogeneous flow. This modification changes the way the dispersion parameters
�y and �z are calculated. Equation 7.14 suggests the following parameterization,

�2
y D 2Kyx=u; �2

z D 2Kzx=u; (7.29)

The behaviors of the vertical diffusivity Kz in relation to wind shear and air
stability are known reasonably well (Chap. 3). But the lateral diffusivity Ky is
uncertain. A more popular approach relates �y and �z to x using the Pasquill-Gifford
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formulae whose empirical coefficients have been determined for six stability classes
from outdoor tracer dispersion experiments (Problem 7.5). Generally �y and �z

increase at faster rates with distance than the square root relationship predicted for
homogeneous turbulence (Eq. 7.29), and are greater in more unstable air.

A number of aspects of the modified Gaussian plume model agree with our
intuition about how a smoke plume should behave. The highest ground-level
concentration is expected below the center of the plume (y D 0) at some distance
downwind of the stack, in agreement with Eq. 7.28. According to the equation,
increasing the stack height should drastically improve air quality at the ground.
The smoke concentration increases everywhere in proportion to the rate of smoke
emission and in inverse proportion to wind speed. The effect of wind speed can be
understood this way: if wind speed is doubled, the same amount of pollutant will get
transported over twice the distance, and we expect twice as much dilution volume
for the smoke plume and hence half of the pollutant concentration.

The impact of air stability on air quality cannot be deduced from simple intuitive
reasoning. As air changes from being stable to being unstable, �y and �z will become
larger at the same downwind distance. The fractional part of Eq. 7.28 becomes
smaller but the exponential parts become larger. The overall influence can only be
quantified by performing actual calculation with the Pasquill-Gifford formulae and
Eq. 7.28. The results are shown in Fig. 7.5. In unstable conditions, the maximum
ground-level concentration is much higher, and bad air quality is confined to a region
closer the stack than in neutral and stable conditions.

Fig. 7.5 Ground-level concentration below the centerline of a smoke plume in three stability
conditions
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7.4 Diffusion from Ground-Level Sources

Ground-Level Line Source

Real-world examples of the ground-level line source include highways and streets.
As we will learn later in this chapter, this source class also holds a special place in
footprint theory because line source solution is an essential building block for flux
footprint models.

We consider a line source perpendicular to the mean wind and located at x D 0

(Fig. 7.6). The source is infinitely long, so the problem is reduced to finding a
solution in two dimensions (x; z). The global mass conservation constraint now
becomes

Z 1

0

u c.x; z/ dz D Q; (7.30)

where Q is tracer emission rate per unit length in kg m�1 s�1. In steady state and
with omission of longitudinal diffusion, the local mass conservation Eq. 7.1 is
simplified to

u
@c

@x
D @

@z

�
Kz

@c

@z

�
: (7.31)

If we assume that the flow field is homogeneous in space, we can obtain a line
source solution from the Gaussian plume model for point sources. We divide the
line source into equal segments of length dy, turning each into a point source with
emission rate of Q dy. The concentration resulting from each segment is given by
Eq. 7.26 with the source height z1 set to zero. According to the linear superposition
principle, the line source solution is equal to the sum of contributions from all the

Fig. 7.6 Tracer concentration profiles downwind of a ground-level line source. The upper face of
the wedge shape marks the mean plume height
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segments and is obtained by integrating Eq. 7.26 with respect to y from negative
infinity to positive infinity. The result is represented by

c.x; z/ D Q

.�Kzux/1=2
exp

�
� uz2

4Kzx

�
: (7.32)

In the derivation, the vertical dispersion parameter has been eliminated by using
Eq. 7.29.

Equation 7.32 satisfies both the global and the local mass conservation
constraints (Problem 7.7). As expected, the tracer is infinitely dense at the source
and becomes diluted quickly as we move away, either upward or downwind, from
the source. The vertical gradient of its concentration is zero at the ground, ensuring
zero tracer flux to the surface. These attributes are boundary conditions for Eq. 7.31
and can be expressed as

c ! 0 as x; z ! 1; (7.33)

c ! 1 at x D z D 0; (7.34)

Kz
@c

@z
D 0 at z D 0; x > 0: (7.35)

In homogeneous turbulence, both the wind speed u and the eddy diffusivity Kz

are invariant with height. Obviously, the assumption of constant u and Kz is too
simplistic for flow in the surface layer where these quantities are known to be very
sensitive to height. Let us now improve the situation by incorporating the height
dependence into our prediction of tracer diffusion.

So far, we have been relying on Lagrangian reasoning to obtain solutions to
diffusion problems (in homogeneous turbulence). We wish to change tactic, by
solving the local conservation Eq. 7.31 in the Eulerian reference frame for situations
where turbulence is not homogeneous. Unfortunately, Eq. 7.31 is not amenable to
analytical solution if we use the “correct” form of surface-layer u (Eq. 4.40) and Kz

profile (Eq. 3.50). But if we approximate them with profiles of the power law form,

Kz.z/ D K1

�
z

z1

�n

; u.z/ D u1

�
z

z1

�m

; (7.36)

we obtain an analytical solution as

c.x; z/ D Qr

z1u1�.s/

�
z2
1u1

r2K1x

�s

exp

�
� z2�r

1 u1zr

r2K1x

�
; (7.37)

where K1 and u1 are eddy diffusivity and wind speed at reference height z1, � is the
gamma function, and

r D m � n C 2 > 0; s D .m C 1/=r; (7.38)
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are two shape factors (Pasquill and Smith 1983). Equation 7.37 satisfies the
boundary conditions (Eqs. 7.33, 7.34 and 7.35) and global conservation (Eq. 7.30).

The homogeneous solution is a special case of Eq. 7.37. In homogeneous
turbulence, n D m D 0, r D 2, s D 1=2, and �.1=2/ D p

� , and Eq. 7.37 is
simplified to Eq. 7.32.

Another special case found in the literature is the application of a constant wind
speed and a linear function for Kz (i.e., Kz D ku�z). The corresponding shape factors
are: m D 0, n D 1, r D 1, s D 1, and �.1/ D 1. Under these circumstances, Eq. 7.37
becomes

c.x; z/ D Q

ku�x
exp

� �uz

ku�x

�
; (7.39)

In Eq. 7.37, the effects of stability and surface roughness on tracer diffusion are
implicit through the exponents n and m. The exponent n is exactly unity in neutral
stability and deviates slightly from unity in stratified conditions. The exponent m is
more variable, changing from 0.1 to 0.7, with smaller values for smoother surfaces
and more unstable conditions.

In the following, we adopt the approach of A. P. van Ulden (van Ulden 1978)
to incorporate the effects of stability and surface roughness. Equation 7.37 can be
rewritten as

c.x; z/ D AQ

Zup
exp



�
�

Bz

Z

�r�
; (7.40)

where A D r�.2=r/=Œ�.1=r/�2, B D �.2=r/=�.1=r/, Z is the mean plume height
given by

Z D
Z 1

0

c z dz=
Z 1

0

c dz; (7.41)

and up is the mean plume velocity given by

up D
Z 1

0

c u dz=
Z 1

0

c dz: (7.42)

An appropriate r value for neutral conditions is 1.5, giving A D 0:73 and B D 0:66.
For unstable conditions, we recommend r D 1 (A D 1, B D 1) and for stable
conditions, r D 2 (A D 0:63, B D 0:56).

We need working expressions for Z and up in order to evaluate Eq. 7.40.
After lengthy manipulation involving Eqs. 7.31, 7.41, and the surface-layer profile
relations, we obtain a differential equation for the mean plume height Z:

dZ

dx
D k2

Œln.pZ=zo/ � ‰h.pZ=L/��h.pZ=L/
(7.43)
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where ‰h and �h are the Monin-Obukhov stability functions for heat (Eqs. 4.36
and 4.42). The coefficient p is dependent on r, but the dependence is weak. A p
value of 1.55 is adequate for most situations. In neutral conditions, the solution to
Eq. 7.43 is given by

x D Z

k2
Œln.pZ=zo/ � 1� � zo

k2
Œln.p/ � 1�: (7.44)

This function is implicit and must be inverted either numerically or graphically
to find Z for a given x. A complete analytical solution to Eq. 7.43 for all stability
conditions can be found in the paper by Horst and Weil (1994).

Finally, van Ulden derived the following approximate expressions for the mean
plume velocity:

up D

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

u�
k

Œln.0:6Z=zo/ C 4:7Z=L� if � > 0

u�
k

ln.0:6Z=zo/ if � D 0

u�
k

Œln.0:6Z=zo/ � ‰h.0:6Z=L/� if � < 0

(7.45)

According to Eq. 7.43, the derivative dZ=dx is always positive, indicating that the
center of the plume will shift progressively upward with increasing travel distance
from the source. The plume rises faster in unstable conditions (‰h > 0, �h < 1) and
more slowly in stable conditions (‰h < 0, �h > 1). The Eulerian interpretation
of the plume rise phenomenon is that gradient diffusion redistributes the tracer
from lower levels where its concentration is higher to higher levels where the
concentration is lower, causing the mass center of the plume to rise with travel
distance x. In the Lagrangian framework, Z represents the mean height of the
ensemble of tracer particles released from the source. That Z increases with x
implies that the mean particle velocity wL must be greater than zero, even though the
Eulerian mean vertical velocity w is perfectly zero in one-dimensional flows. The
positive particle velocity, sometimes called drift velocity, is a consequence of the
fact that the vertical pressure gradient force and the gravitational force are slightly
out of balance in the surface layer (Legg and Raupach 1982). The small net vertical
force acts on the tracer particles, causing them to accelerate upward.

Ground-Level Point Source

We now extend the line source result to tracer diffusion of a ground-level point
source. Let the source be located at the origin. Utilizing the statistical independence
constraint and assuming that diffusion in the crosswind direction is Gaussian, we



136 7 Tracer Diffusion in the Lower Boundary Layer

can write the expression for the tracer concentration as

c.x; y; z/ D fline source solutiong � 1p
2��y

exp

 
� y2

2�2
y

!
; (7.46)

where source strength in the line source solution is in the units of kg s�1 to maintain
dimensional consistency.

7.5 Diffusion in Plant Canopies

For lack of better alternatives, we adopt the Gaussian plume model to describe tracer
diffusion from an elevated line source in a real plant canopy. Let z1 be the source
height (z1 < h, where h is canopy height). The source is located at x D 0. The
expression for the tracer concentration is

c.x; zI z1/ D Qp
2��z u.z1/

�
exp



� .z � z1/2

2�2
z

�
C exp



� .z C z1/2

2�2
z

��
; (7.47)

where Q is source strength in kg m�1 s�1. The ground reflection is handled in the
same way as in Sect. 7.3, by adding contribution from a mirror source below the
ground. The mean plume velocity is approximated by wind speed at the source
height.

The vertical dispersion parameter is given by the Taylor equation, as

�2
z .xI z1/ D 2�2

w.z1/ T2
L

h x

u.z1/TL
� 1 C exp

�
� x

u.z1/TL

�i
: (7.48)

The Lagrangian time scale TL is approximately constant with height in the canopy
airspace and in the roughness sublayer above the canopy (Fig. 7.7), owing to the fact
that turbulent diffusion in canopy flow is accomplished primarily by large coherent
eddies. Generated by inflection-point instability (Chap. 5), these eddies are large and
energetic enough to sweep through the whole canopy layer. For this reason, a single
integral time scale can be used for all levels. A common parameterization for TL is

TL D ˇ1h=u� 0 < z < 	 2h (7.49)

(Raupach 1989), where u� is friction velocity. The profile of the vertical velocity
standard deviation �w is approximated by

�w.z/ D
�

ˇ2u�z=h z � h
ˇ2u� z > h

(7.50)
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Fig. 7.7 Diffusion
parameters in a plant canopy
in neutral stability

The two empirical coefficients ˇ1 and ˇ2 are dependent on stability. Observational
studies show that ˇ1 ' 0:4 and ˇ2 ' 1:25 in neutral conditions.

Despite the highly heterogeneous nature of canopy turbulence, predictions made
with Eq. 7.47 agree reasonably well with experimental results (Lee 2004). The
success can be attributed to three factors. First, in the near field (with particle
travel time less than TL), the tracer particles are strongly influenced by conditions
of the flow at the source, to the extent that they behave as if they were in
locally homogeneous turbulence with a velocity scale �w.z1/ and a time scale TL

(Raupach 1989). Second, the fact that Eq. 7.47 satisfies the global conservation
constraint (Eq. 7.30) ensures that, even though its minor details may be imprecise,
its prediction of broad patterns is adequate. Third, here TL is essentially a tuning
parameter optimized for dispersion conditions in the canopy.

In the case of a ground-level line source, Eq. 7.37 is preferred over the Gaussian
model for calculating the tracer concentration. But the equation requires that the
wind speed profile in the canopy be presented as a power law function

u.z/ D uh.
z

h
/m; (7.51)

instead of the more accurate exponential function shown in Chap. 5, where uh is
wind speed at the top of the canopy. Similarly, the eddy diffusivity profile must also
take the power law form. Noting the far-field relationship, Kz D �2

wTL, we have from
Eqs. 7.49 and 7.50:

Kz.z/ D Kz;h

� z

h

�2

; (7.52)

where Kz;h is eddy diffusivity at the top of the canopy.
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We recommend m D 2 for moderately dense canopies. Accordingly, Eq. 7.37
becomes

c.x; z/ D Qh2u1=2
h

2
p

�.xKz;h/3=2
exp

�
� z2uh

4xKz;h

�
(7.53)

For sparse canopies, Eq. 7.37 with m D 1 may give more accurate results.

7.6 Footprint Theory

Footprint Concept

The footprint describes the relative contribution to the measured vertical flux from
surface sources in an area upwind of a flux sensor (Schuepp et al. 1990; Horst and
Weil 1994; Schmid 2002). The measured turbulent flux is a weighted sum of the
surface source strength at various positions in the footprint. The concept of footprint
is analogous to the field of view of a camera. Only objects in the field of view can be
sensed by the camera. Similarly, only sources within the footprint can be detected by
the flux sensor. But there are important differences. Once its position and its internal
optical parameters are set, the camera’s field of view does not change. In contrast,
the flux footprint is not static, instead varying greatly with wind direction (Fig. 7.8)
and air stability, and to a lesser extent with surface roughness. Additionally, objects
of the same size and reflectivity contribute more or less equally to the intensity of

Fig. 7.8 Footprint of a flux sensor located in a soybean field in the vicinity of other land cover
types: solid line shape, footprint for wind blowing from north; dashed line shape, footprint for
wind blowing from south
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light received by the camera. But the same cannot be said of the flux footprint. A
source element makes a disproportionately large contribution to the measured flux
if it is located near the center than if it is near the edge of the footprint.

The relative contribution of the surface source to the turbulent flux is defined by
a footprint function. Let fxm; ym; zmg be the location of the flux sensor and fx; yg be
the relative distances to the sensor in the horizontal plane. The footprint concept is
expressed mathematically as

F.xm; ym; zm/ D
Z C1

0

Z C1

�1
Q.xm � x; ym � y/f2.x; yI xm; ym; zm/dydx (7.54)

where F is the vertical flux of a scalar quantity of interest (in kg m�2 s�1), Q is
the surface area source strength of the scalar (in kg m�2 s�1), and f2 is the footprint
function (in m�2). The subscript 2 is used here to indicate that the footprint involves
two dimensions (in the x and y directions). Equation 7.54 expresses, on the basis
of the linear superposition principle, the measured flux as the integral of weighted
contributions of all upwind surface sources. The weighting factor, or the footprint
function f2, depends on sensor position and horizontal separation distances between
the source and the sensor. By definition, f2 cannot be negative. Footprint theory
seeks to determine the footprint function.

We assume that the turbulence is horizontally homogeneous. The surface source
strength can vary spatially, but the variation does not influence the dynamics of
the flow. Under this assumption, the footprint function is independent of horizontal
placement of the flux sensor (Fig. 7.9), that is, f2.x; yI xm; ym; zm/ D f2.x; yI zm/.
Equation 7.54 is changed to

F.xm; ym; zm/ D
Z C1

0

Z C1

�1
Q.xm � x; ym � y/f2.x; yI zm/dydx: (7.55)

Fig. 7.9 In horizontally homogeneous turbulence, the flux footprint function is independent of
horizontal sensor placement but is sensitive to sensor height
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The sensor height zm is still an independent variable for the function f2 because
the flow is vertically inhomogeneous. In other words, if the sensor is relocated
horizontally, the flux footprint will not change, but if it is moved to a different level,
the flux footprint will change (Fig. 7.9; Problem 7.14).

We need the footprint function to help interpret the flux observed in a landscape
where the surface source is variable with horizontal position. In the example
illustrated in Fig. 7.8, let us suppose that our goal is to investigate the surface-air
exchange of a soybean ecosystem. The observed flux is acceptable when the wind
blows from the north since a majority of the flux originates from the soybean field.
If the wind shifts 180ı, blowing from the south, the footprint will extend far beyond
the soybean field, and the observed flux no longer represents the true surface-air
exchange of the soybean ecosystem. It is commonplace in post-field data analysis
to establish a footprint climatology of the site (Schmid 2002). Observations that do
not satisfy a preset footprint threshold are omitted from the analysis.

Method for Finding the Footprint Function

One feature embodied in Eq. 7.55 is that the footprint function is totally independent
of how the surface source is configured. We now make full use of this feature, by
setting up strategic thought experiments, to determine the flux footprint. Consider
first a hypothetical situation in which the surface source strength is constant
everywhere in the flow domain. In steady state, the turbulent flux F is identical
to Q. It follows from Eq. 7.55 that the footprint function satisfies

Z C1

0

Z C1

�1
f2.x; yI zm/dydx D 1: (7.56)

Equation 7.56 is a property that we strive to obey when constructing the footprint
function.

In the second hypothetical situation, Q is a function of downwind distance x but
is independent of crosswind distance y. Equation 7.55 becomes

F.xm; zm/ D
Z C1

0

Z C1

�1
Q.xm � x/f2.x; yI zm/dydx

D
Z C1

0

Q.xm � x/


Z C1

�1
f2.x; yI zm/dy

�
dx

D
Z C1

0

Q.xm � x/f1.xI zm/dx; (7.57)

where we have introduced the one-dimensional footprint function f1 (in m�1),

f1.xI zm/ D
Z C1

�1
f2.x; yI zm/ dy: (7.58)
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Fig. 7.10 A step change in the surface source strength

It satisfies the integral constraint

Z C1

0

f1.xI zm/ dx D 1: (7.59)

If f1 is known, we can use the statistical independence constraint to reconstruct the
two-dimensional footprint f2.

The third hypothetical situation allows us to relate the one-dimensional footprint
function f1 to the solution we have established for a ground-level line source. A step
change occurs at x D 0 in the surface source strength (Fig. 7.10):

Q D
�

0 x < 0

constant x � 0
(7.60)

According to Eq. 7.57, the turbulent flux measured at distance xm downwind from
the step change is given by

F.xm; zm/ D
Z xm

0

Qf1.xI zm/dx: (7.61)

We can also determine the flux with the flux-gradient relationship. Let c1 be
the concentration resulting from a line source of unit strength, that is, the solution
to Eqs. 7.31, 7.33, 7.34, and 7.35 with a source strength of 1. We divide the area
source between x D 0 and x D xm into many strips of width dx, turning each into
a line source of source strength Qdx. The concentration resulting from each strip is
Qc1dx. Linear superposition yields the total concentration at xm as

c D
Z xm

0

Qc1dx; (7.62)
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noting that in this expression, c1 has dimensions of s m�2. The turbulent flux is given
by the flux-gradient relationship as

F.xm; zm/ D �Kz
@c

@z

ˇ̌
ˇ̌
xm;zm

: (7.63)

Substituting Eq. 7.62 into 7.63, we obtain

F.xm; zm/ D
Z xm

0

Q

(
�Kz

@c1

@z

ˇ̌
ˇ̌
zm

)
dx: (7.64)

Comparison of Eq. 7.64 with 7.61 yields a relationship for the one-dimensional
footprint function:

f1.xI zm/ D �Kz
@c1

@z

ˇ̌
ˇ̌
zm

: (7.65)

Therefore, we conclude that in horizontally homogeneous turbulence, the one-
dimensional footprint function is equal to the product of the vertical eddy diffusivity
and the vertical concentration gradient of a unit line source located at x D 0.
According to this footprint rule, to complete the task of finding the footprint
function, we should first determine the line source solution.

Footprint Models

Armed with Eq. 7.65, the rule for the footprint function, we are ready to establish
footprint models. The most simple model is the case of a constant wind speed, a
linear eddy diffusivity profile, and neutral stability. According to Eq. 7.39, the unit
line source solution is given by

c1 D 1

ku�x
exp

�
� upz

ku�x

�
; (7.66)

where we have substituted u with the mean plume velocity up. It follows from
Eq. 7.65 that the one-dimensional footprint function is

f1.xI zm/ D upKz

.ku�x/2
exp

�
� upzm

ku�x

�
: (7.67)

(Schuepp et al. 1990).
Evaluation of this expression requires that we specify Kz and up. Because air

stability is assumed to be neutral, we have

Kz D ku�zm: (7.68)
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Fig. 7.11 One-dimensional footprint function according to Eq. 7.71 for two measurement heights.
The surface roughness is 0.01 m

The mean plume velocity is approximated by the mean wind speed below the sensor
height zm:

up D
Z zm

zo

udz=
Z zm

z0

dz ' u�zu=.kzm/; (7.69)

where zu is a new height scale defined as

zu D zmŒln.zm=zo/ � 1 C zo=zm�: (7.70)

Combining these equations with Eq. 7.67, we arrive at a working expression for the
footprint function (Fig. 7.11):

f1.xI zm/ D zu

k2x2
exp

�
� zu

k2x

�
: (7.71)

Several features captured by Eq. 7.71 deserve our attention. The footprint
function satisfies Eq. 7.59. It is independent of friction velocity u�, indicating that,
even though wind direction controls the orientation of the flux footprint (Fig. 7.8),
wind speed does not influence the relative contribution of the surface source to the
observed flux. The insensitivity to wind speed is a universal character of the flux
footprint in the surface layer regardless of model choice. The maximum contribution
occurs at

xmax D zu=.2k2/: (7.72)
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This is the distance from the flux sensor at which the surface source has the highest
impact on the observed flux. As the measurement height increases, the maximum
contribution will shift further away from the sensor.

The one-dimensional footprint function can be extended to two dimensions using
the statistical independence constraint:

f2.x; yI zm/ D zu

k2x2
exp

�
� zu

k2x

�
� 1p

2��y

exp

 
� y2

2�2
y

!
: (7.73)

Once again we have assumed that diffusion in the lateral direction is Gaussian. The
lateral dispersion parameter �y can be related to the standard deviation of the lateral
velocity �v and the plume travel time x=up as �y D �vx=up.

Equation 7.71, valid only for neutral stability, can be modified for stratified
conditions to

f1.xI zm/ D Dzb
ujLj1�b

k2x2
exp

�
�Dzb

ujLj1�b

k2x

�
; (7.74)

on the basis of dimensional analysis, where D and b are two empirical parameters
and L is the Obukhov length (Hsieh et al. 2000). Equation 7.74 retains the form
of Eq. 7.71 and is dimensionally consistent. Regression fitting of Eq. 7.74 against
stochastic modeling results yields D D 0:28 and b D 0:59 for unstable conditions,
D D 1:0 and b D 1 for neutral conditions, and D D 2:44 and b D 1:33 for stable
conditions. In neutral stability (jLj ! 1), Eq. 7.74 is reduced to Eq. 7.71.

Another commonly used footprint model is based on the line source solution
given by Eq. 7.40, a solution that has been validated in field dispersion experiments.
Application of the footprint rule (Eq. 7.65) to the solution yields the following
footprint function:

f1.xI zm/ D ku�
�h.zm=L/

Ar

Zup

�
Bzm

Z

�r

exp



�
�

Bzm

Z

�r�
; (7.75)

(Horst 1999). The plume velocity given by Eq. 7.45 and the solution of Z from
Eq. 7.43 are used in the evaluation of this function.

An attractive feature of Eq. 7.75 is that it has incorporated the stability effects.
Implementation of the equation requires that the mean plume height Z be solved
with a numerical procedure, so it is not as convenient as Eqs. 7.71 and 7.74. Another
drawback is that the power law profiles are used to obtain the line source solution,
but the Monin-Obukhov profiles are used to formulate the expressions for the mean
plume velocity and the mean plume height. These two sets of profiles are not entirely
compatible. For this reason, the cumulative flux footprint does not always converge
to unity as required by Eq. 7.59 (Problem 7.19).

Equations 7.74 and 7.75 can be extended to the lateral dimension as in Eq. 7.73.
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The above footprint theory is developed for measurements made in the surface
layer. If the flux sensor is positioned in a plant canopy or in the mixed layer, more
complex approaches involving stochastic particle dispersion theory may be required.

7.7 Problems

7.1 Verify that the point-source solutions (Eqs. 7.12 and 7.13) satisfy global mass
conservation (Eq. 7.3).

7.2 An instantaneous point source at the origin releases 0.4 kg of tracer in a
homogeneous flow field. A few seconds later, the tracer plume has spread in three
dimensions, with the dispersion parameters �x D 5 m, �y D 5 m, and �z D 3 m. The
mean flow velocity is zero. Plot the tracer concentration distribution as a function of
z for x D y D 0 m and for x D 10 m and y D 0 m.

7.3 The Lagrangian time scale (TL) is 100 s and the vertical velocity standard
deviation (�w) is 0.40 m s�1. The flow field is homogeneous. Determine the vertical
dispersion parameter (�z) at t D 1, 10, 50, 100, 200, 500, and 1000 s. Graph your
result as a function of time.

7.4 A point source releases a puff of 1 g of SF6 in a homogeneous flow field.
The fluid velocity is 2.5 m s�1. Using the dispersion parameter values obtained in
Problem 7.3, calculate the SF6 concentration at a downwind distance of 250 m at
the time steps indicated. Now repeat the calculation for zero wind speed. How does
wind speed affect the tracer dispersion? (Assume that the turbulence is isotropic so
that �x D �y D �z.)

7.5 The dispersion parameters (�y and �z) for the atmospheric boundary layer can
be described by the Pasquill-Gifford empirical formulae:

�y.x/ D expŒAy C By ln x C Cy.ln x/2�; (7.76)

�z.x/ D expŒAz C Bz ln x C Cz.ln x/2�; (7.77)

where x is distance (in m) downwind from the smokestack. The empirical coeffi-
cients in these expressions have been determined experimentally for six stability
classes (Table 7.1). Find the dispersion parameter values at downwind distances of
200 and 2000 m for each of the stability classes. Does your result suggest that the
smoke plume resembles a perfect cone shape?

7.6 A power plant emits SO2 at the rate of 0.25 kg s�1 from a 50-m tall smokestack.
The mean wind speed in the atmospheric boundary layer is 4.0 m s�1. Determine
the ground-level concentration of SO2 below the center of the plume at distances
of 50, 100, 200, 500, and 5000 m from the stack for an early morning hour
(moderately stable, stability class F; Table 7.1) and a noon hour (extremely unstable;
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Table 7.1 Coefficients of the Pasquill-Gifford empirical formulae (Seinfeld and Pandis 2006)

A B C D E F

Ay �1.104 �1.634 �2.054 �2.555 �2.754 �3.143

By 0.9878 1.0350 1.0231 1.0423 1.0106 1.0148

Cy �0.0076 �0.0096 �0.0076 �0.0087 �0.0064 �0.0070

Az 4.679 �1.999 �2.341 �3.186 �3.783 �4.490

Bz �1.7172 0.8752 0.9477 1.1737 1.3010 1.4024

Cz 0.2770 0.0136 �0.0020 �0.0316 �0.0450 �0.0540

Stability class: A extremely unstable, B moderately unstable, C slightly unstable, D neutral, E
slightly stable, F moderately stable

stability class A) and compare your estimates with the United States air quality
standard. (The 1-h US national ambient air quality standard for SO2 is 0.2 mg m�3.)
Responding to complaints from local residents about poor air quality in the area,
the engineers plan to raise the stack height to 100 m. Will the increase in the stack
height solve the existing air quality problems? Will it create new problems?

7.7 Show that the line source solution (Eq. 7.32) satisfies both global and local mass
conservation.

7.8* Show that the mean plume height of a ground-level line source (a) is
proportional to the square root of downwind distance in homogeneous turbulence
and (b) is proportional to downwind distance in a turbulent flow in which the mean
velocity is constant with height but the eddy diffusivity increases linearly with
height. Explain why the plume rises faster in the second flow configuration.

7.9 Determine the mean plume height of a ground-level source in the atmospheric
surface layer for three surface roughness values: zo D 0:001, 0.05, and 1 m. The air
stability is neutral. Graph your result as a function of downwind distance (from 1 to
100 m). How does surface roughness affect the plume rise?

7.10 A ground-level line source emits a tracer at a rate of 0.20 g m�1 s�1 in the
atmospheric surface layer. The friction velocity is 0.30 m s�1, the surface roughness
is 0.1 m, and air stability is neutral. Determine the mean plume height and the mean
plume velocity at a distance of 50 m downwind of the source. Produce a profile plot
of the tracer concentration at this location.

7.11 A tracer is released at the mid-canopy height in a plant canopy. The surface
friction velocity is 0.30 m s�1, the canopy height is 20.0 m, and air stability is
neutral. Estimate (a) the Lagrangian time scale for flow in the canopy and (b) the
eddy diffusivity at the source height. Roughly how far does the near field extend
downwind of the source?

7.12 In a tracer dispersion experiment in a wind tunnel canopy, a line source at a
height of 51 mm releases a tracer at a rate of 1.0 mg m�1 s�1. The canopy height
(h) is 60 mm. The friction velocity is 1.03 m s�1, and the wind speed at the source
height is 2.8 m s�1. Predict the tracer concentration profile at downwind distances
of x=h D 0:38, 1.32, 2.78, 5.72, and 11.6 from the source.
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7.13* Derive an expression for the mean plume height of a tracer released from
a ground-level line source inside a plant canopy. The wind speed and the eddy
diffusivity are 2.3 m s�1 and 0.24 m2 s�1 at the top of the canopy, and the canopy
height is 2.0 m. At what distance downwind of the source does the center of the
plume (Z) rise to the canopy top?

7.14 Evaluate the one-dimensional footprint function Eq. 7.71 for measurement
heights of 3.0 and 9.0 m, with surface roughness of 0.065 m. Present your result in
a graphic plot. How does measurement height affect the flux footprint? Repeat the
calculation with zo D 0:3 m. How does surface roughness affect the flux footprint?

7.15 Equation 7.32 is the solution for a ground-level line source in homogeneous
turbulence. Derive the footprint function using this equation and propose a method
for calculating the mean eddy diffusivity and the mean plume velocity in the surface
layer. Compare your footprint model with the model described by Eq. 7.71 for
surface roughness of 0.04 m, a measurement height of 4.0 m and neutral stability.

7.16 Show that the footprint model consisting of Eqs. 7.43, 7.45, and 7.75 is
independent of the surface friction velocity.

7.17 Verify that Eqs. 7.71 and 7.74 satisfy the integral constraint Eq. 7.59.

7.18 Evaluate the one-dimensional footprint function Eq. 7.74 for three stability
classes (neutral stability, L D 100 m, and Ls D 50 m) for a measurement height of
4.0 m and surface roughness of 0.04 m. Present your result in a graphic plot. How
does air stability affect the flux footprint?

7.19* Using a numerical procedure, check the footprint function Eq. 7.75 against
the integral constraint Eq. 7.59 for a measurement height of 4 m, surface roughness
of 0.04 m and neutral stability. Explain why the integral of Eq. 7.75 with respect to
distance

Z x

0

f1.x0; zm/dx0

does not seem to converge to unity as x increases.

7.20* You want to measure the evapotranspiration flux of a hayfield with an eddy
covariance system. The hay field has a fetch, or distance between the instrument
tower and the upwind edge of the field, of 160 m. You plan to install the instrument
at a height of 2.5 m above the surface. Your footprint threshold is 90%, meaning
that at least 90% of the measured evapotranspiration flux should come from the
hayfield. Using the footprint function Eq. 7.71, show that your experimental plan
does not satisfy the requirement. To what height should you lower the instrument to
ensure that the requirement is met?
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Chapter 8
Principle of Eddy Covariance

8.1 Introduction

This chapter examines the relationship between eddy covariance calculations and
the concept of net ecosystem exchange. Eddy covariance is a class of micrometeo-
rological method that measures the fluxes of energy, water, and trace gases between
the earth’s surface and the atmosphere. The data obtained by eddy covariance are
used widely by earth science communities. Examples of eddy covariance application
include investigation of ecosystem functions, quantification of local carbon and
water cycles, measurement of pollution deposition, and parameterization of land-
atmosphere interactions for climate models. An essential component of the method
is measurement of the vertical air velocity and the scalar of interest at a high time
frequency (i.e., 10 Hz). The Reynolds covariance between the two is then calculated
from the high-frequency time series to obtain the flux of the scalar.

In a broad mathematical sense, eddy covariance is an inverse problem, which
aims to infer from atmospheric measurement the surface source or sink strength of
the scalar quantity. By “surface” we mean an ecosystem, which can be a bare land,
a water body, or a plant community consisting of both a soil source and elevated
plant canopy sources. In exchanging heat and materials with the atmosphere, the
ecosystem leaves imprints on the surface layer air by altering temporal and spatial
variations of its physical properties and chemical compositions. Eddy covariance
exploits the information hidden in these rapidly varying temporal signals. However,
the covariance term itself is not equivalent to the rate of net ecosystem exchange and
is meaningful only if interpreted in the context of a proper theoretical framework.

Underpinning the principle of eddy covariance is mass and energy conservation
(Baldocchi et al. 1988; Paw et al. 2000). We will discuss eddy covariance measure-
ment of carbon dioxide by outlining all the key steps involved in the manipulation
of its conservation equation. We will then extend the outcomes to water vapor and
sensible heat, but without the same level of details presented for carbon dioxide.
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8.2 The Canopy Source Term

We start with the Reynolds mean conservation equation for the CO2 mass mixing
ratio sc (Eq. 3.26). Written for free air, the equation describes the diffusion and
transport of CO2 but does not contain an ecosystem source term. In order to
establish the relationship between the Reynolds covariance and the net ecosystem
CO2 exchange, our first priority is to formulate the source term as part of the mass
conservation equation.

In Chap. 5, we showed that the operation of canopy volume averaging on the
Reynolds mean momentum equations yields a canopy momentum sink term in the
form of a drag force on the canopy flow. We now apply the same strategy to the mass
conservation Eq. 3.26 (Finnigan 1985). By performing canopy volume averaging
and omitting dispersive covariances, we obtain from Eq. 3.26

@Œsc�

@t
C Œu�

@Œsc�

@x
C Œv�

@Œsc�

@y
C Œw�
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D �cŒr2sc� �
 

@Œu0s0
c�

@x
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@z

!
: (8.1)

The expanded form of the first term on the right of this equation is

�cŒr2sc� D �c

nh@2sc

@x2

i
C
h@2sc

@y2

i
C
h@2sc

@z2

io
: (8.2)

Because the mean CO2 mixing ratio and its spatial derivatives are generally discon-
tinuous across plant elements (Fig. 5.4), volume averaging and spatial differentiation
are not commutable.

The canopy CO2 source is embodied in Eq. 8.2. To show this, let us first examine
the vertical derivative Œ@2sc=@z2�, which can be expanded to three parts according to
Slattery’s averaging theorem (Eq. 5.11):
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@sc

@z
nzdA; (8.3)

where Q is averaging volume, Ai is the surface of plant element i enclosed in the
volume (Fig. 5.1), and nz is the z component of the unit normal vector of the surface.
In Eq. 8.3, Slattery’s theorem has been used twice, the first time on @sc=@z and the
second time on sc.

In Eq. 8.3, term 1 on the right side, after being multiplied by the CO2 molecular
diffusivity �c, represents vertical divergence of the molecular flux of carbon dioxide
and is negligible in comparison to its turbulent counterpart.
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To demonstrate the physical meaning of term 2 on the right side of Eq. 8.3, we
consider a hypothetical canopy made up of horizontal leaves having an identical
mixing ratio at the upper (sc;C) and at the lower side (sc;�). In this circumstance, the
surface integral is equal to the product of the surface mixing ratio and the surface
area of the leaf, and term 2 can be expressed as

Term 2 D � @

@z

� P
Ai

Q
.sc;C � sc;�/

�
D � @

@z
fa.sc;C � sc;�/g; (8.4)

where the plant area density a D P
Ai=Q by definition. So term 2 describes the

vertical gradient of the mixing ratio difference between the two sides of the leaf.
More generally, the mixing ratio difference should be replaced by the volume mean
value .Œsc;C� � Œsc;��/ for a real canopy. The difference vanishes for amphistomatous
leaves having equal amounts of stomatal openings on both sides but is generally
non-zero for hypostomatous leaves whose stomatal openings exist only on the lower
side (Fig. 5.4).

Following a similar argument, term 3 on the right of Eq. 8.3 can be written as

Term 3 D �2a
h@sc

@z
nz

i
: (8.5)

This term is much larger than term 2 because the mixing ratio gradient at the leaf
surface @sc=@z is much larger than the vertical gradient of .Œsc;C� � Œsc;��/ in the
canopy airspace, regardless of the leaf stomatal distribution. For this reason, term 2
can be safely omitted. Equation 8.3 is therefore reduced to

h@2sc

@z2

i
D �2a

h@sc

@z
nz

i
: (8.6)

The multiplier 2 in Eq. 8.5 accounts for the fact that a is a one-sided leaf area
density, but leaf-air exchange occurs on both sides of the leaf. This is true for
sensible heat exchange and is also true for CO2 and water vapor exchanges with
amphistomatous leaves. For CO2 and water vapor exchanges with hypostomatous
leaves, the multiplier should be changed to unity.

The above considerations can be extended to the x and y derivatives in Eq. 8.2.
The final result is given as
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i
; (8.7)

where nx and ny are the x and y component of the unit normal vector of the leaf
surface. Equation 8.7 states that the volume mean Laplacian of sc is proportional to
the volume mean inner product of the sc gradient vector at the leaf surface and the
unit normal vector of the surface. The inner product is equivalent to the sc gradient
in the direction of the normal vector, expressed as @sc=@n.
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Therefore, the canopy CO2 source term is given by

Sc;p D �2�d�ca
h@sc

@n

i
: (8.8)

This source term has the dimensions of kg m�3s�1 (Problem 8.1). The first subscript
c denotes CO2 as usual, and the additional subscript p reminds us that the source
is associated with plant elements and unrelated to the free-air source discussed in
Chap. 2.

Canopy volume averaging should be applied to the water vapor conservation
equation and the energy conservation equation. Arising from the averaging opera-
tion are the canopy water vapor source term,

Sv;p D �2�d�va
h@sv

@n

i
; (8.9)

and the canopy sensible heat source term

ST;p D �2�Ta
h@T

@n

i
: (8.10)

The vapor source term has the dimensions of kg m�3s�1, and the heat source term
has the dimensions of K s�1.

The canopy source terms can be understood with the example of a green leaf
exposed to sunlight, as shown in Fig. 8.1. The situation depicted in this figure may be
regarded as the composite of multiple leaves enclosed in an averaging volume. The
leaf is enveloped by a thin boundary layer, in which diffusion is molecular. Because
of photosynthesis, the CO2 mixing ratio is lower at the surface than outside the
boundary layer, resulting in a positive CO2 mixing ratio gradient @sc=@n in the leaf
boundary layer. The corresponding source term Sc;p is negative according to Eq. 8.8,
indicating removal of CO2 from the atmosphere. If the removal rate increases, the
gradient will become larger. In contrast, the vapor mixing ratio gradient @sv=@n and
the temperature gradient @T=@n are negative in the leaf boundary layer. The vapor
source term Sv;p and the heat source term ST;p are positive according to Eqs. 8.9
and 8.10, indicating release of water vapor and heat by the leaf to the atmosphere.

Fig. 8.1 Distribution of the CO2 mixing ratio (sc), air temperature (T), and the water vapor mixing
ratio (sv) across the boundary layer of a photosynthesizing and evaporating leaf. The unit normal
vector of the leaf surface is denoted by n. The vertical scale is exaggerated
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For convenience of presentation, from now on we will drop the volume averaging
operator [ ], but we should remember that all Reynolds quantities in the canopy have
undergone volume averaging operation. The conservation Eq. 8.1 is rewritten as

@sc

@t
C u

@sc

@x
C v

@sc

@y
C w

@sc

@z
D Sc;p

�d
�
 

@u0s0
c

@x
C @v0s0

c

@y
C @w0s0

c

@z

!
: (8.11)

Equations 8.8, 8.9, 8.10, and 8.11 suggest two approaches to quantifying
surface- or ecosystem-air exchanges. In the first approach, parameterizations of
the concentration and the temperature gradients at the leaf surface are developed
from leaf biochemical and energy balance constraints. These gradient quantities are
combined with information on canopy morphology and solar radiation transfer to
predict the source strength. The basis for this approach is Eqs. 8.8, 8.9, and 8.10.
The second approach determines the total ecosystem source strength as a residual
from the other terms in Eq. 8.11, using atmospheric measurements of concentration
and velocities in and above the ecosystem. In this chapter, we focus exclusively on
the second approach, leaving parameterization of the source terms to Chap. 10.

8.3 The Concept of Net Ecosystem Exchange

The concept of net ecosystem exchange emphasizes whole-ecosystem behaviors
instead of detailed knowledge of the source strength at different heights or of
individual plant elements in the ecosystem. After all, it is the net ecosystem
exchange, not the exchange with individual foliage layers, that constitutes the lower
boundary condition for atmospheric models. Integrated over seasonal and annual
time scales, the net exchange is an important quantity of ecosystem water and carbon
budgets.

The net ecosystem exchange of CO2 with the atmosphere is defined as the vertical
integral of the CO2 source term,

NEE �
Z h

0

Sc;p dz0; (8.12)

where h is canopy height. It is understood that the contribution of the ground-level
source is included in the integral. The definition follows the usual micrometeoro-
logical sign convention: a positive NEE indicates that the ecosystem is a net source
of atmospheric CO2 and a negative NEE indicates a net sink.

Similarly, the net ecosystem exchange of water vapor or the whole-ecosystem
evapotranspiration rate and the net ecosystem exchange of sensible heat are given as

E �
Z h

0

Sv;p dz0; (8.13)
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and

H �
Z h

0

�dcpST;p dz0: (8.14)

Also referred to as the surface source strength elsewhere in the book (i.e., the
Q term in Eq. 7.54), these integrals can vary with horizontal position despite the
canopy volume averaging operation, especially in patchy landscapes.

8.4 The Chamber Method

The canopy chamber offers the simplest demonstration on how mass conservation
is used to quantify the NEE. Consider first a rectangular-shaped closed chamber
made of airtight materials (Fig. 8.2a). No air can exit or enter the chamber, and no
diffusion exchange of CO2 is possible between the interior air and the ambient air.
The CO2 released by the ecosystem cannot go anywhere else except to accumulate
in the space enclosed by the chamber. The mass conservation Eq. 8.11 is reduced to
a simple balance between the time rate of concentration change and the source term:

@sc

@t
D Sc;p

�d
: (8.15)

Integration of this equation with respect to z through the chamber column yields

NEE D �dd
@sc;c

@t
; (8.16)

where sc;c is the chamber column mean CO2 mixing ratio and d is chamber height
(d > h). In actual field deployments, the air inside the chamber is usually well mixed

Fig. 8.2 A closed (a) and a dynamic canopy chamber (b) for measuring the net ecosystem
exchange
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with ventilation fans, and the mixing ratio is measured with a gas analyzer connected
to the chamber in a closed loop though which a small stream of air is circulated.
Measuring time change of the concentration is sufficient for the determination of
the NEE.

A dynamic chamber (Fig. 8.2b) allows air to enter and exit the chamber space
at a volume base flow rate of Qb (in m3 s�1). Once again, no diffusion exchange is
possible through the chamber walls. In steady state, the mass conservation equation
is reduced to a balance between the horizontal advection term and the source term:

u
@sc

@x
D Sc;p

�d
; (8.17)

where u is the mean flow velocity in the chamber generated by the base flow and
@sc=@x is horizontal gradient in the CO2 mixing ratio in the chamber. Our chamber
is rectangular in shape. Let Ac and Ab be the chamber cross-sectional area and the
basal area, respectively, and l and d be its length and height, respectively. Vertical
integration of Eq. 8.17 yields

NEE D �dud
@sc;c

@x
: (8.18)

Noting that

AcL D Abd; u D Qb

Ac
;

@sc;c

@x
' sc;o � sc;i

L

we obtain from Eq. 8.18

NEE D �d
Qb

Ab
.sc;o � sc;i/; (8.19)

where sc;o and sc;i denote the CO2 mixing ratio at the chamber outlet and inlet,
respectively. Measurement of sc;o and sc;i is accomplished with a gas analyzer
interfaced with a three-way valve which connects the analyzer alternately to the inlet
or the outlet air. Equation 8.19 states that in steady state, the amount of CO2 released
by the ecosystem over the chamber basal area Ab is equal to the difference between
the amount of CO2 coming out of the chamber outlet and the amount entering the
chamber through its inlet.

The chamber method is more versatile than micrometeorological methods. Flux
chambers are portable, allowing easy installation and spatial replications. They
do not require extensive, uniform, and leveled experimental fields. Specifications
required of the sensor are considerably less stringent. Changes in the CO2 mixing
ratio, either in time (Fig. 8.2a) or between the chamber inlet and outlet (Fig. 8.2b),
are usually large, so they can be resolved with an analyzer of low measure-
ment precision. But the same analyzer may have difficulty resolving the vertical
concentration gradient in the surface layer for use in the flux-gradient method
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(Problem 8.7). The analyzer does not need to have a fast time response, which is
a prerequisite for eddy covariance applications. For these reasons, fluxes in plot-
scale and manipulative experiments are often measured with chambers.

The chamber method has a number of shortcomings. It is labor-intensive, cannot
measure the sensible heat exchange, and is impractical for tall ecosystems. The
microclimate in the chamber is different from the ambient one, calling into question
whether the measured NEE represents the exchange of the ecosystem in unperturbed
conditions. Because the chamber has a small footprint, measurement at a single
location does not necessarily capture the mean state of the whole ecosystem.

8.5 The Eddy Covariance Control Volume

We use a control volume to illustrate the principle of the eddy covariance method
(Fig. 8.3). The control volume can be considered as a giant chamber. But unlike a
real chamber, its walls, which are imagined, permit the air to flow through without
any hindrance. The top face of the volume is at the height of the eddy covariance
sensor and is parallel to the local terrain surface. The NEE is calculated as the sum
of CO2 buildup inside the volume and the net CO2 input into the volume through its
top and side faces. Because the volume is large enough to fully encompass the flux
footprint, eddy covariance is a true ecosystem-scale methodology.

The eddy covariance control volume should not be confused with the other two
air volume concepts discussed in the previous chapters (Fig. 8.4). In Chap. 2, a small
rectangular prism was used to help establish the mass conservation equations at a
point (Fig. 2.2). At a microscale, the fluid parcel enclosed by the prism contains
a large number of molecules because its dimensions are much greater than the
molecular free path. At a macroscale, the fluid parcel is much smaller than the
smallest turbulent eddies and represents essentially a single point in the flow
domain. By comparison, a canopy averaging volume (Fig. 5.1) is larger, enclosing
numerous fluid parcels and a sufficient number of plant elements so that stable and
continuous canopy flow properties, such as the plant area density, the canopy drag
force, and the canopy CO2 source strength, are produced. However, this averaging
volume is still much smaller than the eddy covariance control volume.

Fig. 8.3 Control volume
over the flux footprint of an
eddy covariance system. Solid
arrows indicate mass
transport associated with the
mean flow velocities and
dashed arrows indicate eddy
diffusion fluxes
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Fig. 8.4 Comparison of three conceptual air volumes at three different scales

Integrating Eq. 8.11 with respect to height and keeping the NEE term on one side
and moving all the atmospheric terms to the other side of the conservation equation,
we obtain
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; (8.20)

(Paw et al. 2000; Leuning 2007; Lee and Massman 2011), where the eddy
covariance measurement height z is greater than the canopy height h. For simplicity
but without loss of generality, this equation is expressed in the micrometeological
coordinate, so all the terms involving the lateral velocity are omitted. Terms on
the right side of the equation are storage (Term I), eddy flux (Term II), horizontal
advection (Term III), vertical advection (Term IV), and horizontal flux divergence
(Term V).

The storage term expresses the rate of CO2 accumulation or depletion in the
control volume. It would be equal to the NEE if no CO2 were allowed to enter
or leave the control volume by advection and by turbulent diffusion, similar to the
situation of a closed chamber. In actual field observations, the storage term is a
minor component of the CO2 budget except at transitional times of the day when
the time rate of concentration change is large, such as at sunrise and at sunset. The
diurnal mean value is usually negligible.

The eddy covariance term represents the eddy flux of CO2 through the top face of
the control volume. The schematic in Fig. 8.5 explains why the covariance between
the vertical velocity and the CO2 concentration is equivalent to a vertical flux. In this
example, the CO2 density �c is 800 mg m�3, and the vertical velocity is 0.5 m s�1.
At time t D 0 s, an air parcel, which is a cube with sides of 1 m, lay immediately
beneath the top plane of the control volume. A second later, the parcel has risen by
0.5 m. In the short interval of 1 s, half of the CO2 in the cube, or 400 mg, has moved
across a portion of the plane whose area is 1 m2. Since the flux is defined as the mass
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Fig. 8.5 Instant CO2 flux through the top plane of an eddy covariance control volume caused by
upward motion of an air parcel. The parcel’s CO2 density is 800 mg m�3 and its vertical velocity
is 0.5 m s�1

Fig. 8.6 High-frequency time series of the vertical velocity w and the CO2 mixing ratio sc and the
product of the velocity and the mixing ratio fluctuations w0s0

c. The dashed line denotes the w � sc

covariance for the time period indicated

per unit area per unit time, the instant flux resulting from the parcel movement is
400 mg m�2 s�1. More generally, the instant flux is expressed as w�c. The average
flux is then w�c, which can be expressed as the sum of the w � �c covariance and an
advection flux,

w�c D w0�0
c C w �c; (8.21)

according to the Reynolds averaging rules. Provided that the mean vertical velocity
w is zero, the average flux is equal to the covariance.

In the above illustration (Fig. 8.5), the flux is determined with the CO2 mass
density. We will show later in Chap. 9 that fluctuations in the dry air density cause
an artificial CO2 flux that is unrelated to the net ecosystem exchange. The artifact
is avoided if the flux is calculated with the mass mixing ratio sc, as in Term II of
Eq. 8.20. A sample w and sc time series and their covariance are given in Fig. 8.6.
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The horizontal advection term describes the advection flux of CO2 into and
out of the control volume via its sides. The advection flux, or the amount of CO2

carried by the mean wind through a unit cross-sectional area per unit time, is given
by �du sc. If the flow is hypothetically in steady state and the flux at the top face is
zero, the mean NEE in the along-wind direction would have to be balanced by the
net advection flux,

1
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Z L
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(NEE) dx0 D 1
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0

Z z
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�
; (8.22)

where L is the along-wind dimension of the control volume. Equation 8.22
resembles the mass conservation Eq. 8.19 for a dynamic chamber and can be
interpreted similarly. It states that if all other terms were negligible, the net
ecosystem exchange would be proportional to the difference in the total advection
flux through the downwind face, which is akin to the chamber outlet, and that
through the upwind face, which is akin to the chamber inlet, of the control volume.
In actual field observations, the difference is very small in magnitude, often falling
below instrument detection limits (Problem 8.19).

The vertical advection flux is given by �dw sc. The flux is always zero at the
ground surface but can be non-zero at the top of the control volume. Vertical advec-
tion exists if the mean flow is not horizontally homogeneous. Mass conservation of
air requires that any horizontal flow divergence should be balanced by a non-zero
mean vertical velocity.

Horizontal flux divergence expresses the CO2 input into the control volume
by turbulent diffusion through its sides. The mean divergence rate is found by
integrating the term with respect to x
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; (8.23)

The first and second terms in the curly brackets represent the total horizontal eddy
flux at the downwind side and that at the upwind side of the control volume,
respectively.

The above formalistic analysis of Eq. 8.20 seems to encourage simultaneous
measurement of the advection flux and the turbulent flux on all the five sides of
the control volume. Such an experimental strategy, which has been attempted by
some research groups (Aubinet et al. 2010), is however prohibitively expensive.
Nor does it necessarily yield accurate NEE estimation because no perfectly matched
sensors are available for measuring the net advection between opposite sides of the
control volume. These logistical limitations force us to deploy just one tower at one
location. With sensors mounted on the tower, we are able to measure the vertical
eddy flux at the top of the control volume and the storage term. The horizontal
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advection and the horizontal flux divergence term cannot be determined, but by
placing the tower in an extensive, uniform, and leveled field, they are assumed, along
with the vertical advection term, to be negligible. To put the assumption differently,
advection and horizontal diffusion are not the pathways that supply the CO2 taken
up by the ecosystem in the control volume. Instead, the uptake is supported by the
CO2 stored in the volume and the CO2 that diffuses downward through the top face
of the volume. Conversely, the CO2 released by the ecosystem either remains in the
volume or escapes by turbulent diffusion to the air layer above the volume.

8.6 Eddy Covariance in Advection-Free Conditions

In the absence of horizontal and vertical advection and horizontal flux divergence,
Eq. 8.20 is simplified to

NEE D
Z z

0

�d
@sc

@t
dz0 C �dw0s0

c: (8.24)

Equation 8.24 is the basis for the single-tower eddy covariance measurement
strategy.

Similarly, the operational expressions that relate eddy covariance measurements
to the net ecosystem water vapor and sensible heat exchange are
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and
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In the derivation of Eq. 8.26, we have omitted a few additional terms in connec-
tion with the pressure force in the energy conservation Eq. 2.22. Applying Reynolds
averaging first and canopy volume averaging next on Eq. 2.22 and ignoring heat
advection and horizontal heat flux divergence, we obtain the one-dimensional
volume mean energy conservation equation:
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The second term on the right side of the equation, which is a consequence of
volume averaging of the horizontal pressure gradient @p00=@x, represents the heat
generated by air parcel compression. As you may recall, the pressure gradient
@p00=@x is generally positive in the canopy air pockets (Fig. 5.2). As an air parcel
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moves between two adjacent plant elements, the rise in pressure will cause it to
become slightly compressed and its temperature to increase. Integration of Eq. 8.27
with respect to z yields
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In this equation, Term I and Term II are the familiar storage and eddy flux terms.
Term III is on the order of 0:05 W m�2 and can be omitted. The pressure flux w0p0
(Term V) varies in the range of 0 to �8 W m�2, with an annual mean value of �0:6

W m�2 according to a field experiment in a temperate forest (Zhang et al. 2011).
The compression heat term (Term IV) is on the same order of magnitude as but is
in opposite sign to Term V (Problem 8.12). This order-of-magnitude analysis shows
that Eq. 8.26 is a very good approximation for Eq. 8.28.

The net ecosystem exchanges of sensible heat and water vapor must satisfy the
surface energy balance Eq. 2.47. In advection-free conditions, the equation can be
expressed as

Rn�G�
�

QsC
Z z

0

�dcp
@T

@t
dz0C

Z z

0

�d
@sv

@t
dz0
�

D �dcpw0T 0C�dw0s0
v: (8.29)

This form of the surface energy balance equation is attractive to experimentalists
because all the terms can be measured directly and independently. The group in the
curly brackets is the total ecosystem heat storage, including sensible heat storage in
the biomass, the top soil and the air column below the eddy covariance sensor, and
latent heat storage in the air column. Equation 8.29 is often used as a check on eddy
covariance data quality. A large energy imbalance, or that the sum of the measured
sensible heat flux and latent heat flux on the right side of the equation is biased too
low in comparison to the available energy expressed on the left side of the equation,
suggests instrument performance issues or that the site does not meet the criteria –
extensive, uniform, leveled – required for eddy covariance application.

8.7 Vertical Advection

Eddy covariance measurements can be adversely affected by horizontal inho-
mogeneity in the flow field and in the concentration field. The first type of
inhomogeneity causes vertical advection, whereas the second type causes horizontal
advection. Flow inhomogeneity cannot be totally avoided because no ideal sites
(horizontally uniform and perfectly flat) exist. Even if a site is large enough by
micrometeorological standards, it may still be influenced by flow patterns driven by
land surface heterogeneity at scales larger than the scale of the flux footprint.
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Fig. 8.7 Non-zero mean vertical velocity associated with circulation patterns much larger than
the scale of the eddy covariance control volume: (a) bird’s-eye view of flow in a synoptic scale
low- (L) and high (H)-pressure weather system; (b) cross-sectional view of a mesoscale sea breeze
circulation

Fig. 8.8 Nonzero mean
vertical velocity associated
with local-scale disturbances:
(a) flow transition from a land
to a lake surface; (b) flow
transition at a forest edge; (c)
drainage flow on sloped
terrain

Figures 8.7, 8.8, and 8.9 depict a few scenarios of flow inhomogeneity over
a range of scales. Table 8.1 provides order-of-magnitude estimates of the mean
vertical velocity associated with these flow patterns. Mesoscale thermal circulations,
such as the sea/lake breeze, and synoptic weather systems (high pressure and low
pressure) occur at scales much greater than the scale of the eddy covariance footprint
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Fig. 8.9 Instant vertical velocity in stationary convection cells simulated by a large-eddy simula-
tion model: a horizontal section of the vertical velocity field at the height of 40 m above the ground
(top); vertical velocity along a transect in the x direction shown in the top panel (bottom). Shaded
regions indicate ascending motion (w > 0)

Table 8.1
Order-of-magnitude estimate
of the mean vertical velocity
in the atmospheric surface
layer

Mean vertical velocity

Flow type (m s�1)

Synoptic subsidence �1 � 10�4

Sea/lake breeze 1 � 10�3

Drainage flow �1 � 10�2

Forest edge inflow 1 � 10�2

Stationary convection cell ˙5 � 10�2

and the control volume. Transitional flow near a land-lake boundary or at a forest
edge and drainage flow on sloped terrain are similar in scale to the control volume.

In convection cells in the daytime atmospheric boundary layer, ascending motion
is confined to walls surrounding columns of descending motion, at a horizontal scale
of 1–2 km (Fig. 8.9). Under low wind conditions, these turbulent organized struc-
tures tend to be stationary. The vertical velocity at the measurement tower, even after
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time averaging, does not vanish. Several large-eddy simulation studies conclude that
under these conditions, an eddy covariance instrument will underestimate the true
NEE, leading to an imbalance of the surface energy (e.g., Kanda et al. 2004).

One method to correct the influence of vertical advection is to simply add
the vertical advection flux �dw sc to the right side of Eq. 8.24, on the ground
that the advection flux is part of the total vertical flux. The problem with this
method is that the advection flux is too large: it is not negligible (approximately
1.5 �mol CO2 m�2 s�1) even at an extremely small w of 1 � 10�4 m s�1 expected
of synoptic weather systems (Table 8.1). The “corrected” NEE would be in serious
error.

The appropriate approach to handling vertical advection requires manipulation
of the advection term (Term IV, Eq. 8.20). With the help of a linear approximation
for the mean vertical velocity,

w.z0/ D z0

z
w.z/; (8.30)

this term becomes
Z z
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where < sc > is the column mean mixing ratio below the eddy covariance
measurement height,

<sc >D 1
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Z z
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The NEE equation accounting for vertical advection is written as

NEE D
Z z

0

�d
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@t
dz0 C �dw0s0

c C �dw.sc� <sc >/; (8.33)

(Lee 1998). In other words, the NEE calculated from the standard eddy covariance
(Eq. 8.24) has a bias error represented by �dw.sc� <sc >/.

Figure 8.10 illustrates why the vertical advection flux �dw sc is an overestimate
of the contribution of flow inhomogeneity to the CO2 mass balance of the control
volume. Let us suppose that w is negative and that the CO2 concentration decreases
with increasing height. To satisfy the continuity requirement, the negative w must be
balanced by a horizontal flow divergence. The air entering the volume from above
carries less CO2 than the air moving out from the sides by divergence, causing a
net depletion of CO2. But the net depletion is much smaller in magnitude than the
vertical advection flux itself because the former is proportional to the difference
between the CO2 mixing ratio at the eddy covariance height and the column mean
value below the height.
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Fig. 8.10 Compensation of downward motion by horizontal flow divergence

Correction for vertical advection is rarely done to hourly eddy covariance data
because of the lack of accurate enough measurement of w. Nevertheless, several
robust inferences can be made from Eq. 8.33. First, the vertical advection of CO2 is
more severe at night than during the day because the vertical CO2 gradient sc� <

sc > is greater in magnitude under stable conditions than under unstable conditions.
The diurnal asymmetry is a source of systematic bias error in the NEE averaged
over the daily cycle or longer periods.

Second, we should avoid placing the measurement tower near flow obstacles and
abrupt changes in surface roughness. The forest edge is a case in point. In the forest
edge inflow (Fig. 8.8b), a persistently positive w is expected due to flow convergence
arising from deceleration of the air motion, leading to large advection effects on
both daytime and nighttime measurements. It has been reported that the eddy CO2

flux measured in the forest edge inflow at night is biased too high, sometimes to
the extent that it is biologically unreasonable, in comparison to the true ecosystem
respiration rate.

Third, drainage flow at night is especially problematic for eddy covariance
applications. Under conditions of low wind and clear skies, drainage flow can
develop even at a site with a local terrain slope as small as one part per thousand.
By the continuity requirement, the divergence along the slope due to gravitational
acceleration must be compensated by a downward air motion (Fig. 8.8c). The
conditions that are conducive to the formation of drainage flow also promote large
accumulation of CO2 near the ground. When these occur, the eddy covariance
measurement (Eq. 8.24) will severely underestimate the true NEE. (Keep in mind
that the nighttime NEE describes ecosystem respiration and is positive according to
the micrometeorological sign convention.)

Extending the results to sensible heat and water vapor exchanges, we have
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These equations are a useful tool for energy balance diagnosis (Problem 8.14).
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Equation 8.30 implies that horizontal flow divergence is invariant with height
in the surface layer (Eq. 3.18). It is accurate for large flow patterns (Fig. 8.7) but
is only approximate for disturbed flows having a scale on the order of the size of
the eddy flux footprint (e.g., Fig. 8.8). According to some observational studies, a
local disturbance to the flow field can introduce a horizontal concentration gradient
so that horizontal advection effects must also be included in the budget equation
(Aubinet et al. 2010).

8.8 Horizontal Advection

Horizontal advection represents the contributions of horizontal transport by the
mean flow and horizontal diffusion to the mass balance of the eddy covariance
control volume. In order for this to occur, there must exist a horizontal concentration
gradient, which generally arises from horizontal variations in the source strength.
Irrigated farms surrounded by dry land, shoreline areas of a lake, and transitional
zones between a wheat field and a rice paddy are examples where horizontal
variations in the exchanges of heat, water vapor, and carbon dioxide may be
important.

Direct measurement of horizontal advection is much more difficult than the
measurement of vertical advection because the former requires deployment of wind
sensors and gas analyzers at multiple horizontal locations. If the wind direction is
known ahead of the time and is very steady, a pair of towers, positioned at the
upwind and the downwind sides of the volume, may suffice. The net advection flux
is determined by paired measurements of the horizontal wind speed and the mean
concentration (Eq. 8.22). The towers should be separated by a long enough distance
to allow a measurable concentration difference to develop between them, but not
too long so that gas sampling tubes are not overly extended. Even with a large
separation distance, however, the required instrument precision may be unattainable
(Problem 8.19). In actual field campaigns, an array of towers arranged in a gridded
pattern, instead of just two towers, are needed to account for wind directional shift
with time and wind directional shear in plant canopies (Fig. 6.7).

Footprint theory can be used to investigate horizontal advection. To illustrate
that horizontal advection and the flux footprint are two interrelated concepts, let us
revisit the situation of a step change in surface source strength depicted in Fig. 7.10.
The flow is horizontally homogeneous (i.e., no vertical advection) and is in steady
state. Mass balance requires that the net ecosystem exchange be equal to the sum
of the vertical eddy flux (Term II, Eq. 8.20) and horizontal advection (Term III,
with Term V ignored). At a distance far away from the step change (x ! 1), the
advection effect vanishes, the flux footprint is totally confined to the source region
being measured, and the measured vertical eddy flux is equal to the surface source
strength or the net ecosystem exchange. But measurement locations in the vicinity
of the step change are subject to the influence of horizontal advection, the extent of
which is determined by the fraction of the footprint that extends beyond the target
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region. The fractional contribution of horizontal advection to the local mass balance
in this case is given by

aH D 1 �
Z x

0

f1.x0I z/dx0: (8.36)

If we adopt the one-dimensional footprint function given by Eq. 7.71 for neutral
stability, Eq. 8.36 becomes

aH D 1 � exp
�
� zu

k2x

�
(8.37)

Equation 8.37 states that as fetch, or the distance between the instrument tower
and the upwind edge of the field, increases, horizontal advection diminishes
exponentially.

In the situation shown in Fig. 7.10, the source strength upwind of the target region
is zero. The eddy flux bias error is known precisely: the ratio of the observed flux
to the true NEE is equal to 1 � aH . In actual field experiments, the bias error can be
higher or lower than 1 � aH depending on the severity of source heterogeneity.

The discussion of horizontal advection is further aided by two related concepts.
The effective fetch is the distance at which the fractional contribution aH is no
greater than a preset threshold (Gash 1986). A typical threshold value is 0.1. Flux
measurement should ideally be carried out at this distance or further downwind of
source discontinuity.

The internal boundary layer refers to the air layer in transitional adjustment to
a new surface (Fig. 8.11). Several methods exist in the literature for determining the
depth of the internal boundary layer as a function of fetch. For the purpose of eddy
covariance applications, we recommend that the top of the internal boundary layer
should correspond to the height at which aH is at the threshold value of 0.1. The
horizontal advection effect is reduced if the measurement takes place in the internal
boundary layer. In Fig. 8.11, sensor A provides more accurate measurement of the
surface-air exchange than sensor B because sensor B is located above the internal
boundary layer and is subject to a greater influence of horizontal advection.

Fig. 8.11 Growth of the internal boundary layer over a new surface
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Advection effects can arise from horizontal changes in the horizontal eddy flux
(Eq. 8.23). The horizontal eddy flux is generally not zero, even in homogeneous
flow, because of a mechanism that involves the vertical momentum transport. Con-
sider the surface layer above a photosynthesizing canopy (Fig. 3.3). A downward
moving eddy (w0 < 0) brings air from aloft where the horizontal velocity is faster
(u0 > 0), contributing to a downward momentum transport. The same eddy is also
more enriched in CO2 (s0

c > 0) than the mean air at the measurement height. The net
result is an indirect, and in this case positive, correlation between u and sc through
their covarying with w. Dimensional analysis yields

u0s0
c D ˛H

u0w0 w0s0
c

w02 ; (8.38)

where the coefficient ˛H is approximately 2.4 according to data obtained at a forest
site. Because u0w0 is negative in the surface layer, the horizontal eddy flux is opposite
in sign to the vertical flux. If the vertical CO2 flux is directed upward, the horizontal
CO2 flux will be directed against the mean wind direction (Fig. 8.3) and vice versa.
The two fluxes are comparable in magnitude except in the free-convection limit at
which u0s0

c vanishes because there is no vertical momentum transport. In neutral
stability, the ratio u0w0=w02 is about 0.65, and Eq. 8.38 indicates that the horizontal
flux is 50% greater in magnitude than the vertical flux. Although the horizontal eddy
flux itself can be quite large, its horizontal divergence is negligible in homogeneous
to weakly heterogeneous flow.

8.9 Practical Considerations

A typical eddy covariance system consists of a three-dimensional anemometer, a
temperature sensor, and a gas analyzer. An ideal system measures the velocities
and the gas mixing ratio simultaneously and at the same point in space, has a
fast enough time response for capturing contributions of all eddy motions and is
mounted in perfect alignment relative to local terrain surface. Deviations from these
ideal operating conditions constitute sources of measurement error that should be
rectified either in pre-field hardware preparation phase or in post-field data analysis
(Baldocchi et al. 1988; Aubinet et al. 2012).

• High-frequency loss: Neither the anemometer nor the gas analyzer is a single-
point sensor. Instead, they measure small volumes of air. They cannot detect
motion of eddies smaller than their measuring volumes. Characterized by high
frequencies in the frequency domain, these eddies play a small but non-negligible
role in the overall turbulent transport. Frequency loss also results from sensor
separation whereby the gas analyzer is positioned at a short distance away from
the anemometer to reduce its interference on the velocity measurement. With
respect to closed-path eddy covariance, the concentration measurement takes
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place in an enclosed optical cell to which the ambient air is drawn via a small
tube. Some high-frequency fluctuations are lost by the time the air arrives at
the cell.

• Time delay: In closed-path eddy covariance, the concentration measurement is
delayed in reference to the velocity measurement due to the time the air sample
spends in the sampling tube. Lack of time synchronization can also result from
differences in response time between the anemometer and the gas analyzer and
from sensor separation.

• Instrument tilt: It is difficult to level the anemometer perfectly in the field. Tilt
errors also occur if the anemometer is leveled but the experimental site is not flat.
The vertical velocity measured by a misaligned instrument no longer represents
the true vertical motion in the atmosphere. Post-field coordinate rotation must be
performed to remove the tilt error. After coordinate rotation, the x�y plane should
be parallel to the local terrain surface, and the y-axis should be perpendicular to
the Reynolds mean wind vector (Fig. 2.1).

• Low-frequency contributions: Reynolds averaging is a high-pass filtering opera-
tion. Its cutoff frequency is roughly equal to the inverse of the averaging length T ,
meaning that contributions by large eddies whose frequency is smaller than 1=T
are missed by the averaging process. A typical averaging length of 30–60 min is
adequate for stable to moderately unstable conditions but may be too short in very
unstable conditions when the eddy transport is dominated by large convection
cells.

• Density effects: No gas analyzer can measure the mass mixing ratio directly.
What is detected by the analyzer is the intensity of light absorption which is
proportional to the mass density in its optical path. Eddy covariance based on
the mass density measurement must be corrected for density effects because
fluctuations in the gas mass density can result from fluctuations in the dry air
mass density, the latter of which are unrelated to the ecosystem-atmosphere
gaseous exchange. Correction for the density effects is the subject of the next
chapter.

8.10 Problems

8.1 Show that the canopy CO2 source term Sc;p has the dimensions of kg m�3s�1.

8.2 Calculate the net ecosystem sensible heat exchange using Eqs. 8.10 and 8.14
under these conditions: the leaf temperature is 23.0 ıC, the leaf boundary layer
thickness is 2 mm, the air temperature outside the leaf boundary layer is 21.0 ıC,
the mean leaf area density is 0.20 m2 m�3, the canopy height is 20.0 m, and the soil
sensible heat source is negligible.

8.3 Consider a canopy water vapor source strength Sv;p profile given by

Sv;p D 0:1p
2� � 3

expŒ� .z � 15/2

2 � 32
�; (8.39)
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where Sv;p is in g m�3 s�1 and z is height above the ground in m. What is the net
ecosystem water vapor exchange? What is the corresponding latent heat flux?

8.4 A closed chamber of height 24 cm is used to measure the CO2 flux of a
forest soil. The CO2 molar mixing ratio in the chamber is 402.1 ppm right after
the chamber is placed on the soil and increases to 433.6 ppm 60 s later. The air
temperature is 11.5 ıC. What is the CO2 flux?

8.5 An opaque Teflon box of dimensions 30 cm by 60 cm by 30 cm (width by length
by height) is used to measure mercury emission of a forest soil. The bottom face of
the box is removed. The box is placed on the soil surface. Air is drawn into the box
through holes cut into the front at a base flow rate of 11.5 L min�1. The ambient
gaseous mercury concentration is 1.80 ng m�3 at STP (standard temperature and
pressure), and the concentration of the chamber outlet air is 2.53 ng m�3 at STP.
Determine the gaseous mercury flux. Express your result in ng m�2 h�1.

8.6 You want to determine the optimal flow rate for a dynamic flux chamber for
measurement of the net ecosystem methane exchange of a rice paddy ecosystem.
Your chamber has a basal area of 0.1 m2, and your analyzer has a precision
of 2 ppb. The expected net exchange rate is 2 �g CH4 m�2s�1 according to the
published literature. At a base flow rate of 50 L min�1, can your analyzer resolve
the concentration difference between the chamber outlet and the inlet. How should
the flow rate be adjusted to reduce measurement error?

8.7 The nitrous oxide emission rate of a typical fertilized corn soil in the United
States Midwest is 0.3 nmol m�2 s�1. You want to measure the emission with a
dynamic chamber that has a basal area of 0.25 m2 and a base flow rate of 10 L min�1.
How large is the expected concentration difference (in ppb) between the chamber
outlet and the inlet? If you attempt to measure the emission with the flux-gradient
method, how large do you expect the vertical concentration difference to be between
the heights of 2.5 and 3.5 m above the ground? Assume that the canopy height is
2.0 m and the surface friction velocity is 0.25 m s�1. Which of the two methods
requires much better instrument precision?

8.8 The column mean CO2 molar mixing ratio between the ground and the eddy
covariance sensor height of 30 m is 380.1 ppm at 18:00 and 395.2 ppm at 24:00 on
September 1 and 398.4 ppm at 06:00, 385.0 ppm at 12:00 and 380.2 ppm at 18:00 on
September 2. Calculate the CO2 storage term for periods between 18:00 and 24:00
on September 1 and between 18:00 on September 1 and 18:00 on September 2.
Express your results in �mol m�2 s�1.

8.9 The mean air temperature and the water vapor mixing ratio in the air column
below an eddy covariance system are 20.1 ıC and 17.2 mmol mol�1 at 08:00 and
increase to 20.6 ıC and 17.4 mmol mol�1 at 09:00. Calculate the sensible and latent
heat storage term in W m�2 for this time period. The eddy covariance measurement
height is 2.4 m.
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8.10 The eddy covariance terms are w0s0
c = �0:732 ppm m s�1, w0s0

v = 0.203 mmol
mol�1 m s�1, and w0T 0 = 0.176 K m s�1. Assume that all other terms in the eddy
covariance equations are negligible. What are the net ecosystem exchanges of CO2

(in �mol m�2 s�1), water vapor (in mmol m�2 s�1), and sensible heat (in W m�2)?

8.11 Show that the pressure flux w0p0 has the dimensions of W m�2.

8.12 The plant area density is described by Eq. 5.46, the plant area index is 3.0,
the canopy drag coefficient is 0.2, the wind profile is given by Eq. 5.27 (˛2 = 4.0),
and the wind speed at the top of the canopy is 1.5 m s�1. Estimate the rate of heat
generation by pressure compression in the canopy (Term IV, Eq. 8.28).

8.13 The landscape consists of two ecosystem types. Both are emitters of a tracer
material to the atmosphere. The source strength of type I is N1 and that of type
II is N2. According to footprint theory, the vertical flux of the tracer should lie
somewhere between N1 and N2. However, the flux in the real world can fall outside
the range bounded by N1 and N2. Why?

8.14 Energy imbalance is defined as

I D Rn � G �
�

Qs C
Z z

0

�dcp
@T

@t
dz0 C 

Z z

0

�d
@sv

@t
dz0
�

�
�

�dcpw0T 0 C �dw0s0
v

�
: (8.40)

Assume that the imbalance is caused by vertical advection. Determine if I is likely
positive or negative for each of the flow types listed in Table 8.1.

8.15 In the presence of drainage flow, is the ecosystem respiration determined with
the standard eddy covariance Eq. 8.24 biased high or low? Provide an order-of-
magnitude estimate of the bias error.

8.16 Assume that the mean vertical velocity at the eddy covariance measurement
height is 0.01 m s�1 in the daytime and �0:01 m s�1 at night. Using the data given
in Fig. 8.12, estimate the contribution of vertical advection to the CO2 budget of
the eddy covariance control volume for 12:00 and 00:00. Is the daily mean NEE
obtained from Eq. 8.24 biased high or low?

8.17 Repeat the calculations in Problem 8.16 but for sensible heat. How does the
advection effect bias the daily mean ecosystem sensible heat exchange?

8.18 (a) Write an equation similar to Eq. 8.22 for horizontal heat advection. (b)
Using the air temperature profile data given in Table 8.2, calculate the contribution
of horizontal advection to the local heat budget at position B shown in Fig. 8.13.
Assume that the wind profile is logarithmic with height, the friction velocity is
0.30 m s�1, the surface momentum roughness is 0.05 m, and the eddy covariance
measurement height is 2.0 m.
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Fig. 8.12 Diurnal variations in the difference (a) between the CO2 mixing ratio at the eddy
covariance height (sc) and the column mean CO2 mixing ratio below the height (< sc >) and
(b) between the air temperature at the measurement height (T) and the column mean temperature
(<T >) in a temperate forest during a growing season

Table 8.2 Air temperature (T , ıC) observed at position A and B shown in Fig. 8.13. The
separation distance between A and B is 100 m

z (m) 0.1 0.5 1.0 1.5 2.0

A 20.31 20.18 20.16 20.09 20.07

B 21.53 20.90 20.63 20.47 20.36

Fig. 8.13 Temperature profile at two locations in a dry field

8.19 The contribution of horizontal advection to the CO2 budget of the eddy
flux control volume (Fig. 8.3) is 4.5 �mol m�2 s�1. Using Eq. 8.22, estimate the
corresponding concentration difference between the upwind and downwind face of
the control volume. The horizontal dimension L is 100 m, the eddy covariance height
is 20 m, and the mean wind speed below the height is 2 m s�1. Can you measure the
concentration difference with a broadband analyzer whose precision is typically no
better than 0.2 ppm?

8.20 Find the effective fetch for the following conditions: neutral air stability,
measurement height = 2.0 m, and surface roughness = 0.0225 m.

8.21 It is known that ecosystem respiration rarely exceeds 0.4 mg CO2 m�2 s�1.
However, the eddy CO2 flux measured over a tall forest at night can be as high as
1.0 mg m�2 s�1. (The measurement tower is located near the boundary that separates
the forest from a large hayfield.) Explain reason(s) for this anomaly.
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8.22* Using a threshold of 0.1 for the fractional contribution of horizontal advection
aH and Eqs. 7.74 and 8.36, derive an expression for the depth of the internal
boundary layer as a function of downwind distance from a step change in surface
source strength (Fig. 8.11). Graph your result for a range of surface roughness
and stability values and discuss how surface roughness and air stability affect the
development of the internal boundary layer.
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Chapter 9
Density Effects on Flux Measurements

9.1 Density Effects

Dry air is the media in which the turbulent diffusion of heat, water vapor, and trace
gases takes place. Trace gases, such as carbon dioxide and gaseous pollutants, are
passive scalars whose diffusion and transport do not alter the dynamic properties
of the diffusion media. The same cannot be said of sensible heat and water vapor,
which are active scalars. The sensible heat originated from the surface causes the
boundary layer to become more unstable, which in turn makes the diffusion more
efficient. Conversely, evaporative cooling of the surface and latent heat released
by cloud condensation aloft push the boundary layer to a more stable state. These
dynamic interactions are handled by the Reynolds mean conservation equations.

The density of dry air is altered by the diffusion of active scalars. Density changes
can also arise from external agents, such as sensor self-heating and atmospheric
pressure variations. In order to measure the gaseous diffusion properly, we must
consider that the media of diffusion itself is changing. The interferences caused by
dry air density variations on our ability to measure gaseous fluxes are called density
effects.

The dry air mass density �d can vary in a number of ways. In the standard
atmosphere, �d decreases exponentially with height, from 1.22 kg m�3 at the mean
sea level to 1.05 kg m�3 at 1.5 km, due to the exponential decrease in atmospheric
pressure, giving an average vertical density gradient of �0:11 g m�4. The atmo-
spheric boundary layer at any given time can deviate from the structure of the
standard atmosphere. At times of a large positive surface heat flux, the �d vertical
gradient is positive in the surface layer. When a strong surface layer inversion
develops at night, the gradient reverses its sign, and its magnitude can exceed that
of the standard atmosphere. At the time scales of eddy motion, �d can fluctuate
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rapidly in response to temperature and humidity fluctuations. Most of the density
fluctuations are damped in an enclosed environment, such as in a flux chamber and
in the optical cell of a closed-path gas analyzer, but the enclosure itself may modify
the density through the heating it generates.

A fundamental principle for understanding the density effects is the ideal gas
law. So far, we have treated micrometeorological variables one at a time, by
utilizing their conservation equations written in isolation from one another. In
reality, temperature, pressure, and water vapor and carbon dioxide concentrations
are interdependent. For example, spatial and temporal variations in air tempera-
ture cause variations in the carbon dioxide mass density, which, if not handled
properly, will lead to an artificial carbon dioxide flux. Temperature and carbon
dioxide observe their respective conservation equations, and their interdependence
is constrained by the ideal gas law.

Another fundamental premise is that no source or sink of dry air exists in the
atmospheric boundary layer. In the context of turbulent diffusion in the atmosphere,
dry air is a gas mixture including permanent species (oxygen, nitrogen, and argon)
but excluding water vapor and other variable trace species (carbon dioxide, ozone,
and so on). There is no flux of dry air at the soil surface, and no dry air is generated or
destroyed in the air layer above the soil. The amounts of oxygen produced by canopy
photosynthesis and removed by respiration and the amount of nitrogen produced by
denitrification in the soil are too small to have any measurable consequences on the
conservation of dry air. Spatial and temporal variations in the dry air mass density
are therefore attributed solely to variations in other state variables. On the other
hand, variations in the CO2 or water vapor mass density can be caused both by the
presence of a source or sink in the environment and by changes in the dry air density.
An essential task of gas flux measurement is to isolate the portion of the observed
signal that is linked to the source of the gas from the unwanted signal brought by
dry air density variations.

9.2 Density Corrections to Eddy Covariance Fluxes

Let us consider the density effects on the eddy covariance CO2 flux in the surface
layer over an extensive and uniform surface. The atmosphere is in a steady
state. In this particular case, �dw0s0

c, the product of the dry air density and the
covariance between the vertical velocity and the CO2 mixing ratio represents the
true ecosystem-atmosphere exchange. However, no instruments can measure the
mass mixing ratio directly. What is detected by a gas analyzer is the intensity of
light absorption which is proportional to the mass density �c of the gas in the
analyzer’s optical path. The mass density is determined with this proportionality
relationship and the analyzer’s optical parameters, and the CO2 flux is calculated as
the covariance between the vertical velocity w and �c. Our purpose is to show that
correction for the density effects must be made to the covariance w0�0

c to obtain the
true surface-air flux.
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According to the classic density correction theory of K. K. Webb, G. I. Pearman
and R. Leuning (hereafter WPL; Webb et al. 1980), the true CO2 flux is given as
w�c. Reynolds decomposition yields

w�c D w �c C w0�0
c: (9.1)

A similar equation is written for the dry air flux:

w�d D w �d C w0�0
d D 0: (9.2)

Equation 9.2 is WPL’s way of expressing the constraint of zero dry air flux at the
surface. In order for the dry air flux to be zero, there must exist a mean vertical
velocity w:

w D � 1

�d
w0�0

d: (9.3)

Combining Eqs. 9.3 and 9.1 yields the true CO2 flux:

w�c D w0�0
c � �c

�d
w0�0

d: (9.4)

The second term on the right of Eq. 9.4 represents correction for the density effects.
The covariance w0�0

c itself can deviates significantly from the true flux w�c.
The problem is further illustrated with a field experiment in a desert landscape

totally void of biological activity. Chemical reactions in arid soils can potentially
serve as a sink of atmospheric carbon dioxide, but the sink strength is an order
of magnitude smaller than the detection limit of eddy covariance instruments. So
the experiment constitutes essentially a zero-flux test. However, the covariance w0�0

c
itself is generally not equal to zero. The process responsible for the fluctuations in �c

is fluctuations in the density of the diffusion media, which are highly correlated with
fluctuations in the vertical velocity. The result is an artificial CO2 flux represented
by .�c=�d/w0�0

d, which must be subtracted from the observed covariance w0�0
c to

obtain the expected zero CO2 flux.
The WPL mean vertical velocity (Eq. 9.3) is a consequence of the density

fluctuations, explained by the fact that upward and downward moving eddies travel
at different vertical velocities. In unstable conditions, upward moving eddies are
less dense than downward moving eddies and must travel at faster speeds in order to
maintain a zero dry air flux, thus giving rise to a positive mean vertical velocity.
(The covariance w0�0

d is negative in unstable conditions, as shown below.) This
mean velocity is typically less than 1 mm s�1 in magnitude. It cannot be obtained
or eliminated by coordinate rotation nor can it be determined from horizontal flow
divergence according to the continuity principle (Eq. 3.18). In this regard, it loses
the interpretation of a mean flow velocity appropriate to atmospheric flows. Some
people call it a “drift velocity.”
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To avoid potential confusion associated with the WPL velocity, we now present a
new perspective on the density effects that do not need to invoke the concept of this
velocity (Massman and Lee 2002). Recall that in steady-state and advection-free
conditions,

NEE D �dw0s0
c; (9.5)

(Eq. 8.24). Our task is to convert the w–sc covariance to the w–�c covariance, the
latter of which is measured by eddy covariance instruments. Deployment of the
mixing ratio definition and Reynolds decomposition yields

sc D sc C s0
c D �c C �0

c

�d C �0
d

(9.6)

This equation can be rearranged to give s0
c:

s0
c D sc � sc

D �c C �0
c

�d C �0
d

� �c

�d
; (9.7)

where the Reynolds mean CO2 mixing ratio is approximated as sc D �c=�d
(Problem 9.1). The denominator of the first term in Eq. 9.7 can be expressed as a
Taylor expansion series:

1

�d C �0
d

D 1

�d

1

1 C �0
d=�d

D 1

�d



1 � �0

d

�d
C
�

�0
d

�d

�2

� : : :

�
: (9.8)

Substituting Eq. 9.8 into Eq. 9.7 and keeping only the first-order terms, we obtain

s0
c D 1

�d

�
�0

c � �c

�d
�0

d

�
: (9.9)

Combining Eqs. 9.5 and 9.9 yields

NEE D w0�0
c � �c

�d
w0�0

d: (9.10)

This equation is identical to the original WPL Eq. 9.4.
That Eq. 9.10 is exactly the same as Eq. 9.4 is not a surprise. Both formulations

are consequences of the conservation of dry air or, more specifically, of the premise
that the source strength of dry air is zero. This premise is embodied in Eq. 9.2 and
in the continuity equation. Equation 9.10 can be traced back to the conservation
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equation for the CO2 mixing ratio, which is derived from the conservation equations
for dry air and for CO2. The dry air conservation is expressed by the continuity
Eq. 2.14, which makes the implicit assumption that no dry air is generated or
removed in the atmospheric boundary layer.

The term .�c=�d/w0�0
d represents density corrections to the eddy covariance CO2

flux. Because fluctuations in �d cannot be measured directly with eddy covariance
instruments, we need an expression for relating �0

d to quantities that we can measure.
The formulation for the dry air density fluctuations is based on the ideal gas law.

Substituting the ideal gas law relations for dry air and for water vapor (Eqs. 2.27
and 2.28) in the Dalton’s law of partial pressures (Eq. 2.38) and replacing their ideal
gas constants with the universal gas constant (Eqs. 2.30 and 2.31), we obtain

�d

Md
C �v

Mv

D p

RT
: (9.11)

We can rearrange Eq. 9.11 and deploy Reynolds decomposition, yielding

�d D Md p

RT
� 
�v (9.12)

D Md.p C p0/
R.T C T 0/

� 
.�v C �0
v/; (9.13)

where 
 D Md=Mv . Applying Reynolds averaging on Eq. 9.13 and omitting higher-
order terms (Problem 9.1), we have

�d D Md p

RT
� 
�v: (9.14)

Reynolds decomposition also gives

�0
d D �d � �d: (9.15)

Combining Eqs. 9.13, 9.14, and 9.15 and omitting again higher-order terms, we
arrive at an expression for the dry air density fluctuations:

�0
d D �d.1 C 
sv/

�
p0

p
� T 0

T

�
� 
�0

v (9.16)

where the mean water vapor mixing ratio is approximated as sv D �v=�d.
Equation 9.16 indicates that fluctuations in air temperature, pressure and water
vapor density all contribute to the dry air density fluctuations. Of the three factors,
temperature fluctuations play the dominant role. Because �0

d and T 0 are opposite in
sign, the covariance w0�0

d is generally negative in unstable conditions and positive
in stable conditions.
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Replacing �0
d in Eq. 9.10 with Eq. 9.16, we obtain

NEE D w0�0
c � �c.1 C 
sv/

�
w0p0

p

�

C�c.1 C 
sv/

�
w0T 0

T

�
C 
sc.w0�0

v/ (9.17)

' w0�0
c C �c.1 C 
sv/

�
w0T 0

T

�
C 
sc.w0�0

v/: (9.18)

The second, third, and fourth terms on the right side of Eq. 9.17 are pressure
correction, temperature correction, and water vapor correction, respectively. Tem-
perature fluctuations are the largest source of correction. Pressure correction is
usually negligible. These corrections can be done in post-field data analysis using
the measured Reynolds mean water vapor and CO2 mixing ratios, temperature, and
the vertical velocity covariances w0T 0 and w0�0

v .
Similarly, in the case of water vapor exchange, the density-corrected flux is

given by

E D w0�0
v � �v

�d
w0�0

d

D .1 C 
sv/



w0�0

v C �v

�
w0T 0

T

��
; (9.19)

where we have omitted the pressure correction term.
There are two types of eddy covariance system: open path and closed path

(Fig. 9.1). Equations 9.18 and 9.19 describe the density effects on measurements
made with an open-path eddy covariance system. Having its optical path open to the
moving air, the gas analyzer measures the mass density of the target gas in situ.

In the case of a closed-path eddy covariance system, air is drawn from an inlet
near the anemometer through a tube to a closed optical cell where the detection
takes place. Density corrections must consider the fact that the dry air density is now

Fig. 9.1 An open-path (left) and closed-path (right) eddy covariance system
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being modified by the measurement system itself. Because heat exchange between
the air sample and the sampling tube is very efficient, by the time the air arrived
at the optical cell of the analyzer, all the temperature fluctuations have vanished.
Fluctuations in the gaseous densities are still preserved, especially if the travel time
is short (i.e., less than a few seconds) and the flow in the tube is turbulent. It is no
longer necessary to correct for the density effect associated with temperature. The
only effect that remains to be corrected is associated with water vapor fluctuations.
A major advantage of closed-path over open-path eddy covariance is that its density
effects are substantially weaker.

The density effects are eliminated altogether if the air sample is dried with a
water vapor filter before it arrives at the closed-path gas analyzer. There are no
more dry air density fluctuations in the analyzer’s optical cell, and the measured
trace gas density fluctuations are the true signal attributed to the surface source.
This hardware solution improves the measurement in low flux environments, such
as over the open ocean, although it comes at the cost of losing the ability to measure
the water vapor flux (Miller et al. 2010).

The above numerical density correction procedure assumes that all the variables
needed for the corrections are measured perfectly. Errors in these variables can
propagate through the correction procedure to the extent that they may completely
mask a weak flux signal (Problems 9.7, 9.8 and 9.17). The risk of error propagation
is substantially reduced by deploying a closed-path analyzer and by drying the air
sample prior to detection to remove the temperature- and humidity-induced density
effect, respectively.

9.3 Density Effects on Flux-Gradient Relation

The flux-gradient relation is a first-order turbulence closure scheme developed as
an analog of Fick’s law of molecular diffusion. Fick’s law states that the molecular
flux of a gas in a fluid is proportional to its concentration gradient. Standard texts
on this topic lack clear guidance on whether the concentration should be the mass
mixing ratio or the mass density. In the simple case where the fluid is isothermal,
the pressure is the same everywhere, and the gas of interest is the only species
undergoing diffusion, the flux can be expressed as the product of a constant (i.e.,
molecular diffusivity) and the gradient of the mass density. If diffusion of heat or
another gas coexists along with that of the target gas, or if a pressure gradient occurs
in the direction of diffusion, the simple proportionality relation is no longer precise.

In the micrometeorological literature, the flux-gradient relation is sometimes
expressed on the basis of the mass density, as

Fc D �Kc
@�c

@z
; (9.20)
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Fig. 9.2 Diffusion of CO2 in an enclosure: top, conditions at time t = 0; bottom, conditions at a
new steady state long after the barrier that separates the upper and the lower compartment was
removed

in the case of CO2 diffusion. Equation 9.20 is dimensionally correct and seems
intuitive because it is a natural extension of Fick’s law to turbulent flows. However,
it suffers from an artifact of artificial diffusion if the density of dry air, the media of
diffusion, is variable in space.

A thought experiment, depicted in Fig. 9.2, illustrates this artifact. Initially the
enclosure is divided by a solid barrier into two compartments, with the lower
compartment containing a higher CO2 concentration. Convective eddy mixing is
maintained by heating supplied at the bottom. Because of the heating, we expect a
negative temperature gradient and a positive dry air density gradient in the vertical
direction and a heat flux directed from the bottom to the top. Then, the barrier is
removed to allow CO2 exchange between the two compartments. Heat diffusion
continues unperturbed. A new steady state will establish after long enough time
whereby the CO2 mixing ratio is uniform in the vertical direction, but its mass
density is not. If we accept Eq. 9.20, we would come to the conclusion that a
downward CO2 flux exists in the new steady state even though the enclosure does
not contain a CO2 source or sink. This diffusion flux is purely an artifact of the dry
air density variation in the enclosure.

The new steady state shown in Fig. 9.2 resembles conditions of the zero-flux
experiment discussed in the previous section. Let us use a numerical example
to gain appreciation of the artificial flux (Fig. 9.3). The atmospheric pressure is
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Fig. 9.3 Artificial CO2 diffusion in the surface layer over a desert landscape completely free of
CO2 source and sink. There is no water vapor in the air, and atmospheric pressure is 1000 hPa

1000 hPa, the air is completely dry, and the CO2 mass mixing ratio is 608 �g g�1 (or
a molar mixing ratio of about 400 ppm). A strong temperature gradient is developed
from solar radiation heating of the surface. The ideal gas law requires that the
CO2 mass density �c should increase with height in order to maintain a constant
mixing ratio. For the conditions shown in Fig. 9.3, @�c=@z = 2.1 mg m�4. At a
typical eddy diffusivity value of 0.3 m2 s�1, Eq. 9.20 predicts a large apparent flux
of �0:6 mg m�2s�1, a signal comparable to the typical photosynthetic CO2 uptake
rate of an evergreen forest at midday hours. The result is an obvious contradiction
to the fact that the desert soil is void of CO2 sink.

By now you probably have realized that the proper flux-gradient relationship
should be based on the mass mixing ratio, not on the mass density, as

Fc D �Kc�d
@sc

@z
: (9.21)

Since the covariance of the mixing ratio with the vertical velocity represents the true
surface flux, it is logical that the flux be parameterized using the mean mixing ratio
gradient. This relation predicts that the vertical flux should be zero in the enclosure
after it has reached the new steady state (Fig. 9.2) and in the zero-flux experiment
(Fig. 9.3).

The density effects become obvious if we expand Eq. 9.21 using sc D �c=�d:

Fc D �Kc

�
@�c

@z
� �c

�d

@�d

@z

�
: (9.22)

This equation differs from Eq. 9.20 in that it contains an additional term describing
the vertical dry air density gradient. The gradient @�d=@z is found by differentiating
Eq. 9.14 with respect to z. Replacing the result in Eq. 9.22 and omitting the vertical
pressure gradient, we obtain

Fc D �Kc



@�c

@z
C .1 C 
sv/

�c

T

@T

@z
C 
sc

@�v

@z

�
: (9.23)
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This is the density correction equation for the CO2 flux-gradient relationship,
akin to the correction Eq. 9.18 for the eddy covariance CO2 flux. It shows that
both temperature and humidity gradients give rise to the density effects. To put it
differently, thermal diffusion and water vapor diffusion, as driven by the vertical
temperature and water vapor gradients, are sources of the artificial CO2 flux, which
must be corrected in order to obtain the true flux signal.

In the case of water vapor, the correct flux-gradient relation is given as

Fv D �Kv�d
@sv

@z

D �Kv.1 C 
sv/

�
@�v

@z
C �v

T

@T

@z

�
: (9.24)

Equations 9.23 and 9.24 are valid if all the gradient quantities are measured in
situ. Although @T=@z must be measured with sensors exposed to ambient air, the
gaseous gradients are generally measured with a closed-path analyzer. A typical
measurement strategy is to draw air continuously from two intakes above the
surface and use the analyzer to measure the two airstreams in an alternate sequence
(Fig. 3.5). Because the airstreams are brought to a common temperature, the effect
of the temperature gradient vanishes. Furthermore, the density effect associated with
water vapor disappears if the air sample is dried before it arrives at the analyzer, and
the flux obtained with Eq. 9.20 does not require density corrections. Pre-drying of air
samples is a standard practice for trace gas measurement in atmospheric chemistry.

9.4 Density Corrections to Chamber Fluxes

The density effects on chamber fluxes can be examined with the same principles
applied to the micrometeorological methods. The measurement equation for a
closed chamber is

Fc D �d
V

A

@sc

@t
; (9.25)

where V is chamber volume, A is chamber basal area, and �d and sc are the density
of dry air and the CO2 mixing ratio in the chamber volume, respectively. This
equation is the general form of Eq. 8.16 developed for a rectangular-shaped chamber
(Fig. 8.2a). An alternative expression is written in the form of the CO2 mass density
�c, as

Fc D V

A

@�c

@t
: (9.26)
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Fig. 9.4 A closed flux chamber equipped with a pressure equilibration port

If the chamber is fully sealed, both Eqs. 9.25 and 9.26 are accurate. This can be
shown with a zero-flux or chamber blank test, by placing the chamber on a surface
that evaporates water but does not emit or absorb CO2. Like any other natural
systems, this surface does not produce or consume dry air. Water vapor added to
the chamber via evaporation increases the vapor pressure and the total pressure, but
the partial pressures of dry air and CO2 remain unchanged. The total amounts of
dry air and CO2, and hence �d, �c and sc, are constant with time. (The chamber
volume is fixed.) Likewise, temperature increase in the chamber has no effect on
these quantities because it is compensated by a proportional rise in pressure. Both
equations yield a zero flux as desired.

Soil CO2 emission is very sensitive to pressure perturbation. To reduce the
perturbation, some chambers are equipped with a small opening to equalize the
pressure inside and outside the chamber (Fig. 9.4; Licor 2003). When evaporation
or temperature rise occurs in the chamber, some air will escape through the opening,
and overpressure is avoided. Because the amount of CO2 escaped is proportional
to the CO2 mass mixing ratio, the air leakage does not degrade the accuracy
of Eq. 9.25. But Eq. 9.26 requires density corrections. The full density correction
equation can be derived from Eq. 9.25, in a similar way to the derivation of Eq. 9.23,
yielding

Fc D V

A



@�c

@t
C .1 C 
sv/

�c

T

@T

@t
C 
sc

@�v

@t

�
: (9.27)

In the case of a dynamic chamber (Fig. 8.2b), the correct measurement equation is

Fc D �d
Qb

Ab
.sc;o � sc;i/; (9.28)

where Qb is base flow rate (in m3 s�1), Ab is chamber basal area, and sc;o and sc;i are
the CO2 mixing ratio at the chamber outlet and the inlet, respectively. If the flux is
computed from the CO2 mass density measurement, as in

Fc D Qb

Ab
.�c;o � �c;i/; (9.29)
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where �c;o and �c;i denote the mass density at the chamber outlet and inlet,
respectively, density corrections are necessary to account for the differences in air
temperature and water vapor density between the chamber interior and the ambient
environment.

There is some ambiguity regarding how the base flow Qb should be measured.
One chamber configuration uses a mass flow controller to regulate the flow at
a preset rate. A common type of mass flow controller accomplishes the task by
measuring the heat transfer of a heated tube through which the chamber air is flown.
Because the flow controller is calibrated with dry air, the measurement will be in
error if correction is not made to account for the presence of water vapor in the
chamber air (Lee 2000). It is known that moisture addition increases the air heat
capacity and therefore the efficiency of heat transfer of the heated tube. A small
correction for the moisture effect on Qb is still needed even if the flux is computed
from the mass mixing ratio measurement.

9.5 Problems

9.1 Using the Taylor expansion and the Reynolds rules, show that (1) the Reynolds
mean CO2 mixing ratio can be approximated by sc D �c=�d and (2) the mean dry
air density can be approximated by Eq. 9.14.

9.2 Find the dry air density for an air temperature of 15.3 ıC, an air pressure of
952.3 hPa, and a water vapor density of 12.9 g m�3.

9.3 The standard density correction procedure for eddy covariance is based on
Reynolds mean statistics. The correction can also be made by first converting the
instant mass density to the mass mixing ratio and then calculating the vertical
velocity – mixing ratio covariance to obtain the true flux. Use both methods to
compute the CO2 flux with the short time series data shown in Table 9.1. Do the
two methods produce nearly identical results? Why?

Table 9.1 Instant air temperature (T , ıC), water vapor density (�v , g m�3), CO2 density (�c,
mg m�3), and vertical velocity (w, m s�1) measured with an open-path eddy covariance system
at several time steps (t, s). The atmospheric pressure is 951.1 hPa

t 1 2 3 4 5 6 7 8 9 10

T 20.47 20.47 20.44 20.56 20.52 20.50 20.87 21.01 20.72 20.79

�v 7.367 7.401 7.403 7.359 7.313 7.343 7.375 7.369 7.425 7.424

�c � 600 91.57 91.34 91.17 90.13 91.24 91.65 90.02 89.92 90.14 89.61

w �0.010 0.730 0.375 0.612 0.998 1.919 1.945 1.991 2.155 1.106

t 11 12 13 14 15 16 17 18 19 20

T 20.68 20.57 20.43 20.10 20.08 20.09 20.10 20.10 20.13 20.39

�v 7.346 7.370 7.195 7.138 7.109 7.086 7.077 7.144 7.244 7.285

�c � 600 88.85 90.44 91.48 93.19 94.19 94.13 94.26 94.09 93.81 92.24

w 1.179 0.436 0.223 �0.217 �0.369 �0.494 �0.807 �0.890 �1.188 �0.988
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9.4 Without correction for the density effects, is the evaporation rate measured with
open-path eddy covariance in unstable conditions biased high or low? What about
the measurement made with closed-path eddy covariance?

9.5 An open-path eddy covariance system in the middle of a large parking lot
made of concrete yields a w0�0

v value of �0:016 g m�2 s�1 at midday (Ham and
Heilman 2003). Does the measurement indicate that condensation is occurring on
the concrete surface?

9.6 Calculate the true CO2 and water vapor flux using these half-hourly
mean Reynolds statistics obtained with an open-path eddy covariance system:
w0�0

c D �1:22 mg m�2 s�1, w0T 0 D 0:320 K m s�1, w0�0
v D 0:109 g m�2 s�1,

�c D 719:3 mg m�3, �v D 7:94 g m�3, T = 19.2 ıC, and p D 997:2 hPa.

9.7 The annual mean sensible and latent heat flux are 100.3 and 14.9 W m�2,
respectively, in a semiarid plantation forest. Determine the density correction to the
annual mean CO2 flux measured with an open-path eddy covariance system. Use
the data given in Problem 9.6 for the mean water vapor density, CO2 density, air
temperature, and air pressure. Now assume that the mean CO2 density �c has been
underestimated by 10%. How large is the CO2 flux bias error caused by propagation
of the �c measurement error through the density correction procedure? (For your
reference, the annual NEE of the forest is �2:3 tC ha�1 y�1.)

9.8 The eddy covariance sensible heat flux has a typical random error of 10 W m�2

in daylight hours. How large is the CO2 flux uncertainty caused by the density
correction procedure if the measurement is made with an open-path eddy covariance
system? The CO2 flux signal of an unpolluted lake is on the order of 1 �mol m�2 s�1.
Can the eddy covariance system resolve the CO2 flux signal at hourly intervals?

9.9 Using the information provided in Problem 9.6, estimate the amount of density
correction needed for the N2O flux measured with an open-path eddy covariance
system. How large is the correction in comparison with a typical cropland N2O
flux of 0.3 nmol m�2 s�1? How large is the N2O flux uncertainty associated with a
random error of 10 W m�2 in the sensible heat flux?

9.10 Derive density correction equations for closed-path eddy covariance. Use the
equations to calculate the true CO2 and water vapor flux using these half-hourly
mean Reynolds statistics: w0�0

c D �0:45 mg m�2 s�1, w0�0
v D 0:169 g m�2 s�1,

w0T 0 D 0:205 K m s�1, �c D 708:3 mg m�3, �v D 20:16 g m�3, T = 17.7 ıC, and p
= 950.8 hPa.

9.11 In a shipborne experimental campaign in the North Atlantic, the sea-air CO2

flux was measured with two eddy covariance systems. One was a standard closed-
path system, and the other was a closed-path system fitted with a Nafion dryer
upstream of its gas analyzer. The latent flux measured with the two systems was 48
and 1.2 W m�2, respectively. During the campaign, the air temperature was 12.9 ıC,
the air pressure was 998.9 hPa, the water vapor pressure was 8.96 hPa, and the CO2

molar mixing ratio was 380.2 ppm. Compute the density corrections to the CO2 flux
associated with the water vapor density effect. Are the density corrections larger or
smaller in magnitude than the true ocean surface CO2 flux of �3:1 mol m�2 y�1?
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9.12 Using the information provided in Fig. 9.3 and the flux-gradient relation,
determine the true CO2 flux. The eddy diffusivity is 0.3 m2 s�1.

9.13 Some people say that there are no density effects on the water vapor flux if it
is measured with a close-path eddy covariance system. Are they correct?

9.14* In a field experiment deploying the flux-gradient method, air is drawn
continuously from intakes at two heights above the surface, and measurements of the
CO2 and water vapor densities are made in an alternate sequence by a CO2/H2O dual
gas analyzer at a common temperature Tc and a common pressure pc. Simultaneous
measurement is also made of air temperature at the same heights. Derive an
expression for the determination of the true CO2 flux from these measurements.
(Assume that the eddy diffusivity is known.)

9.15* In a chamber blank test, you place a chamber with a pressure equilibration
port (Fig. 9.4) on a surface that evaporates water but does not emit or absorb CO2.
Show that the CO2 mixing ratio in the chamber does not change with time even
though the addition of water vapor will force some air to leak out of the chamber.

9.16 A closed chamber is equipped with a pressure equilibration port so that the
pressure inside the chamber is maintained at the same level as the ambient pressure,
which can be considered as a constant over the measurement interval. Derive from
Eqs. 9.12 and 9.25 the density correction Eq. 9.27 for the chamber CO2 flux.

9.17 The density correction method assumes that all the variables used for the
correction are measured perfectly. In practice, measurement errors are unavoidable
and can propagate through the density correction procedure to degrade the quality
of trace gas flux data. Assuming that the mean CO2 density and the mixing ratio
are biased low by 5%, estimate the bias error in the annual cumulative CO2 flux
measured with open-path eddy covariance. (The annual mean sensible and latent
heat fluxes are 50 and 70 W m�2, respectively.)

9.18 Open-path eddy covariance systems often register physiologically unrea-
sonable CO2 uptake signals during the off-season in extreme cold environments
(Fig. 9.5). A hypothesized cause of this artificial flux is that the CO2 analyzer itself
generates heat, but the density correction procedure uses temperature fluctuations
measured outside the analyzer’s optical path and as such fails to fully correct the
density effects. How large would an additional heat flux due to sensor self-heating
be required to correct the midday CO2 shown in Fig. 9.5 to zero?

9.19 The sensible and latent heat fluxes are 240.1 and 108.7 W m�2, respectively;
the air temperature is 23.4 ıC; the atmospheric pressure is 997.4 hPa; the water vapor
and carbon dioxide mixing ratios are 21.2 g kg�1 and 610.7 mg kg�1, respectively;
and the covariance w0�0

c measured with an open-path eddy covariance system is
�2:09 mg m�2s�1. Find the true net ecosystem CO2 exchange.
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Fig. 9.5 Diurnal composite of the CO2 flux observed with open-path eddy covariance over a
desert ecosystem in Northwest China in a winter dormant season: dashed line, covariance between
the vertical velocity and the CO2 density; solid line, density-corrected CO2 flux (Eq. 9.18) (Data
source: Wang et al. 2016)
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Chapter 10
Energy Balance, Evaporation, and Surface
Temperature

10.1 Resistance Analogy for Leaf-Scale Fluxes

In this chapter, we aim to develop mathematical models of evaporation and surface
temperature. For simplicity of presentation, in this modeling chapter we will omit
the overbar on atmospheric variables, but it is understood that these variables are
time-averaged quantities. A foundation for these models is the principle of surface
energy balance, which states that the flows of energy in various forms must be in
exact balance at a surface. At a leaf surface, the principle is expressed as

Rn;l D Hl C El; (10.1)

where Rn;l is the net radiation flux, Hl is the sensible heat flux, and El is the water
vapor flux, all given on the basis of a unit leaf area, and subscript l is used to denote
leaf-scale quantities. Because the leaf mass is very small, the internal energy change
associated with leaf temperature variations is negligible.

We showed in Chap. 8 that by performing canopy volume averaging, we obtained
a canopy sensible heat source term that is proportional to the product of leaf area
density and a volume mean temperature gradient across the leaf boundary layer. The
proportionality coefficient is 2�T , where the factor 2 recognizes that sensible heat
exchange occurs on both sides of the leaf but leaf area is measured on one side only
(Eq. 8.10). Since we are concerned here with an average leaf of unit surface area,
this source term is equivalent to Hl=�dcp. Let l be the leaf boundary layer thickness
for heat, Tl be the leaf surface temperature, and Ta be the air temperature outside
the boundary layer (Fig. 10.1). The temperature gradient is given by .Ta �Tl/=l, and
Eq. 8.10 can be written as

Hl D �dcp
Tl � Ta

rb
; (10.2)
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Fig. 10.1 Resistance analogy for sensible heat and water vapor fluxes across the leaf boundary
layer. The vertical scale is exaggerated

where

rb D l

2�T
(10.3)

is called the leaf boundary layer resistance and has the dimensions of s m�1

(Fig. 10.1).
Equation 10.2 is the expression of Ohm’s law or resistance analogy for heat

transfer at the leaf scale. Ohm’s law states that electric current is equal to the
voltage differential across a load divided by the electric resistance of the load. In
our application, the heat flux is equivalent to the electric current, the leaf-to-air
temperature difference is equivalent to the voltage differential, and rb is the analog
of the electric resistance that describes the difficulty of heat diffusion in the leaf
boundary layer.

A similar expression can be written for water vapor transfer. Because the
boundary layer resistance differs by less than 7% between heat and water vapor, the
same resistance parameterization will be used for both. The leaf is amphistomatous,
having stomata on both sides. (For hypostomatous leaves whose stomata are present
only on the lower side, the resistance to water vapor transfer is twice as large.)
Generally, the vapor mixing ratio at the leaf surface is not a known quantity, but the
vapor mixing ratio in the stomatal cavity is at the saturation value in reference to the
leaf temperature. So the interior of the stomatal cavity instead of the leaf surface is
used as the starting node of the vapor diffusion pathway. The resistance analogy for
water vapor is expressed as

El D �d
s�
v � sv

rs C rb
; (10.4)
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Fig. 10.2 Linear approximation to the saturation vapor pressure function

where rs, termed the stomatal resistance, is an additional resistance the vapor
molecules encounter when moving through the stomatal opening and sv is the vapor
mixing ratio outside the leaf boundary layer. Here, the two resistances are connected
in series because the vapor molecules must diffuse sequentially through the two
pathways (the stomatal opening and the leaf boundary layer). Other situations
require connecting diffusion resistances in parallel, such as in some multilayer
models of canopy evapotranspiration (Sect. 10.5).

The saturation vapor mixing ratio s�
v is given by

s�
v D 0:621 e�

v .Tl/=pd; (10.5)

where e�
v .Tl/ is the saturation vapor pressure at leaf temperature Tl. The factor 0.621

is the ratio of molecular mass of water to that of dry air. Using the Taylor expansion
but keeping only the first-order term, we can express e�

v .Tl/ as a linear function of
Tl (Fig. 10.2):

e�
v .Tl/ ' e�

v .Ta/ C �.Tl � Ta/; (10.6)

where � D @e�
v =@T , the slope of the saturation vapor pressure at Ta, is a function

of temperature, increasing from 1.10 hPa K�1 at 15 ıC to 1.90 hPa K�1 at 25 ıC.
Linearizing the saturation vapor pressure function allows us to obtain an analytical
solution of the problem.

The relationship between sv and the vapor pressure ev is given by

sv D 0:621ev=pd: (10.7)

A unique solution exists for the three unknowns (Hl, El, and Tl) from the
three basic equations (Eqs. 10.1, 10.2, and 10.4). Full implementation of the
solution requires parameterizations for the two resistance terms and measurement
of the forcing variables (Rn;l, Ta, ev , and so on). The boundary layer resistance is
commonly parameterized as

rb D 1

Cl

s
dl

ul
(10.8)
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where dl is leaf dimension in m, ul is wind speed in m s�1, and the leaf heat exchange
coefficient Cl is approximately 0.01 m s�1=2 (Oleson et al. 2004). For a larger leaf
and at a lower wind speed, the leaf boundary layer is thicker, and Eq. 10.8 indicates
that heat transfer is more difficult.

Two parameterizations are commonly used for the stomatal resistance. The
Jarvis-Stewart parameterization is a multiplicative method aiming to capture the
combined effect of four key environmental controls on stomatal behaviors. Let rs;m

be the minimum stomatal resistance observed when the stomata are fully open under
conditions of full sunlight, ample soil water, optimal temperature, and zero vapor
pressure deficit. The actual stomatal resistance is given as

1

rs
D 1

rs;m
f1.K#/ f2.M/ f3.Tl/ f4.D/; (10.9)

where K# is solar radiation incident on the leaf surface, M is soil moisture status, Tl

is leaf temperature, D is vapor pressure deficit defined as

D D e�
v .Ta/ � ev;

and functions f1 to f4 are adjustment factors smaller than unity to account for
deviation from the optimal conditions.

The second stomatal resistance parameterization, attributed to Ball et al. (1987)
and Collatz et al. (1991), takes the form,

1

rs
D m

An

cs
hs C b; (10.10)

where An is net photosynthesis, m and b are empirical coefficients, and cs and hs

are the CO2 mixing ratio and relative humidity at the leaf surface, respectively.
Equation 10.10 contains fewer site-specific parameters than the more empirical
Eq. 10.9 but requires that leaf photosynthesis be modeled concurrently.

Equation 10.4 describes the evaporation of a dry leaf whose source of water vapor
is the interior of the stomata. For a wet leaf covered by dew or rainwater, the source
of water vapor is the water film on the leaf surface, and the evaporation rate should
be calculated by setting the stomatal resistance to zero.

Equations 10.1, 10.2, and 10.4 can be used to derive an expression for the wet
bulb temperature Tw. This temperature is measured by a thermometer wrapped in
wet cloth in a well-ventilated enclosure. The wet cloth behaves just like the water
film on a wet leaf. The net radiation energy of the thermometer is negligible, and
the evaporation of the wet cloth is supported by sensible heat originated from the
air outside the “leaf” boundary layer (Fig. 10.3). The surface energy balance is
written as

�dcp
Tw � Ta

rb
C �d

s�
v � sv

rb
D 0: (10.11)
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Fig. 10.3 Energy balance of a wet bulb thermometer

Making use of Eq. 10.6, we obtain the solution

Tw D Ta � D

� C �
; (10.12)

where � D pdcp=.0:621/ is the psychrometric constant (D0:66 hPa K�1 at sea
level). This solution is independent of rb. The wet bulb depression Ta � Tw

is a measure of air humidity: it is zero at saturation (D D 0) and increases
with decreasing humidity. The wet bulb temperature is a useful heat stress index
(Problem 10.4).

10.2 Canopy Energy Balance and the Big-Leaf Model

The resistance analogy can be easily extended to describing canopy evaporation
and sensible heat flux. Ignoring heat storage in the canopy layer, the surface energy
balance equation 2.47 becomes

Rn � G D H C E: (10.13)

The canopy sensible heat flux is conceptualized to originate from a “big leaf”
located at approximately the height of zero-plane displacement. The diffusion
pathway is the air layer between this hypothetical leaf and the reference height
at which atmospheric forcing variables are measured (Fig. 10.4). Unlike the leaf
boundary layer in which diffusion is molecular, this air layer is fully turbulent whose
diffusion resistance is the aerodynamic resistance ra given by Eq. 4.44. (Hereafter
we will omit the second subscript h.) The canopy sensible heat flux is expressed as

H D �dcp
Ts � Ta

ra
(10.14)

where Ts is canopy or surface temperature and Ta is air temperature at the reference
height.
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Fig. 10.4 The Penman-Monteith big-leaf model of canopy sensible heat flux and canopy evapora-
tion

To obtain the canopy-scale evaporation rate, we replace the numerous leaf
stomata in the canopy by a bulk stoma as the effective source of water vapor. The air
inside this “stomatal cavity” is at saturation in reference to the surface temperature.
We introduce the canopy resistance rc to represent the diffusion pathway between
this imagined stoma and the ambient air. The surface evaporation rate or water vapor
flux is given by

E D �d
s�
v � sv

ra C rc
: (10.15)

Deploying the linear approximation

e�
v .Ts/ ' e�

v .Ta/ C �.Ts � Ta/ (10.16)

and eliminating Ts and H in favor of E from Eqs. 10.13, 10.14, and 10.15, we obtain
the solution for E

E D 1



�.Rn � G/ C �dcpD=ra

� C �.ra C rc/=ra
(10.17)

This equation is the classic Penman-Monteith big-leaf model of evaporation.
Equation 10.17 expresses both physical and physiological controls on surface

evaporation. The physical control, also referred to as atmospheric demand, is
determined by the energy available for evaporation (Rn � G) and the vapor pressure
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deficit (D). The physiological control is exerted by the canopy resistance rc. In
wet climates where the canopy resistance is small, surface evaporation is energy-
limited, whereas in dry climates, the limiting factor is low soil moisture availability
or large rc.

Because the aerodynamic resistance ra is generally smaller than the canopy
resistance rc, surface evaporation is not too sensitive to wind speed or turbulence
intensity. This is especially true for rough surfaces such as tall forests.

The aerodynamic resistance ra has a clear physical meaning (it describes the
diffusion property of the atmospheric surface layer) and a simple mathematical
interpretation (it is the vertical integral of the inverse of the eddy diffusivity)
(Eq. 3.75). In comparison, the canopy resistance rc is much harder to quantify and
interpret. If all the leaves in the canopy have the same stomatal resistance, rc can be
considered an effective resistance of a network of L resistors connected in parallel,
each having a resistance value rs, so that

rc D rs=L; (10.18)

where L is leaf area index. The stomatal resistance rs can be measured directly or
estimated with physiological models such as Eq. 10.10.

Equation 10.18 tends to underestimate the canopy resistance of a real canopy
because contribution to surface evaporation is not equal among the leaves (Kelliher
et al. 1995). Leaves in the upper part of the canopy, being exposed to sunlight, have
higher evaporation rate and lower stomatal resistance than those in the lower canopy
under low light conditions. An improved estimate of rc is obtained by averaging the
leaf stomatal resistance with a weighting factor in inverse proportion to the solar
radiation intensity at different heights in the canopy.

Equation 10.17 can be used to determine potential evaporation, or the rate of
evaporation that would occur if soil water supply were unlimited. Being a measure
of atmospheric demand for evaporation, potential evaporation is a pure atmospheric
quantity and is independent of physiological processes. Actual evaporation cannot
exceed this theoretical limit. For lakes, wetlands, and ecosystems of short stature
(short crops and grasses) and with ample soil moisture, evaporation occurs at the
potential rate. Because rc=ra under these conditions is either zero or much smaller
than unity, the expression for potential evaporation becomes

E D �

� C �
.Rn � G/ C �dcpD

.� C �/ra
(10.19)

According to empirical data, the second term on the right side of Eq. 10.19
is highly correlated with the first term. The ratio of the second term to the first
term is roughly 0.26. Combining this empirical result with Eq. 10.19, we obtain the
Priestley-Taylor equation for potential evaporation:

E D ˛
�

� C �
.Rn � G/; (10.20)
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where ˛ ' 1:26. Equation 10.20 removes the dependence on the vapor pressure
deficit and the aerodynamic resistance. Only available energy and air temperature
observations are required to estimate potential evaporation. The equation with the
original coefficient value of 1.26 is applicable to lakes and short vegetation. For tall
forests, the coefficient ˛ is lower than 1.26 because ra is very small and the ratio
rc=ra is no longer negligible even under conditions of high soil water content.

To aid management of cropland irrigation, the World Food and Agriculture
Organization proposes a standardized method for computing potential evaporation
with the Penman-Monteith equation. The reference surface is a well-watered short
grass of height 0.12 m. The canopy resistance takes a standard value of 70 s m�1.
The aerodynamic resistance is given by the surface layer relationship in neutral
stability:

ra D 1

k2u
ln

z � d

zo
ln

z � d

zo;h
: (10.21)

where the displacement height d D 0:08 m, the momentum roughness zo D
0:015 m, and the thermal roughness zo;h D 0:0015 m. The evaporation rate
computed with this method is called reference evaporation.

10.3 One-Source Model in Remote Sensing Applications

Equations 10.14 and 10.15 form the fundamental basis for modeling surface-air
energy and water vapor exchanges, but their application was hindered historically by
the lack of surface temperature (Ts) measurement. This difficulty has been overcome
by the Penman-Monteith equation: by linearizing the saturation vapor pressure
function and by combining these equations with the energy balance equation, we
have eliminated Ts as an input variable. However, Ts is now routinely measured by
environmental satellites at the landscape scale and by thermal sensors at the field
scale. The availability of Ts data has motivated the development of a one-source
model as an alternative to the Penman-Monteith model (Kustas and Anderson 2009).

The one-source model is based on the top-down or bird’s eye perspective of a
thermal sensor mounted above the surface. Different heat sources in the sensor’s
field of view, including sunlit foliage, shaded foliage, and exposed soil, all contribute
to the outgoing longwave radiation L" the sensor receives. If the actual surface
emissivity is known and the downward longwave radiation is also measured, Ts

can be solved from Eq. 2.44. Otherwise, Ts is approximated by the inverted Stefan-
Boltzmann law as

Ts D .L"=�/1=4: (10.22)
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Since most natural objects emit longwave radiation at nearly the same rate as
a blackbody, Eq. 10.22 is reasonably accurate. The one-source model treats the
surface as if it were made of a single source having an effective temperature Ts.

Now that Ts is a known quantity, determination of the surface heat fluxes
would seem straightforward: the surface sensible heat flux could be calculated
with Eq. 10.14 and the latent heat flux as a residual of the surface energy balance
(Eq. 10.13). Parameterization of the canopy resistance is no longer required. How-
ever, it is found that H calculated with the original resistance formula (Eq. 10.14) is
biased too high. To correct this high bias, we must introduce an additional resistance
rm, called the radiometric resistance, and rewrite the resistance formula as

H D �dcp
Ts � Ta

ra C rm
: (10.23)

The latent heat flux is then computed as

E D Rn � G � H: (10.24)

In this modified resistance analogy (Fig. 10.5), we make a distinction between
the aerodynamic surface temperature To and the radiometric surface temperature Ts.
The former is an aerodynamic variable, found by extrapolating the air temperature
profile to the height of the thermal roughness zo;h (Eq. 4.41), whereas the latter is
a radiative property of the surface involved in the surface radiation and energy
balance (e.g., Eq. 10.37 below). These two temperatures do not differ much for a
dense canopy. For a bare soil or a spare canopy, Ts can be a few degrees higher than
To in unstable conditions. The aerodynamic resistance ra represents the diffusion
resistance to heat between zo;h and the reference height. The diffusion resistance
between the surface and zo;h is given by the radiometric resistance rm.

Fig. 10.5 One-source model of sensible heat flux for remote sensing applications. The vertical
dimension is not drawn to scale
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Fig. 10.6 Relationship between the radiometric resistance rm and leaf area index L in unstable
(left) and stable (right) conditions. The two solid lines indicate the uncertainty range of rm (Data
source: Zhao et al. 2016)

Figure 10.6 depicts the general behaviors of the radiometric resistance rm as
a function of leaf area index (LAI) L. In unstable conditions, rm increases expo-
nentially with decreasing L. As L decreases, the role of soil becomes increasingly
important in the surface-air heat exchange. It appears that the laminar layer of the
ground-level soil source imposes a stronger barrier to heat diffusion than the leaf
boundary layer of the elevated foliage sources. In stable conditions, rm appears
insensitive to L.

The LAI dependence shown in Fig. 10.6 can be regarded as a crude parameteri-
zation of rm. Additional insights on how rm should behave for different ecosystem
types and in various environmental conditions may be obtained by comparing the
one-source model with the surface temperature and the whole-ecosystem sensible
heat flux predicted by a two-source model (Sect. 10.4).

The Penman-Monteith equation makes the implicit assumption that To and Ts

are identical. But because the equation has already been constrained by the surface
energy balance, errors associated with this assumption are not serious.

10.4 Two-Source Model of Evaporation

Surface evapotranspiration represents the combined contribution of water vapor
evaporated from the soil and that transpired from the plants. These component fluxes
(soil evaporation and plant transpiration) cannot be isolated with either the big-leaf
model or the one-source model. But there are practical reasons for why they should
be quantified separately. The transpiration flux draws a continuous flow of water
through the plant xylem, which serves as a mechanism of nutrient relocation from
the root system in the soil to other parts of the plant. It also cools the foliage so as
to avoid high temperature damage in hot weather. Water use efficiency, the ratio of
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Fig. 10.7 Resistance network of a two-source model of sensible heat and water vapor fluxes
(Modified after Shuttleworth and Wallace 1985)

the amount of carbon dioxide assimilated by photosynthesis to the amount of water
lost via transpiration, is a relatively stable parameter among C3 and C4 crops. If the
transpiration flux is known, cropland productivity can be estimated from the water
use efficiency parameter. Soil evaporation, on the other hand, does not participate
directly in these biological functions and to a farmer is a stream of wasted water.
One goal of farmland water resource management is to minimize soil evaporation.

The two-source model aims to predict soil evaporation Eg and canopy transpi-
ration Ec using parameters that specify biological and soil moisture controls on
these fluxes and standard micrometeorological variables measured above the canopy
(Shuttleworth and Wallace 1985). Figure 10.7 is a schematic diagram of the model
structure. The model is a compromise between simplicity and realism. Specifically,
we make three simplifications. First, the canopy airspace has no resistance to the
water vapor originated from the ground surface, meaning that soil evaporation
occurs in parallel to plant transpiration. This is a fair approximation for a sparse
canopy where turbulent mixing in the canopy air is vigorous (Norman et al. 1995).
For a closed canopy, this approximation leads to overestimation of Eg, especially if
the soil is wet.

Second, soil evaporation is conceptualized to occur at an evaporation front where
the vapor mixing ratio is at saturation in reference to the ground temperature Tg.
The evaporation front is the ground surface for a soil saturated with water and is
at some depth below the surface for a dry soil. In the case of a dry soil, the vapor
molecules must move through the pore space in the top soil layer before escaping
into the open canopy airspace. The diffusion resistance of this pathway is specified
by a bulk ground resistance rg. Soil moisture control on Eg is realized through
parameterization of rg as a function of soil moisture.
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Third, the plants are assumed to be uniformly dispersed in the horizontal
directions so that radiation transmission in the canopy can be described by a simple
one-dimensional Beer’s law model. Features of horizontal inhomogeneity, such as
those found in row crops and savanna ecosystems, are filtered out by averaging flux
and state variables over a sufficiently large area. The surface is characterized by a
single albedo value and a single net radiation flux. The predicted soil evaporation
flux is the mean contribution of the soil shaded by the plants and that exposed to
sunlight in gaps between the plants. The net radiation of the canopy layer Rn;c and
that of the ground surface Rn;g are given by

Rn;c D RnŒ1 � exp.�aL/�; (10.25)

and

Rn;g D Rn exp.�aL/; (10.26)

where Rn is net radiation above the canopy, a is an empirical light extinction
coefficient, and L is leaf area index. A widely used value for a is 0.7.

Applying the Penman-Monteith method of derivation separately to the canopy
and the soil component, we obtain

Ec D 1



�Rn;c C �dcpD=ra

� C �.ra C rc/=ra
; (10.27)

and

Eg D 1



�.Rn;g � G/ C �dcpD=ra

� C �.ra C rg/=ra
: (10.28)

The total surface evaporation flux is given by

E D Ec C Eg: (10.29)

In the limit L ! 0, Rn;c vanishes, rc is infinitely large, and E is contributed
solely by soil evaporation. In the other limit (L ! large values), even though the
energy available for soil evaporation (Rn;g � G) vanishes, Eg does not go to zero as
expected because of the vapor pressure deficit term. This problem is a consequence
of omitting the resistance to water vapor diffusion in the canopy airspace and can be
solved by inclusion of this resistance in a modified version of the two-source model
(Fig. 10.9a).

The two-source model can be evaluated against observational data on the
component fluxes. Evaluation can also be performed against the surface temperature
measured with a thermal sensor. A downward-facing thermal sensor mounted above
the canopy senses the longwave radiation emitted by both the canopy and the
ground surface. Let fc be the fraction of its field of view occupied by the canopy.
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Fig. 10.8 Sparse canopy (left) and land mosaic (right) (Modified after Schultz et al. 2016)

The effective surface temperature measured by this thermal sensor is a weighted
mean of the canopy temperature Tc and the ground surface temperature Tg, as

Ts D ŒfcT4
c C .1 � fc/T

4
g �1=4: (10.30)

The two-source model should not be confused with a tile or mosaic scheme used
in some climate models. Figure 10.8 illustrates their differences. In this example,
both configurations have the same number of plants, but the plants are arranged
differently. In the case of a sparse canopy, the plants are dispersed uniformly,
creating a savanna-type landscape. These plants and the exposed soil draw water
for evaporation from the same soil water pool and share identical atmospheric
forcing conditions. The total evaporation flux is the sum of soil evaporation and
plant transpiration (Eq. 10.29), whereby weighting of the contributions of the two
component fluxes is achieved indirectly by partitioning of the net radiation flux
(Eqs. 10.25 and 10.26).

In the land mosaic case shown in Fig. 10.8, the model grid cell consists of two
subgrid tiles, with the plants clumped in one tile and the open soil occupying the
other, each having its own independent soil water pool. Even though they receive
the same amounts of incoming shortwave and longwave radiation (Fig. 10.12), these
tiles have different net radiation fluxes because their albedo values and surface
temperatures are different. The grid-cell water vapor flux is an area-weighted mean
of the two subgrid fluxes:

E D a1E1 C a2E2; (10.31)

where E1 and E2 are water vapor fluxes and a1 and a2 are area fractions of the two
tiles.

10.5 Improved Representations of Surface-Air Exchange

An obvious way of improving the two-source model is to incorporate the canopy
turbulence (Chap. 5) in the model parameterization. The improved version, shown
in Fig. 10.9a, includes a bulk foliage resistance, which is an extension of the
leaf boundary layer resistance at the canopy scale, to the transpiration vapor
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Fig. 10.9 Resistance network in three models of evaporation. (a) An improved two-source model;
(b) a multilayer model; (c) a two-leaf model

flux, and an in-canopy aerodynamic diffusion resistance to the vapor evaporated
from the soil (Shuttleworth and Wallace 1985). These two additional resistances
are parameterized as functions of canopy foliage density, wind speed, and eddy
diffusivity. This version overcomes the problem at the large L limit: the in-canopy
aerodynamic resistance to soil evaporation increases with increasing leaf area index
L, so that soil evaporation Eg vanishes as L approaches large values.

In a multilayer framework (Fig. 10.9b), the plant canopy is divided into multiple
layers, each having a leaf area �L (Baldocchi and Harley 1995). The energy
balance principle is applied to each layer, and the sensible and latent heat fluxes
are determined layer by layer. Let rs;i and rb;i be the stomatal and the leaf boundary
layer resistance for foliage layer i. The diffusion of water vapor originated from
layer i encounters three resistances, a mean stomatal resistance rs;i=.�L/, a mean
leaf boundary layer resistance rb;i=.�L/, and the usual aerodynamic resistance ra.
Since the bulk canopy resistance is no longer needed, the multilayer model is more
rigorous than the big-leaf and the two-source models. A prerequisite for a successful
multilayer model is accurate description of the transmission of solar radiation
through the canopy because the solar radiation flux is required for the energy balance
calculation for each foliage layer and because the stomatal resistance is strongly
dependent on solar radiation. The total ecosystem water vapor and sensible heat flux
are the sums of contributions from all the foliage layers and from the soil. Another
model output is the vertical distribution of foliage temperature. (Some multilayer
models can also predict air humidity and air temperature profile in the canopy.)

A hybrid between the two-source model and the multilayer model is called the
two-leaf model (Fig. 10.9c; Wang and Leuning 1998). We conceptualize that the
canopy be composed of two big leaves, a sunlit leaf and a shaded leaf. Partition
of the foliage layer into sunlit and shaded groups is based on Beer’s law of beam
radiation transmission, taking into account of the geometry of solar angle and leaf
angular distribution. The two-leaf model is computationally simple and achieves
accuracies that are comparable to those of the multilayer model. This success is
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attributed to the observed pattern that leaves in the same group have similar leaf
temperature Tl and stomatal resistance rs but have very different Tl and rs from
leaves in the other group.

10.6 One-Source Model of Surface Temperature

Models of the surface fluxes of heat and water vapor, the focus of our discussion
so far, serve several functions. They permit calculation of the lower boundary
conditions for atmospheric models, provide insights into ecosystem processes, and
form an important component of the local hydrological cycle. In this section, we
turn our attention away from this traditional focus to prediction of the surface
temperature. The question we wish to investigate is this: how will the surface
temperature change if one type of land use is replaced by another? Deforestation, or
replacement of a forest by open land such as bare soil and grass, and urbanization, or
replacement of natural land with an engineered landscape, are two classic examples
of land use change.

Local radiative feedback and energy redistribution are two key mechanisms
that govern how the surface temperature Ts responds to changes in land cover. To
elucidate the first mechanism, let us consider a world without an atmosphere. Here,
energy transfer involves only radiation processes, and the surface energy balance
equation is simply that of the radiation balance:

.Rn D/ S C L# � �T4
s D 0; (10.32)

where

S D .1 � ˛/K# (10.33)

is the net shortwave radiation flux and ˛ is surface albedo. For simplicity, the surface
is assumed to be a blackbody and consist of one source. Now let us suppose that the
surface is suddenly replaced by a new type with a different albedo, causing S to
increase to S C �S. The surface will warm up, and the outgoing longwave radiation
will increase accordingly, in a process termed the longwave radiation feedback, until
a new state of energy balance is established:

S C �S C L# � �.Ts C �Ts/
4 D 0; (10.34)

where TsC�Ts is the surface temperature in this new state. Manipulating Eqs. 10.32,
10.33, and 10.34 yields the solution for the temperature perturbation �Ts:

�Ts D 0�S; (10.35)
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where

0 D 1=.4�T3
s / ' 1=.4�T3

a /; (10.36)

is the temperature sensitivity resulting from the longwave radiation feedback and is
approximately 0.2 K W�1 m2. Parameter 0, termed the local climate sensitivity, is
a weak function of temperature, so it can be formulated using either the surface
temperature or the air temperature (Eq. 10.36). Equation 10.35 predicts that the
surface temperature will increase by about 1 K for a 5 W m2 increase in the net
shortwave radiation.

Equation 10.35 implies that a darker surface should always be warmer than a
brighter surface when exposed to the same amount of incoming shortwave radiation.
However, the opposite can occur in the real world. For example, it has been observed
that despite having much lower albedo, a needle-leaf plantation forest in Israel is
actually 5 K cooler in the daytime than an adjacent shrub land. The paradoxical
situation exists because the temperature of a surface in the real world is also
influenced by energy redistribution via convection and evaporation. Prediction of
the surface temperature perturbation must consider convection, which dissipates
sensible heat from the surface to the atmospheric boundary layer, and evaporation,
which removes latent heat from the surface and deposits it above the atmospheric
boundary layer by cloud condensation (Fig. 10.10).

The proper framework for developing a surface temperature model is the
complete energy balance equation:

.1 � ˛/K# C L# � �T4
s D H C E C G: (10.37)

Here the sensible heat flux is given by Eq. 10.23 and the latent heat flux is given by

E D H=ˇ; (10.38)

where ˇ is Bowen ratio. Linearizing the outgoing longwave radiation as

�T4
s ' �T4

a C 4�T3
a .Ts � Ta/

Fig. 10.10 Radiation processes versus energy redistribution via evaporation and convection
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and making use of Eqs. 10.23 and 10.38, we obtain a solution for Ts from Eq. 10.37,

Ts D Ta C 0

1 C f
.R�

n � G/; (10.39)

where

R�
n D .1 � ˛/K# C L# � �T4

a (10.40)

is apparent net radiation,

f D �dcp0

rT

�
1 C 1

ˇ

�
(10.41)

is a dimensionless energy redistribution factor, and

rT D ra C rm (10.42)

is the total resistance to sensible heat diffusion.
In Eq. 10.39, Ta is air temperature at the first grid height of the atmospheric model

in a modeling study or at the blending height in a site-pair analysis (Fig. 10.12).
Blending height is a height scale in a heterogeneous landscape, above which the
flow is fully “blended” so that the influences of individual land patches are no longer
discernible.

The temperature perturbation caused by land use change is found by differenti-
ating Eq. 10.39, as

�Ts ' 0

1 C f
.�S/ C 0

.1 C f /2
R�

n .�f1/ C 0

.1 C f /2
R�

n .�f2/; (10.43)

where

�f1 D f
�rT

rT
; (10.44)

�f2 D �dcp0

rT

�
�ˇ

ˇ2

�
; (10.45)

and the soil heat flux term is omitted (Lee et al. 2011). We have used the fact that
Ta, L#, and other atmospheric forcing variables remain unchanged because the land
use change in question occurs at a scale that is too small to influence the overlaying
atmosphere.

Equation 10.43 expresses explicitly the controls of three key biophysical fac-
tors, albedo, surface roughness, and evaporation, on �Ts. The first, second, and
third terms on the right side of Eq. 10.43 represent radiative forcing associated
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Fig. 10.11 Contributions of three biophysical factors to surface temperature change brought by
deforestation (left panel, boreal climate; right panel, tropical climate) (Data source: Lee et al.
2011)

with albedo change, energy redistribution associated with roughness change, and
energy redistribution associated with Bowen ratio change or change in evaporation,
respectively. Because the inverse of the total resistance rT is a measure of efficiency
of energy dissipation by convective motion, the second term can also be interpreted
as contribution of changes in convection efficiency to �Ts. Figure 10.11 is an
illustration on how these biophysical factors contribute to the surface temperature
change brought by deforestation.

Comparing the first term on the right side of Eq. 10.43 with the radiative feedback
solution (Eq. 10.35), we find that energy redistribution always damps the climate
sensitivity, keeping in mind that f is generally positive. In other words, the actual
temperature perturbation associated with land use change is smaller in magnitude
than that predicted from the radiative feedback mechanism alone.

Evaluation of Eq. 10.43 can be performed with a site-pair strategy or space-for-
time substitution (Fig. 10.12). In experimental research, the change terms on the
right side of the equation are determined by measurements at a pair of adjacent sites
under the same atmospheric conditions and representing the two types of land use in
question. In modeling studies, the site pair consists of two subgrid tiles in the same
model grid.

Equation 10.43 applies to natural surfaces only. In the case of urbanization, �Ts

is either temporal change in the surface temperature resulting from replacement of
a natural surface by an urban landscape or difference in the surface temperature
between urban and the adjacent rural land in the site-pair analysis. In other
words, the temperature perturbation is equivalent to the urban heat island intensity.
Anthropogenic heat release (QA) is an added energy input to the energy balance
and should increase the surface temperature of the urban land. Buildings and other
artificial materials can store more radiation energy in the daytime than can natural
vegetation and soil; release of the stored heat (QS) at night contributes to nighttime
warming. For urban studies, Eq. 10.43 is amended to:
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Fig. 10.12 A site-pair strategy for quantifying biophysical contributions of deforestation to the
surface temperature change. Atmospheric forcing variables are identical between the paired sites
or subgrid land tiles
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.�S/ C 0

.1 C f /2
.R�
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C 0

.1 C f /2
.R�

n � QS C QA/.�f2/

C �0

1 C f
.�QS/ C 0

1 C f
QA: (10.46)

Equation 10.46 is the basis for attribution analysis of the urban heat island. The
terms on the right side of the equation represent contributions to the urban heat
island from changes in abledo (Term 1), convection efficiency (Term 2), evaporation
(Term 3), and heat storage (Term 4) and from anthropogenic heat release (Term 5).

We note that other solutions for the surface temperature exist in the literature. For
example, a solution can be derived from the Penman-Monteith big-leaf framework
(Eq. 10.47, Problem 10.11). The Penman-Monteith solution requires that the surface
net radiation Rn be given as an input variable. But because Rn itself depends on
Ts (Eqs. 2.44 and 2.45), this solution is an implicit function, and as such it is not
suitable for factor attribution analysis.
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10.7 Problems

10.1 Calculate the leaf-scale sensible and latent heat flux using the following
data: boundary layer resistance = 16 s m�1, stomatal resistance = 50 s m�1, leaf
temperature = 16.3 ıC, air temperature = 14.6 ıC, and water vapor mixing
ratio = 17.8 g kg�1.

10.2 What is the vapor pressure deficit if air temperature is 12.1 ıC and relative
humidity is 48.5%?

10.3 When exposed to solar radiation, thermometers can significantly overestimate
air temperature. Determine measurement error for thermometers of 20 �m in
diameter (fine-wire thermocouples) and 0.5 cm in diameter (mercury thermometers).
Do the calculation for two levels of wind speed (0.1 and 10 m s�1) and with the
thermometers in the shade (net radiation 2 W m�2) and exposed to the Sun (net
radiation 50 W m�2). Can you suggest preventive measures to minimize the bias
error? (Hint: These thermometers satisfy the energy balance equation for non-
evaporating leaves.)

10.4 Humans are homeotherms whose deep body temperature is regulated at about
37 ıC. In order to dissipate metabolic heat generated internally, they must keep the
skin temperature lower than 35 ıC. Otherwise their deep body temperature will
increase, leading to heatstroke or even death. Calculate the skin temperature of a
naked and perspiring human body in hot and humid conditions (air temperature
38.3 ıC and relative humidity 54.5%). Now repeat the calculation by increasing
the air temperature by 2 and 4 ıC to simulate heat stress and human health effects
caused by the urban heat island and by global warming, respectively. Under which
scenario(s) is the threshold temperature of 35 ıC exceeded? (Hint: The perspiring
human body can be considered as a wet bulb.)

10.5 Derive the Penman-Monteith Eq. 10.17 from Eqs. 10.13, 10.14, and 10.15.

10.6 The available energy is 293.4 W m�2, the vapor pressure deficit is 7.1 hPa,
the aerodynamic resistance is 44 s m�1, and the air temperature is 15.2 ıC. Find the
evaporation rate of a dry surface (canopy resistance 109 s m�1) and a wet surface
(canopy resistance 0 s m�1) using the Penman-Monteith equation.

10.7 Using the Penman-Monteith equation, explain why evaporation can take place
even without any available energy (i.e., Rn � G D 0). Where does the energy that
supports the evaporation come from? When this occurs, is the surface air layer
statically stable or unstable?

10.8 (a) Determine the canopy resistance rc of a well-watered soybean crop by
inverting the Penman-Monteith equation. The latent heat flux E is 365.0 W m�2,
the available energy flux Rn � G is 388.8 W m�2, the vapor pressure deficit D is
26.6 hPa, the air temperature Ta is 30.1ı C, and the aerodynamic resistance ra is
92 s m�1. (b) Repeat the calculation for a temperate evergreen forest under drought
stress (E D 119.8 W m�2, Rn � G D 487.9 W m�2, D D 7.6 hPa, Ta = 17.4ı C, and
ra D 13 s m�1).
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10.9 Calculate the reference evaporation rate using a wind speed of 3.5 m s�1 at the
height of 2.0 m, an air temperature of 17.2 ıC, a relative humidity of 43.2%, and an
available energy flux (Rn � G) of 201 W m�2.

10.10* Using the Priestley-Taylor equation 10.20 and the surface energy balance
equation 10.13, determine the Bowen ratio for a range of air temperature values
(1–20 ıC). Present your result in a graph. According to your result, how should
the Bowen ratio of lake systems vary with latitude? If two lakes have the same
temperature but are located at different altitudes (one on the Tibetan Plateau and the
other at the sea level), which lake is expected to have higher Bowen ratio?

10.11 (a) Confirm that the following expression is the big-leaf model solution for
the surface temperature:

Ts D Ta C ra C rc

�dcp
� �.Rn � G/ � �dcpD=.ra C rc/

� C �.ra C rc/=ra
: (10.47)

(b) Green oases are irrigated farmlands whose surface temperature is lower than that
of the surrounding dry landscape. Explain why an inversion typically prevails in the
surface layer over a green oasis. (c) It is hypothesized that by using white and highly
reflective materials as building roofs, a city will turn into a cold island whereby the
urban land is cooler than the surrounding rural land. Do you expect unstable lapse
conditions or stable inversion over this “white oasis”. Why?

10.12 Figure 10.13 is a comparison of the sensible heat flux calculated with
Eq. 10.14 against that measured with eddy covariance over a soybean crop. Explain
why the calculated flux is biased high at midday in the early growing season (leaf
area index 1.0) and why the bias diminishes as the canopy becomes fully closed in
the later part of the growing season (leaf area index 7.6).

10.13 The incoming longwave radiation flux is 437.3 W m�2 and the outgoing
longwave radiation flux is 494.5 W m�2. Calculate the surface temperature assuming
(1) that the surface is a blackbody and (2) that the surface has an emissivity value of
0.97.

Fig. 10.13 Comparison of observed (dots) and calculated sensible heat flux (lines) for a soybean
field. The calculation is made with Eq. 10.14 using the surface temperature measured with an
infrared thermometer (Data source: Lee et al. 2009)
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Table 10.1 Diagnostic variables of the surface energy balance at midday in the summer for
urban and rural land in the Eastern United States: K#, incoming solar radiation; L#, incoming
longwave radiation; ˛, surface albedo; rT , total heat resistance; ˇ, Bowen ratio; QS, heat storage;
QA, anthropogenic heat flux; Ta, air temperature at the blending height

K# L# rT QS QA Ta

Surface W m�2 W m�2 ˛ s m�1 ˇ W m�2 W m�2 K

Urban 709 418 0.18 62 2.3 125 57 299.3

Rural 709 418 0.11 35 1.7 88 0 299.3

10.14 (a) Show that the local climate sensitivity 0 has dimensions of K W�1 m2.
(b) Determine its value for a temperature of 273 and 293 K.

10.15 A typical energy redistribution factor is 6 at midday and 2 at midnight.
Estimate the anthropogenic heat contribution to the urban heat island if the
anthropogenic heat flux is 40 W m�2.

10.16* Using the diagnostic data in Table 10.1, estimate the contributions to the
urban heat island intensity from changes in surface albedo, convection efficiency,
Bowen ratio (or evaporation), and heat storage and from anthropogenic heat release.

10.17* In response to high human mortality in a heat wave event in 1995, the
city of Chicago has been promoting the use of reflective roof materials for urban
heat mitigation. According to a satellite study, this practice increased the citywide
albedo by about 0.02 from 1995 to 2010. Estimate the surface temperature reduction
caused by the albedo change. (Hint: Use the data provided in Table 10.1 for your
calculation.)

10.18 Using the two-source model, compute the soil evaporation and the plant
transpiration of an ecosystem with leaf area index of 4. The canopy resistance rc is
50 s m�1 and the ground resistance rg is 500 s m�1. The ground heat flux is approx-
imated as G D 0:2Rn;g. The meteorological conditions are aerodynamic resistance
ra = 42 s m�1, net radiation Rn = 400 W m�2, vapor pressure deficit D = 20 hPa, and
air temperature Ta = 25 ıC.

10.19* Using the two-source model, compute the fraction of total evaporation
contributed by plants (Ec=E) as a function of leaf area index L for ecosystems
with moist (ground resistance rg of 500 s m�1) and dry soil (rg of 2000 s m�1). The
mean stomatal resistance rs is 200 s m�1. The canopy resistance rc is parameterized
by Eq. 10.18, and the ground heat flux is approximated as G D 0:2Rn;g. The
meteorological conditions are the same as in Problem 10.18.

10.20* Atmospheric modelers do not use equations of the Penman-Monteith type
to compute the surface flux boundary conditions because the surface net radiation
Rn is a predicted variable, not a forcing variable. Instead, they must first solve the
surface temperature Ts and then use the resistance formulae to compute the fluxes.
Derive an analytical expression for Ts using Eqs. 10.14, 10.15, and 10.37. Assume
in your derivation that the ground heat flux is negligible.
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Chapter 11
Budgets of Heat, Water Vapor, and Trace Gases
in the Atmospheric Boundary Layer

11.1 Introduction

This chapter is an application of the energy and mass conservation principles to the
whole atmospheric boundary layer (ABL). We are interested in the diurnal evolution
of temperature and concentrations of water vapor, carbon dioxide, and other trace
gases in the ABL and in the mechanisms that drive their temporal changes. A
complete budget analysis requires that we quantify the time rate of change of these
scalar quantities, dynamically couple their surface-air exchanges to varying forcing
conditions in the ABL, and determine their transport between the ABL and the free
atmosphere.

By examining how the boundary layer communicates with the free atmosphere,
we gain an opportunity to understand how large-scale parameters that are external to
the boundary layer shape the overall characteristics of the boundary layer. One such
external parameter, which we have already encountered, is the pressure gradient
force associated with synoptic weather patterns. The balance of this force against
the Coriolis force results in the geostrophic wind (Eqs. 6.2 and 6.3). The work done
by the force on the moving air is the source of mean flow kinetic energy in the
boundary layer (Fig. 4.4). For the purpose of budget analyses, two other external
parameters are also important: large-scale horizontal flow divergence and vertical
gradients of these scalars in the free atmosphere. The mean vertical motion arising
from flow convergence and divergence can promote or hinder the development of
the boundary layer. The vertical gradients in the free atmosphere control the scalar
transport at the top of the boundary layer.

Our budget analysis emphasizes column-mean quantities. Let ˆ be a scalar
quantity. Its column mean is given by

ˆm D 1

zi

Z zi

0

ˆ dz; (11.1)
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where zi is the height of the boundary layer and subscript m is used to denote this
column mean operation.

Column integration was also a strategy used in Chap. 8 for analyzing the mass
and heat budgets of an eddy covariance control volume. A major difference is that
the top face of the control volume is fixed at the eddy covariance instrument height,
whereas the top of the ABL is evolving with time. The time rate of change of ˆm

is influenced not only by the transport of ˆ into and out of the ABL but also by the
fact that the thickness of the ABL or the volume of the diffusion media is changing
with time. Determination of zi, either via field observation or through mathematical
solution of the mass conservation of air, is a prerequisite for the budget analysis.

The ABL budget theory is relevant to several practical matters. First, the height
of the boundary layer is a critical parameter for the prediction of local air pollution
dispersion. Second, no method can measure directly the surface CO2 flux at the
landscape scale (10–100 km), but the flux can be inferred from the ABL CO2

budget if all other terms of the budget are known. Third, models of surface-air
exchanges, such as the Penman-Monteith model, use atmospheric variables in the
ABL as inputs, as if these variables were unaffected by the exchanges. In reality,
dynamic feedbacks exist between the ABL and the land surface, so that these
forcing variables themselves are evolving with time and must be solved from a set
of governing equations. The ABL budget equations can serve this purpose. Fourth,
the mass flux into fair-weather cumulus clouds is compensated by air subsidence
in the ABL. Knowledge of the ABL time evolution is helpful for cumulus cloud
parameterization.

11.2 The Slab Approximation of the Convective Boundary
Layer

In the slab approximation of the convective boundary layer, first proposed by D. K.
Lilly (1968), all variables are horizontally homogeneous, and therefore there is no
horizontal advection. The effect of large-scale flow convergence and divergence
is manifested in a non-zero mean vertical velocity. No turbulence exists in the
free atmosphere. In the ABL, turbulence is strong enough to maintain well-mixed
conditions (Fig. 11.1). The surface layer occupies only a very small portion of the
ABL, so it has negligible influence on the column mean potential temperature and
the gas mixing ratios. The capping inversion that separates the ABL from the free
atmosphere is infinitesimally thin, and the inversion strength is given by the potential
temperature jump across the inversion layer. These simplifications are collectively
referred to as the slab approximation because the profile shape has the appearance
of a block of slab.

By definition, the column mean quantities are

�m D 1

zi

Z zi

0

� dz; sv;m D 1

zi

Z zi

0

sv dz; sc;m D 1

zi

Z zi

0

sc dz: (11.2)
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Fig. 11.1 The slab approximation of the daytime convective boundary layer on land, showing the
profiles of potential temperature and water vapor and carbon dioxide mixing ratios

The inversion jumps are given as

�� D �C � �m; �v D sv;C � sv;m; �c D sc;C � sc;m; (11.3)

for temperature, water vapor, and carbon dioxide, respectively, where subscript +
denotes values in the free atmosphere just above the capping inversion.

The slab approximation yields simplified energy and mass conservation equa-
tions. In Chap. 6, we showed that different forces dominate the momentum con-
servation equations in the surface layer, the mixed layer, and the free atmosphere.
Similarly, the importance of the terms in the energy and mass conservation
Eqs. 3.26, 3.27, and 3.28 depends on vertical position. Let us analyze the situation
for each layer.

In the free atmosphere, all the Reynolds covariances vanish, and the energy and
mass conservation equations are reduced to a balance between the time rate of
change and vertical advection:

@�

@t
C w �� D 0; (11.4)

@sv

@t
C w �v D 0; (11.5)

@sc

@t
C w �c D 0; (11.6)

where

�� D @�

@z
; �v D @sv

@z
; �c D @sc

@z
; (11.7)
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Fig. 11.2 A schematic of
potential temperature
discontinuity at the capping
inversion

are the vertical gradient of potential temperature, water vapor mixing ratio, and CO2

mixing ratio in the free atmosphere.
Because �� is positive, Eq. 11.4 indicates that the potential temperature above

the boundary layer will increase with time if there is subsidence motion (w < 0), a
phenomenon known as subsidence warming.

At the capping inversion, the conservation equations require special treatment
because the scalar quantities are discontinuous. Mathematically, the discontinuity is
handled by first specifying a height range fzi � �; zi C �g for the capping inversion
layer, where � is a small height interval and then taking the limit � ! 0 (Fig. 11.2).
At height zi C �, which is slightly above the ABL, there is vertical advection but
no turbulent flux. At height zi � �, which is slightly below the ABL top, there is
turbulent flux but no vertical advection. The conservation of heat is expressed as

@�

@t
C w

@�

@z
D �@w0� 0

@z
: (11.8)

Similar equations can be written for other scalars. We will come back to Eq. 11.8 in
the next section and will show how to implement the two boundary conditions.

In the mixed layer, vertical advection can be omitted because the vertical tem-
perature and the mixing ratio gradients are negligible. The conservation equations
are given as

@�

@t
D �@w0� 0

@z
C 1

�dcp

@Rn

@z
� 

�dcp
Ec; (11.9)

@sv

@t
D �@w0s0

v

@z
C Ec

�d
; (11.10)

@sc

@t
D �@w0s0

c

@z
: (11.11)
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To acknowledge the possibility of cloud presence in the ABL, we have included Ec,
the rate of evaporation of liquid water in dimensions of kg m�3 s�1, as a source term
for water vapor. In the presence of cloud, the radiative flux divergence, @Rn=@z, is not
negligible and is a source of heat. Likewise, the latent heat consumed by evaporation
of cloud droplets represents a heat sink in the energy conservation equation.

The surface layer is assumed to be thin so changes in this layer do not affect
the ABL budget analysis. Large temperature, humidity, and CO2 gradients exist
between the surface and the mixed layer due to imperfect mixing and the presence
of sources and sinks at the surface. These gradients are used in the parameterization
of the surface Reynolds flux of heat .w0� 0/s, water vapor .w0s0

v/s, and carbon dioxide
.w0s0

c/s as

.w0� 0/s D � s � �m

ra
; (11.12)

.w0s0
v/s D sv;s � sv;m

ra
D s�

v .� s/ � sv;m

ra C rc
; (11.13)

.w0s0
c/s D sc;s � sc;m

ra
; (11.14)

where � s, sv;s, and sc;s are potential temperature and water vapor and CO2 mixing
ratios at the surface. These expressions serve as the lower boundary conditions for
the ABL budget equations and permit full interactions between the surface sources
and the state of the ABL.

11.3 Boundary-Layer Growth and Entrainment

Boundary-Layer Growth

Conceptually, the mechanisms responsible for ABL growth are rather straightfor-
ward. The ABL will expand upward if new air is added to the ABL column by
horizontal flow convergence or by entrainment from the free atmosphere and will
contract if air is removed from the column by flow divergence. Flow convergence
and divergence do not change the ABL column mean quantities because the air
advected horizontally is assumed to have the same properties of the air in the local
ABL domain. In contrast, entrainment typically increases the potential temperature,
reduces the water vapor mixing ratio, and in the growing season increases the CO2

mixing ratio in the ABL.
A governing equation for the ABL height zi can be obtained by manipulating

the energy conservation equation for the capping inversion layer. The derivation
involves two steps, integrating Eq. 11.8 with respect to z and taking the limit � ! 0.
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Integration of the time change term of Eq. 11.8 gives

Z ziC�

zi��

@�

@t
dz D @

@t

Z ziC�

zi��

�dz �
h
�.zi C �/ � �.zi � �/

i @zi

@t
; (11.15)

where we have used the Leibniz integral rule for differentiation:

@

@t

Z x2.t/

x1.t/
y.z; t/dz D

Z x2.t/

x1.t/

@y

@t
dz C y.x2.t/; t/

@x2

@t
� y.x1.t/; t/

@x1

@t
: (11.16)

We note that

�.zi � �/ D �m:

In the limit � ! 0,

Z ziC�

zi��

�dz ! 0; �.zi C �/ ! �C

So we obtain

lim
�!0

Z ziC�

zi��

@�

@t
dz D ���

@zi

@t
: (11.17)

Integration of the second term on the left side of Eq. 11.8 yields

Z ziC�

zi��

w
@�

@z
dz D

h
�.zi C �/ � �.zi � �/

i
w: (11.18)

The limit of this integral is

lim
�!0

Z ziC�

zi��

w
@�

@z
dz D �� w: (11.19)

Integrating the term on the right side of Eq. 11.8 and taking the limit, we have

lim
�!0

�
�
Z ziC�

z��

@w0� 0
@z

dz

�
D lim

�!0
.w0� 0/zi�� D .w0� 0/zi : (11.20)

Here .w0� 0/zi is the heat flux just below the capping inversion and is negative,
representing a downward transport of heat from the free atmosphere to the ABL.

Combining Eqs. 11.17, 11.19, and 11.20 with Eq. 11.8, we obtain a prognostic
equation for zi:

@zi

@t
D w � .w0� 0/zi

��

: (11.21)
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Fig. 11.3 Change of boundary-layer height due to flow divergence (a) and convergence (b)

Equation 11.21 is the outcome that the eddy heat flux just below the capping
inversion layer is exactly balanced by the downward heat transport associated with
vertical advection and air entrainment just above the inversion layer. It confirms the
statement we made earlier that flow convergence (w > 0 or ascending motion) and
entrainment cause the ABL to deepen and flow divergence (w < 0 or subsidence)
causes it to contract. These processes are illustrated graphically in Figs. 11.3
and 11.4b.

Having the dimensions of velocity, the term

we D � .w0� 0/zi

��

; (11.22)

is called the entrainment velocity. This velocity can be determined experimentally
using two methods. If measurements of the entrainment flux and the inversion jump
are available, we can be obtained from Eq. 11.22. If zi is measured continuously and
the large-scale subsidence velocity is given, we can be obtained from

we D @zi

@t
� w (11.23)

according to Eq. 11.21. In the absence of flow convergence or divergence, the
entrainment velocity is equal to the rate of ABL growth.

Solution of Eq. 11.21 requires that the mean vertical velocity w be prescribed and
that the entrainment velocity be either measured or parameterized. If data on flow
divergence is available, w is found by integrating the divergence rate vertically from
the surface to height zi (Eq. 3.18).
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Fig. 11.4 Physical models for turbulent diffusion and entrainment: (a) a diffusion membrane and
(b) a leaky and weightless plate

The Entrainment Process

Entrainment refers to the process whereby strands of air from the free atmosphere
are mixed into the ABL. Entrainment is different from pure turbulent diffusion
in one important aspect. Turbulent diffusion results in a net transport of the
diffusant, such as heat and CO2, usually in the direction from high temperature and
concentration to low temperature and concentration, but there is no net transport
of air or the diffusion media itself. In contrast, entrainment causes a downward
transport of air across the capping inversion layer. A good physical model for
turbulent diffusion is the cell membrane, which permits transport of salt from the
side of high salt concentration to the other side of low concentration but does
not permit bulk water movement through it (Fig. 11.4a). The entrainment process
can be understood by representing the inversion layer as a leaky and weightless
plate (Fig. 11.4b). This conceptualized plate is perforated with small openings. Each
opening is controlled by a one-way check valve, so air can travel downward but not
upward. As air bleeds through these openings, the plate will float upward because
we assume that the air in the ABL is incompressible. The free atmospheric air that
entered the ABL is quickly blended with the ABL air by the eddy motion confined
below the plate, and its heat and other constituents are immediately released into the
ABL.

Obviously, the leaky plate analog is an idealization of the actual entrainment
process. In the real atmosphere, the “instigator” responsible for the net downward
transport of the free atmospheric air is the eddy motion below the inversion layer.
Although eddies of all sizes are involved, it is large thermal plumes that are the most
effective in causing entrainment and in deepening the ABL. The process consists
mainly of three stages (Fig. 11.5; Sullivan et al. 1998). The first stage is folding of
the inversion interface. Having high buoyancy, the thermal plume is able to push
the interface upward and cause it to bend over. In the second stage, the bending
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Fig. 11.5 Entrainment triggered by a large thermal plume according to the large-eddy simulation
study of Sullivan et al. (1998)

is so severe that a pocket of the free atmospheric air becomes detached from the
interface and is trapped in the ABL. In stage three, the detached air pocket is quickly
dispersed in the old ABL air by actions of smaller-scale turbulent eddies, and the
heat contained in the pocket is released into the ABL, contributing to the increase in
the ABL potential temperature.

The Role of Boundary-Layer Clouds: Cumulus Clouds

The influence of cloud on ABL development depends on cloud type. The formation
of shallow cumulus clouds causes subsidence motion, whereas the presence of
stratocumulus clouds promotes turbulence near the capping inversion with the
consequence of enhanced entrainment.

Covering a few percents of the sky, shallow cumulus clouds resemble the shape
of cauliflowers, having uneven upper boundaries but a flat and uniform cloud base.
They are formed in fair weather conditions at a humidity exceeding 70–80%. The
cooling mechanism responsible for their formation is adiabatic cooling of vigorous
convective thermals. As these thermals rise vertically, they will cool adiabatically
at a dry adiabatic lapse rate of 9.8 K km�1, until the dew point temperature is
reached, at which point condensation occurs and puffy clouds appear. The lifting
condensation level, that is, the height at which condensation first occurs, is tens of
meters to several hundred meters above the ABL top. The latent heat released by
condensation increases the buoyancy of these thermals, causing them to rise even
further. The release of latent heat is one reason for why cloud-forming thermals
can penetrate into the free atmosphere but dry thermals usually cannot. This type of
cumulus clouds is sometimes referred as active cumulus because they pump air out
of the ABL (Fig. 11.6; Stull 1988).

Mass conservation requires that air should move downward in spaces in between
the clouds to compensate for the in-cloud upward venting of air from the ABL (Stull
1988). Let �c be the fraction of sky covered by the clouds, wc (> 0) be the mean
vertical velocity in the clouds, and wf (< 0) be the mean vertical velocity in regions
outside the clouds. Mass conservation requires

�cwc C .1 � �c/wf D 0 (11.24)
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Fig. 11.6 Venting of air out of the atmospheric boundary layer into a cumulus cloud (gray arrow)
is compensated by slow subsidence motion in the cloud-free region (solid black arrows)

Here wf describes the mean subsidence of air outside the clouds. Because �c is
small, wf is much smaller in magnitude than wc.

The time rate of change of the ABL height is now given by,

@zi

@t
D w � �cwc � .1 � �c/

.w0� 0/zi

��

(11.25)

D w C .1 � �c/wf � .1 � �c/
.w0� 0/zi

��

(11.26)

' w C wf � .w0� 0/zi

��

; (11.27)

where the approximation leading to Eq. 11.27 is based on the fact that �c << 1. The
first term on the right side of Eq. 11.27 is the vertical velocity arising from large-
scale flows which affect both the cloud and cloud-free portions of the ABL. The
second term is subsidence that counterbalances the air that feeds into the clouds
and acts to retard the ABL growth. The third term represents entrainment in the
cloud-free portion of the ABL.

The formation of cumulus clouds imposes dynamic constraints on the ABL (Stull
1988). The clouds owe their existence to vigorous convective motions which can
only occur if there is strong solar heating of the surface. For convection to continue,
there cannot be too many clouds in the sky, or else the surface will not receive
enough solar radiation to support energetic thermals. Fewer and weaker thermals
will slow down the entrainment process. Because these clouds pump air out of
the ABL, they act to reduce the ABL vertical extent. But if the ABL becomes
too shallow, rising thermals will not have enough time to reach the dew point
temperature, and clouds are less likely to form. These negative feedbacks have a
tendency to force the cloudy ABL into a quasi-steady state, whereby in the absence
of large-scale flow convergence, the mass flux into the clouds from the ABL is
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Fig. 11.7 A boundary layer topped by a deck of stratocumulous clouds: left, profile of potential
temperature; right, top-down mixing caused by radiative cooling of the cloud top

balanced by the air that entrains from the free atmosphere into the ABL. The result
is that the growth of the ABL is temporarily halted. Thus we have

@zi

@t
D 0; wf D .w0� 0/zi

��

D �we; wc D 1 � �c

�c
we: (11.28)

The Role of Boundary-Layer Clouds: Stratocumulus Clouds

Unlike active cumulus clouds, stratocumulus clouds are found within the ABL. The
ABL now consists of a cloud layer in the upper part and a sub-cloud layer between
the surface and the cloud base (Fig. 11.7). Stratocumulus clouds are 200–400 m
thick and can extend unbroken for several hundreds of kilometers horizontally.
Impeded by a strong capping inversion, these clouds tend to have a flat top, but
may show a lumpy cloud base due to turbulent motions. Conditions that favor
stratocumulus formation include strong stability of the lower troposphere, large-
scale subsidence motion, and a continuous supply of surface moisture. Strong
stability and subsidence motion prevent the clouds from developing vertically
beyond the ABL. The supply of moisture from the surface is essential for sustaining
the clouds because without it entrainment of dry air from the free atmosphere would
cause the clouds to dissipate. These conditions are common over the cool regions of
the tropical and subtropical oceans.

In the presence of stratocumulus, entrainment is maintained by a top-down
mixing mechanism. Because the sky is overcast, the surface sensible heat flux, on
the order of 10 W m�2, is too weak to generate convective eddies. Instead, a major
source of turbulent motion is located near the cloud top. Cloud droplets are very
efficient at absorbing and emitting longwave radiation, but in the top 10–30 m of the
cloud layer, the emission is stronger than the absorption. The net longwave radiative
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cooling at the cloud top generates static instability, meaning that the temperature at
the cloud top is lower than in the middle and lower portion of the cloud layer and
convective overturning occurs. Because the turbulent motion takes place very close
to the capping inversion, it can bring, in an intermittent fashion, filaments of dry and
warm air from the free atmosphere to the cloud layer. Mixing of the dry air with the
saturated air in the clouds causes some cloud droplets to evaporate, which further
enhances local cooling. Some of the air pockets become so cool and dense that the
negative buoyancy force can pull them all the way down to the surface (Fig. 11.7).

The convective overturning is most pronounced at night. During the day,
absorption of solar radiation by the cloud layer partially offsets the longwave
radiative cooling and weakens the downward heat transport. For this reason, the
cloud-topped ABL is shallower during the day than at night, although this diurnal
variation is still much smaller than that of a cloud-free ABL over land.

Field observations and large-eddy simulation studies show that the top-down
convective motion is strong enough to mix thoroughly the cloud layer and the
sub-cloud layer, as long as the ABL is not too deep (zi <	 800 m; Wood 2012).
Although we expect the mixing ratio of an inert gas, such as carbon dioxide, to be
constant with height throughout the ABL, the potential temperature � and the vapor
mixing ratio sv are constant only in the sub-cloud layer. In the cloud layer, neither �

nor sv is a conserved quantity due to phase changes and radiative cooling. However,
the total water mixing ratio and the equivalent potential temperature are found to
be conserved quantities. The total water mixing ratio is the total amount of water
(liquid plus vapor) contained in an air volume having a unit mass of dry air. The
equivalent potential temperature is the temperature an air parcel would have if it
were raised pseudo-adiabatically until all the vapor has been converted to the liquid
form and has precipitated out and then brought down adiabatically to the sea level.

Stratocumulus clouds can persist for days without breaking up (Wood 2012). The
relatively steady nature of the cloud layer and the lack of ABL growth suggest that
the mean entrainment should be balanced by large-scale subsidence. Let D be the
large-scale divergence rate

D D �@u

@x
� @v

@y
: (11.29)

By the continuity requirement, the large-scale mean vertical velocity at the top of
the boundary layer is

w D Dzi: (11.30)

The entrainment velocity can be approximated by

we D �Dzi: (11.31)
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11.4 Heat Budget in the Convective Boundary Layer

Let us first consider a cloud-free convective boundary layer where the radiation flux
divergence and water phase changes can be omitted. The heat budget equation is
found by integrating Eq. 11.9 with respect to height:

zi
@�m

@t
D .w0� 0/s � .w0� 0/zi : (11.32)

Not surprisingly, warming of the ABL air column is controlled by the sum of the
heat flux from the surface and that from the free atmosphere. At the same amount
of heat input, the warming rate is high in the morning when the ABL is shallow and
is reduced in the afternoon when the ABL becomes deep.

So far we have obtained three equations (Eqs. 11.12, 11.21, and 11.32) for the
heat budget analysis, but there are five unknowns in these equations: �m, .w0� 0/s,
.w0� 0/zi , zi, and �� . (The large-scale mean vertical velocity w is a prescribed
parameter.) To overcome the closure problem, we need two more equations.

The first additional equation, a prognostic equation for the temperature inversion
jump or the inversion strength �� , can be derived from Eqs. 11.3 and 11.4. Let zf be
a reference height in the free atmosphere. The potential temperature at the bottom
of the free atmosphere can be expressed as

�C D �� .zi � zf / C �.zf /; (11.33)

(Vilá-Guerau de Arellano et al. 2016). Differentiating Eq. 11.33 with respect to time
and making use of Eq. 11.4, we obtain

@�C
@t

D ��

�
@zi

@t
� w

�
: (11.34)

The next step of this derivation involves differentiating �� in Eq. 11.3, yielding the
prognostic equation for �� ,

@��

@t
D ��

�
@zi

@t
� w

�
� @�m

@t
: (11.35)

A typical value of �� is 2 K over land at midday.
According to Eq. 11.35, three factors can change the inversion strength

(Fig. 11.8). If everything else remains the same, deepening of the ABL will raise
the base of the free atmosphere. As a result, the temperature at the base �C will
increase, leading to a stronger capping inversion. The capping inversion can also be
strengthened by subsidence warming of the free atmosphere. However, warming of
the ABL air column will weaken the inversion.

The second addition to the system of heat budget equations is based on a closure
assumption for the entrainment heat flux .w0� 0/zi . In the state of free convection,
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Fig. 11.8 Change to the strength of the capping inversion from time t1 to time t2 due to deepening
of the boundary layer (a), large-scale subsidence (b), and warming of the ABL air column (c)

buoyancy production linked to the surface heat flux is the only source of turbulent
kinetic energy. Consideration of the TKE budget near the capping inversion leads to
the following entrainment relation for heat:

.w0� 0/zi D �AT.w0� 0/s; (11.36)

where the entrainment ratio AT is approximately 0.2 at the free convection limit.
Field observations and large-eddy simulation studies show that the actual entrain-
ment ratio is slightly higher than this, typically falling in the range of 0.2–0.4, as a
result of the additional contribution of shear-generated turbulence.

Equations 11.12, 11.21, 11.32, 11.35, and 11.36 form a closed set of equations
for the heat budget analysis.

One application of the heat budget equations is prediction of the ABL height zi.
If we impose the restriction that the initial ABL height is zero and omit large-scale
subsidence, we obtain from these equations (with AT D 0:2) a model for zi and �� :

zi '



2:8

��

Z t

0

.w0� 0/s dt0
�1=2

; (11.37)

�� ' 0:14�� zi; (11.38)

where the integration starts at about the time of sunrise when the surface heat flux
first becomes positive for the day (Tennekes 1973). Equation 11.37 underestimates
the ABL height in the first 1–2 h after sunrise because the initial ABL height is set
to zero, but describes the asymptotic behavior of zi in the later hours of the day
reasonably well (Fig. 11.9).

If we assume that the product zi�� is invariant with time and once again omit
large-scale subsidence, we obtain another formulation for zi:

zi D
�

Œzi.0/�2 C 2

��

Z t

0

.w0� 0/s dt0
� 1=2

; (11.39)

(Tennekes 1973).
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Fig. 11.9 Daytime evolution of the boundary-layer height zi and the capping inversion strength
�� : Solid lines, actual changes; dashed lines, asymptotic approximations given by Eqs. 11.37
and 11.38. The initial time coincides approximately with sunrise

Equations 11.37 and 11.39 are models of the ABL height. In the real world, zi is
determined by observation of the potential temperature profile (Problems 6.2, 11.15,
and 11.16).

The above discussion is applicable to a cloud-free boundary layer. If the bound-
ary layer is topped by stratocumulus clouds, several modifications are required of the
governing equations. Equations 11.12, 11.21, and 11.35 are still valid, but Eq. 11.32
should be modified to account for the radiation flux divergence in the cloud layer
and the latent heat associated with phase changes of water. Because turbulence is
initiated at the ABL top and because the surface heat flux is small, Eq. 11.36 is no
longer an appropriate parameterization for the entrainment flux.

11.5 Carbon Dioxide Budget in the Convective Boundary
Layer

The carbon dioxide budget in the convective boundary layer is governed by the
integral form of Eq. 11.11:

zi
@sc;m

@t
D .w0s0

c/s � .w0s0
c/zi ; (11.40)
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where .w0s0
c/zi is the entrainment flux of CO2 at the capping inversion. In contrast to

the heat budget Eq. 11.32 where the two heat fluxes are in opposite directions, the
entrainment CO2 flux and the surface CO2 flux .w0s0

c/s generally have the same sign.
Both are negative or directed toward the surface in the growing season and positive
or directed away from the surface in the nongrowing season. Equation 11.40 holds
for both cloud-free and cloud-topped boundary layers.

Another difference between CO2 and heat is that CO2 is a passive scalar but
heat is not. As explained earlier, thermals linked to the surface heat flux are the
main instigator causing entrainment of the free atmospheric air into the ABL. For
this reason, the entrainment heat flux can be parameterized as being proportional to
the surface heat flux (Eq. 11.36). The same parameterization would not work for the
CO2 entrainment flux because the surface CO2 flux has no direct consequence on the
entrainment process aloft. But provided that zi is predicted by the set of equations
that govern the heat budget, .w0s0

c/zi can be obtained from

.w0s0
c/zi D ��c

�
@zi

@t
� w

�
; (11.41)

where �c is the CO2 jump across the capping inversion (Fig. 11.1 and Eq. 11.3).
Equation 11.41 has been derived from the CO2 conservation equation for the cap-
ping inversion layer using the same strategy that yields Eq. 11.21 (Problem 11.22).

The CO2 inversion jump �c obeys

@�c

@t
D �c

�
@zi

@t
� w

�
� @sc;m

@t
: (11.42)

This prognostic equation has been derived using the same method deployed for the
derivation of Eq. 11.35 (Problem 11.23).

Therefore, a complete modeling study of the ABL CO2 budget requires that
we solve four unknowns [sc;m, .w0s0

c/s, .w0s0
c/zi , and �c] from four equations

(Eqs. 11.14, 11.40, 11.41, and 11.42). The CO2 mixing ratio at the surface sc;s and
the ABL height zi are input variables given by a biochemical parameterization of
photosynthesis and by modeling of the ABL heat budget, respectively.

Experimental data on �c are scanty. The few snapshot CO2 profile observations
reported in the literature indicate that the midday �c is on the order of 15 mg kg�1

(or molar mixing ratio about 10 ppm) over land in the growing season. Little is
known experimentally of temporal variations of �c, but some inferences can be
made from the above governing equations. Because there is no CO2 source or sink
in the free atmosphere, the CO2 mixing ratio gradient �c is zero. Taking advantage
of this new constraint, we simplify Eq. 11.42 to:

@�c

@t
D �@sc;m

@t
: (11.43)
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Even though the temporal variation of the column mean CO2 mixing ratio is
controlled by the net balance between the surface and the entrainment flux, the
temporal variation of the CO2 inversion jump is only dependent on variations of
the CO2 concentration in the ABL. Assuming that the large-scale mean velocity is
zero and eliminating sc;m and .w0s0

c/zi from Eqs. 11.40, 11.41, and 11.43, we obtain

@.zi�c/

@t
D �.w0s0

c/s: (11.44)

Time integration of Eq. 11.44 yields

zi.t/�c.t/ � zi.0/�c.0/ D �
Z t

0

.w0s0
c/s dt (11.45)

A graphic interpretation of Eq. 11.45 is given in Fig. 11.10. The area enclosed
by the CO2 mixing ratio profiles at time 0 and time t is equal to the cumulative
surface CO2 flux between the two times. If the ABL height is constant, which is an
approximate situation for late afternoon hours, the increase in �c over time is totally
attributed to the cumulative removal of CO2 due to photosynthetic uptake (Fig. 11.10
left panel). More generally, the change in �c is influenced both by variations in the
ABL height and by the surface CO2 uptake (Fig. 11.10 right panel).

A consequence of the slab approximation of the convective ABL is entrainment
similarity, which states that the entrainment flux of a scalar is proportional to the
inversion jump of the scalar and that the same proportionality coefficient holds
regardless of whether the scalar is passive or active. According to Eqs. 11.21, 11.22,
and 11.41, this coefficient is represented by the entrainment velocity we, and
the mathematical expression of entrainment similarity between heat and carbon
dioxide is

we D � .w0� 0/zi

��

D � .w0s0
c/zi

�c
: (11.46)

Fig. 11.10 Time evolution of the CO2 inversion jump under the condition of a constant ABL
height (left) or of a time-varying ABL height (right)
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Entrainment similarity is the theoretical basis for the experimental technique that
deploys a chemical tracer, such as ozone or dimethyl sulfide, for the determination
of we (Faloona et al. 2005). Instead of measuring the heat flux and the potential
temperature, we measure the tracer flux below the capping inversion and the
tracer concentration difference between the ABL and the free atmosphere. The
entrainment velocity we is calculated as the ratio of these two quantities.

Another experimental technique, referred to as the ABL budget technique, aims
to infer the surface flux from boundary-layer measurements (Cleugh et al. 2004).
Combining Eqs. 11.40 and 11.41, we obtain an expression for the surface flux:

.w0s0
c/s D zi

@sc;m

@t
� �c

�
@zi

@t
� w

�
: (11.47)

The large-scale mean vertical velocity w is estimated with flow data at the synoptic
scale. Because field campaigns of this kind are typically conducted in fair weather
conditions associated with a high-pressure system, we expect subsidence motion or
negative w at the top of the ABL. Other quantities on the right side of Eq. 11.47
are determined with measurements of the CO2 profile and the boundary-layer
height at a sub-day resolution (Problem 11.16). Large eddies in the convective
boundary layer effectively smooth out the influences of small-scale heterogeneity
of the surface, so the measured concentration profile can be regarded as a “natural
integrator” of the surface source contributions in a landscape that extends 10–
100 km upwind. In theory, the ABL budget should be equal to the aggregation of
the fluxes from individual patches as obtained using the eddy covariance approach,
but such measurements are cost prohibitive.

11.6 Water Vapor Budget in the Convective Boundary Layer

We present here without derivation equations for the water vapor budget of a cloud-
free convective boundary layer:
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v/s � .w0s0
v/zi ; (11.48)
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@�v

@t
D �v

�
@zi

@t
� w

�
� @sv;m
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; (11.50)

where .w0s0
v/zi is the entrainment water vapor flux and �v is the water vapor jump

across the capping inversion layer. The unknowns to be solved from these equations
and Eq. 11.13 are sv;m, .w0s0

v/s, .w0s0
v/zi , and �v . Once again, the ABL height zi is
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an input variable provided by the heat budget analysis. The surface temperature
and the surface vapor mixing ratio are solved from the surface energy balance
equation. In this calculation, the surface and the boundary-layer processes are fully
coupled: calculation of the surface heat and water vapor fluxes uses the column
mean quantities �m and sv;m as inputs, and the calculated fluxes are used to determine
time changes in these quantities and the boundary-layer height (McNaughton and
Spriggs 1986).

If clouds are present in the boundary layer, Eq. 11.48 should be amended to
account for phase changes of water.

The fully coupled calculation is a prognostic application. In prognostic mode,
the unknown variables are solved numerically from their governing equations.
Measurements of these variables at sunrise are required to initialize the model. At
the subsequent time steps, these variables are predicted by integrating the budget
equations forward in time.

The ABL budget equations are also used in diagnostic mode, mostly by
experimentalists, to understand one specific aspect of the ABL. In a diagnostic
application, a subset of the equations is deployed to estimate one variable from
measurements made of the other variables. For example, by measuring the inversion
strength and the entrainment heat flux, we can estimate the ABL growth rate using
one equation (Eq. 11.21). Another case in point is the ABL budget technique for
quantifying the surface water vapor flux at the landscape scale. The diagnostic
equation is obtained by elimination of the entrainment water vapor flux from two of
the governing equations (Eqs. 11.48 and 11.49):
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Similar to estimation of the landscape-scale CO2 flux (Eq. 11.47), in this diagnostic
analysis, the surface water vapor flux is the target variable to be estimated, and zi,
sv;m and �v are measured variables (Problem 11.15).

11.7 Trace Gases in the Nighttime Stable Boundary Layer

The boundary layer over land is generally stable at night. Mixing is maintained
by shear-generated turbulence which is strongest near the ground and is very weak
at the top of the Ekman layer. That buoyancy acts to suppress turbulent motion
has two consequences. First, the slab model is no longer appropriate because eddy
mixing is not vigorous enough to sustain a constant profile of potential temperature
(Fig. 6.3). Gaseous mixing ratios are expected to show steep vertical gradients too:
if the ground surface is a source of these gases, they will accumulate near the ground
rather than diffusing uniformly in the boundary layer. Second, turbulent exchange
is negligible at the top of the boundary layer and can be omitted from the budget
analysis.
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Let sy be the mixing ratio of trace gas y. The ABL budget of the trace gas is
governed by

zi
@sy;m

@t
D .w0s0

y/s (11.52)

where sy;m is the column mean mixing ratio of trace gas y, .w0s0
y/s is the surface flux

of gas y, and zi is taken as the height of the Ekman layer. Dimensional analysis of
the momentum equations yields the so-called Zilitinkevich relation for zi in stable
conditions:

zi ' 0:4.u�L=f /1=2; (11.53)

where u� is the surface friction velocity, L is the Obukhov length, and f is the
Coriolis parameter.

Equation 11.52 can be used in diagnostic mode to infer the surface flux
from measurement of the time change of the column mean concentration. An
advantage of this nocturnal ABL budget technique over the daytime convective
ABL technique is that the nocturnal ABL is shallow, with a depth of about 200 m.
Profile measurements can be made on a tall tower or with a tethersonde, at more
frequent time steps than would be possible with radiosonde measurements in a deep
convective ABL.

A major source of uncertainty of the nocturnal ABL technique lies in determi-
nation of the boundary-layer height. (The Zilitinkevich relation is accurate to about
50%.) To avoid the need for zi, we introduce an additional trace gas x, which is
measured simultaneously with gas y and whose surface flux .w0s0

x/s is known either
via eddy covariance measurement or through a predictive model parameterization.
Integration of their budget equations over time yields

sx;m.t/ D sx;m.0/ C t
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are the mean surface fluxes between time 0 and time t. Eliminating zi from
Eqs. 11.54 and 11.55, we obtain,

sy;m.t/ D sy;m.0/ C < .w0s0
y/s >

< .w0s0
x/s >

Œsx;m.t/ � sx;m.0/�: (11.56)
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Fig. 11.11 Relationship between two trace gases in the stable boundary layer at night. (a) Time
series of the gas mixing ratios at a single height; (b) correlation between the two mixing ratios

Therefore, the column mean mixing ratio of trace gas y is linearly correlated with
that of trace gas x, and the slope of this linear relation is identical to their flux ratio.
The actual flux of y is then calculated as the product of the slope value and the flux of
trace gas x. In this application, gas x serves as a tracer, and gas y is the measurement
target.

In practice, this tracer correlation method is often relaxed to

sy D a C bsx; (11.57)

where sy and sx are the mixing ratios of trace gas y and x measured at a single level
near the ground surface (Fig. 11.11). The slope parameter b, determined by linear
regression, represents the flux ratio of trace gas y to x.

11.8 The Equilibrium Boundary Layer

Equilibrium Boundary Layer Over Oceans

Historically, the concept of equilibrium boundary layer is a description of steady-
state conditions over the ocean that persist for a period longer than 24 h (Betts
1989). Several perspectives on this equilibrium state are satisfied simultaneously.
In compliance with the mass conservation of air, the mean entrainment velocity is
balanced by the large-scale subsidence velocity so that the ABL height is maintained
constant over time. Likewise, the supply of water vapor via surface evaporation is
equal to the rate of removal of water vapor by entrainment at the top of the ABL.
There can be phase changes of water in the ABL, but no precipitation is produced as
a result. In terms of energy conservation, a balance exists between the surface and
the entrainment heat fluxes and the rates of radiative and evaporative cooling, so the
column mean potential temperature is constant over time.
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Oceanic regions most conducive to the equilibrium state are in the subsidence
branches of the Hadley cell and the Walker circulation. The ABLs in these regions
are a source of moisture to the free atmosphere, feeding precipitating clouds in the
ascending branches of the circulations.

The slab model is an appropriate framework for investigating the equilibrium
boundary layer. Because all the time change terms can be omitted, the model
equations become simplified algebraic expressions linking the ocean surface tem-
perature, the ABL state variables, and conditions in the troposphere. Researchers
use the model to study the interactions between ABL processes and parameters
external to the ABL, including tropospheric wind, moisture status, lapse rate, and
subsidence.

Equilibrium Boundary Layer Over Land

The equilibrium boundary layer concept has been extended to describe the mean
state of the ABL over land over periods of several weeks (Betts et al. 2004; Helliker
et al. 2004). There are obviously large sub-day variations, but these variations are
smoothed out by averaging over the 24 h cycle. In the growing season, the surface
is a source of carbon dioxide at night and a sink during the day (Fig. 11.12). At the
top of the ABL, the flux occurs only in the daytime convective phase. The nocturnal
boundary layer is just a CO2 accumulation phase with virtually no transport to the
free atmosphere. However, the 24 h mean surface flux is in balance with the mean
flux at the top of the boundary layer.

Fig. 11.12 A composite diurnal variation of the growing-season CO2 flux at the surface and at the
top of the ABL. The dashed lines indicate 24-h means
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In the absence of horizontal advection, this mean state for CO2 is expressed as

OFc;s D OFc;t (11.58)

where OFc;s is the mean surface CO2 flux and OFc;t is the mean CO2 flux at the top of
the boundary layer. Because the slab model is not valid at night, we cannot obtain an
expression for OFc;t by simply performing time averaging operation on the slab model
Eq. 11.47. However, the entrainment flux formulation of the slab model (Eq. 11.46)
inspires us to propose the following parameterization for OFc;t

OFc;t D W�d.Osc;C � Osc;m/; (11.59)

where W.< 0/ is a “mixing velocity” and Osc;C and Osc;m are long-term (weeks) mean
CO2 mixing ratios in the free atmosphere and in the boundary layer, respectively. It
is understood that OFc;s here is a landscape-scale quantity since Osc;m is influenced by
surface sources that extend 10–100 km upwind.

We have shown that in the convective boundary layer, the entrainment CO2 flux
is equal to the product of the entrainment velocity and the concentration difference
across the capping inversion layer. Similarly, the long-term mean ABL flux to the
free atmosphere is proportional to the mean concentration difference between the
free atmosphere and the ABL, and the proportionality coefficient W also has the
dimensions of velocity.

Combination of Eqs. 11.58 and 11.59 yields

OFc;s D W�d.Osc;C � Osc;m/: (11.60)

Equation 11.60 is the basis for the equilibrium ABL technique for inferring
monthly to annual mean CO2 flux of a landscape from atmospheric concentration
measurements.

Application of Eq. 11.60 requires an independent method for determining W.
There is evidence showing that in continental regions subject to persistent subsi-
dence motion, such as the central U S, the mixing velocity W is approximately equal
to the long-term mean vertical velocity observed above the mean ABL. However, in
regions influenced by large-scale ascending motion, such as eastern China during
the monsoon season, W cannot be substituted by the mean vertical velocity of the
atmosphere. More generally, water vapor is used as a convenient tracer gas to help
constrain W. In the mean state, the surface evapotranspiration OFv;s is balanced by
the water vapor flux to the free atmosphere, as

OFv;s D W�d.Osv;C � Osv;m/; (11.61)

where Osv;C and Osv;m are long-term mean water vapor mixing ratios in the free
atmosphere and in the boundary layer, respectively. Since estimates of OFv;s are
readily available, either via field measurement or land-surface model calculation,
Eq. 11.61 can be used to find W (Problem 11.20). For best results, Osv;m and Osc;m

should be observed at a level above the mean nocturnal surface inversion layer.
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11.9 Problems

11.1 Under what conditions is the entrainment velocity equal to the time rate of
change of the boundary-layer height? Assuming that these conditions are satisfied,
estimate the entrainment velocity using the profile data shown in Fig. 6.11.

11.2 The entrainment ozone flux in a marine boundary layer topped by stratocumu-
lus clouds is �8:1 ppb cm s�1, and the ozone concentration jump across the capping
inversion is approximately 15 ppb (Faloona et al. 2005). What is the entrainment
velocity?

11.3 For a heat flux of �0:03 K m s�1 below the capping inversion, an inversion
strength of 1.7 K, a horizontal flow divergence rate of 2�10�6 s�1, and a boundary-
layer height of 650 m, find the rate of boundary-layer growth.

11.4 The atmospheric boundary layer is in a quasi-steady state. Estimate the mean
vertical velocity in cumulus clouds wc if the cumulus cloud fraction is 0.04, the
entrainment velocity is 0.02 m s�1, and there is no large-scale subsidence motion.

11.5 A reasonable estimate of the mean vertical velocity wc in shallow cumulus
clouds formed in fair weather conditions can be obtained from the convective
velocity scale w�, as

wc ' w� D



g

� s

.w0� 0/szi

�1=3

; (11.62)

(Vilá-Guerau de Arellano et al. 2016). The surface heat flux .w0� 0/s is 0.31 K m s�1,
the entrainment flux is given by the closure Eq. 11.36 (with AT D 0:2), the inversion
temperature jump �� is 1.5 K, the boundary-layer height zi is 950 m, the large-scale
subsidence is negligible, and the boundary layer is in a quasi-steady state. Determine
the fraction of the sky occupied by clouds.

11.6 Air temperature in the free atmosphere is generally lower than that in the
boundary layer. Why do we say that entrainment of the free atmospheric air into
the boundary layer will cause warming of the boundary layer?

11.7 The surface heat flux is given by

.w0� 0/s.t/ D 0:1 sin.� t=12/ .0 < t < 12/ (11.63)

where .w0� 0/s is in K m s�1 and t is time in hours since sunrise. The boundary-
layer height is 0 m at sunrise. The large-scale flow divergence rate is zero. The
potential temperature gradient in the free atmosphere �� is 3.3 K km�1. Estimate
the boundary-layer height and the inversion temperature jump at hourly intervals
from t D 1 to 10 h.
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11.8 Repeat the calculation of Problem 11.7. But this time the boundary-layer
height zi and the temperature inversion jump �� are 200 m and 2.3 K at sunrise,
and the product zi�� is invariant with time.

11.9 The surface heat flux is given by Eq. 11.63. The entrainment heat flux is given
by the entrainment parameterization Eq. 11.36 with AT D 0:2. The initial column
mean potential temperature is 281.l K. Using the boundary-layer height obtained in
Problem 11.8, predict the column mean potential temperature at hourly intervals
from t D 1 to 10 h.

11.10* The surface heat flux is given by Eq. 11.63. The initial zi is 200 m, the initial
�� is 2.3 K, and �� is 3.3 K km�1. Solve numerically the boundary-layer height
zi and the inversion strength �� for t D 1 to 10 h from Eqs. 11.21, 11.32, 11.35,
and 11.36. The large-scale mean vertical velocity w is zero. Compare these
numerical solutions with the results obtained in Problems 11.7 and 11.8.

11.11* Repeat the calculation of Problem 11.10 but with a large-scale mean vertical
velocity of �0:5�10�2 m s�1. How does large-scale flow subsidence affect the ABL
growth and the capping inversion strength?

11.12 For an entrainment velocity of 0.41 cm s�1, a CO2 concentration jump across
the capping inversion of 20 mg kg�1, and a zero subsidence velocity, find the
entrainment CO2 flux.

11.13 The surface CO2 flux is given by

.w0s0
c/s.t/ D �1:2 sin.t�=12/ .0 < t < 12/ (11.64)

where .w0s0
c/s is in mg kg�1 m s�1 and t is time in hours since sunrise. The

initial CO2 concentration jump across the capping inversion is �5 mg kg�1. Using
Eq. 11.45 and the boundary height obtained in Problem 11.8, estimate the concen-
tration jump �c at hourly intervals from t D 1 to 10 h.

11.14 The entrainment heat flux is �0:03 K m s�1, and the temperature, water
vapor, and CO2 inversion jumps are 1.6 K, �2:0 g kg�1, and 12.3 mg kg�1, respec-
tively, in a convective boundary layer. Find the entrainment water vapor and CO2

fluxes.

11.15 Using the profile data shown in Fig. 11.13a and the ABL technique
(Eq. 11.51), estimate the landscape water vapor flux and the latent heat flux between
10:00 and 14:00 local time. (Hint: There is no large-scale flow convergence or
divergence.)

11.16 Using the profile data shown in Fig. 11.13b and the ABL technique
(Eq. 11.47), estimate the surface carbon dioxide flux between 10:00 and 14:00
local time. (Hint: There is no large-scale flow convergence or divergence.)

11.17 For an Obukhov length of 20.5 m, a surface friction velocity of 0.22 m s�1,
find the boundary-layer height.
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Fig. 11.13 Profiles of water vapor (a) and carbon dioxide mixing ratio (b) in a cloud-free
convective boundary layer. Time marks are local time (Data source: Huang et al. 2011)

Fig. 11.14 Tethersonde
profiles of CO2 mixing ratio
in a nocturnal boundary layer
over a pasture land (Data
source: Denmead et al. 1996)

11.18 Using the profiles of CO2 mixing ratio shown in Fig. 11.14 and the nocturnal
ABL technique (Eq. 11.52), find the surface CO2 flux in �mol m�2 s�1. Is the
surface a source or sink of atmospheric CO2?

11.19 Using the tracer correlation method and the data provided in Fig. 11.15, find
the surface nitrous oxide flux.
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Fig. 11.15 Correlation between nitrous oxide and carbon dioxide molar mixing ratios observed
in the stable boundary layer above a paddock grazed by sheep. The solid line represents the best-
fit regression equation y D 284 C 0:080x. The surface CO2 flux is 0.20 mg m�2 s�1 during the
measurement period (Data source: Kelliher et al. 2002)

Table 11.1 Monthly mean carbon dioxide and water vapor mixing ratios above (Osc;C and
Osv;C) and in the atmospheric boundary layer (Osc;m and Osv;m), and monthly mean land surface
evapotranspiration rate (ET) in Wisconsin, USA (Data source: Helliker et al. 2004)

Osc;C Osc;m Osv;C Osv;m ET

Month mg kg�1 mg kg�1 g kg�1 g kg�1 mmol m�2 s�1

Jan 564.2 571.0 0.8 1.7 0.1

Feb 564.9 571.6 0.9 2.8 0.1

Mar 566.0 573.3 1.0 3.5 0.3

Apr 568.0 571.3 1.1 3.1 0.6

May 567.2 565.1 1.6 7.2 1.4

Jun 562.5 554.6 1.9 8.7 2.0

Jul 556.4 542.5 2.0 10.8 2.4

Aug 552.0 543.5 1.8 10.8 2.0

Sep 551.7 555.4 1.7 7.4 1.5

Oct 556.6 564.2 1.1 5.1 0.6

Nov 562.4 570.2 1.0 3.2 0.2

Dec 565.5 569.8 0.7 1.5 0.1

11.20 Using the equilibrium ABL technique and the data provided in Table 11.1,
find the monthly mean landscape CO2 flux.

11.21* The surface CO2 flux is given by Eq. 11.64, the initial CO2 inversion
jump �c is �5 mg kg�1, and the initial column mean CO2 concentration sc;m is
575 mg kg�1. Other constraints are given in Problem 11.10. Solve numerically �c,
sc;m, and the entrainment CO2 flux .w0s0

c/zi for t D 1 to 10 h.

11.22 Derive Eq. 11.41 from the CO2 conservation equation for the capping
inversion layer using the same strategy that yields Eq. 11.21.

11.23 Derive Eq. 11.42 using the same method deployed for the derivation of
Eq. 11.35.
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Symbols and Constants

overbar: Reynolds averaging
prime 0: deviation from Reynolds mean value

[ ]: canopy volume averaging
double primes 00: deviation from volume mean value

r2: Laplace operator
r: gradient operator

rH: horizontal gradient operator

Ai W surface of plant element i
AT W entrainment ratio for sensible heat flux (dimensionless)

a W plant area density (m2 m�3)
aH W fractional contribution of horizontal advection (dimensionless)
CD W transfer coefficient for momentum or drag coefficient (dimen-

sionless)
CH W transfer coefficient for sensible heat or Stanton number (dimen-

sionless)
CE W transfer coefficient for water vapor or Dalton number (dimen-

sionless)
Cd W canopy drag coefficient (dimensionless)
Ch W canopy heat exchange coefficient (dimensionless)
Cl W leaf heat exchange coefficient (m s�1=2)
c W mass density of an inert tracer (kg m�3)

c1 W tracer concentration resulting from a unit line source (s m�2)
cp W specific heat of air at constant pressure (= 1004 J kg�1 K�1)
cv W specific heat of air at constant volume (= 718 J kg�1 K�1)
cr W wave speed (m s�1)
D W saturation vapor pressure deficit (hPa)
D W large-scale flow divergence rate (s�1)
d W zero-plane displacement height (m)

© Springer International Publishing AG 2018
X. Lee, Fundamentals of Boundary-Layer Meteorology,
Springer Atmospheric Sciences, DOI 10.1007/978-3-319-60853-2

243



244 Symbols and Constants

dl W leaf dimension (m)
E W water vapor flux or evaporation rate (g m�2 s�1; mmol m�2 s�1)

E0 W water vapor flux, measured at the land surface (g m�2 s�1;
mmol m�2 s�1)

Ec W water vapor flux from a plant canopy (g m�2 s�1; mmol m�2 s�1)
Ec W rate of evaporation of cloud water (g m�3 s�1)
Eg W soil evaporation or water vapor flux from the ground surface of

an ecosystem (g m�2 s�1; mmol m�2 s�1)
El W water vapor flux at a leaf surface (g m�2 s�1; mmol m�2 s�1)
E W mean flow kinetic energy (m2 s�2)

ET W total kinetic energy (m2 s�2)
e W turbulent kinetic energy (m2 s�2)

ev W water vapor pressure (hPa)
e�

v W saturation water vapor pressure (hPa)
Fc W eddy flux of CO2 (mg m�2 s�1; �mol m�2 s�1)
Fh W eddy flux of sensible heat (W m�2)
Fm W eddy flux of momentum (m2 s�2)
Fv W eddy flux of water vapor (g m�2 s�1; mmol m�2 s�1)
OFc;s W long-term mean CO2 flux at the land surface (mg m�2 s�1;

�mol m�2 s�1)
OFv;s W long-term mean water vapor flux at the land surface (g m�2 s�1;

mmol m�2 s�1)
OFc;t W long-term mean CO2 flux at the top of the boundary layer

(mg m�2 s�1; �mol m�2 s�1)
OFv;t W long-term mean water vapor flux at the top of the boundary layer

(g m�2 s�1; mmol m�2 s�1)
f W energy redistribution factor (dimensionless)
f W Coriolis parameter (' 1 � 10�4 s�1 at mid-latitudes in the

northern hemisphere)
f1 W one-dimensional footprint function (m�1)
f2 W two-dimensional footprint function (m�2)
G W heat flux into the soil by conduction (W m�2)

G0 W heat flux into the soil by conduction, measured at the land
surface (W m�2)

g W gravitational acceleration (= 9.81 m s�2)
H W sensible heat flux (W m�2)

H0 W sensible heat flux, measured at the land surface (W m�2)
Hc W sensible heat flux from a plant canopy (W m�2)
Hg W sensible heat flux from the ground surface of an ecosystem

(W m�2)
Hl W sensible heat flux at a leaf surface (W m�2)
h W plant canopy height (m)

K# W incoming solar radiation flux (W m�2)
K" W reflected solar radiation flux (W m�2)
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Kc; Kh; Km; Kv W eddy diffusivity for CO2, heat, momentum, and water vapor,
respectively (m2 s�1)

Kx; Ky; Kz W eddy diffusivity for a passive tracer in the x, y, and z direction,
respectively (m2 s�1)

k W von Karman constant (= 0.4)
k W wavenumber (rad m�1)
L W Obukhov length (m)
L W plant area index; leaf area index (dimensionless)

L# W incoming longwave radiation flux (W m�2)
L" W outgoing longwave radiation flux (W m�2)

l W Prandtl’s mixing length (m)
Md W molecular mass of dry air (= 0.029 kg mol�1)
Mc W molecular mass of CO2 (= 0.044 kg mol�1)
Mv W molecular mass of water vapor (= 0.018 kg mol�1)

m W power law exponent for wind speed profile (dimensionless)
N W Brunt-Väsäla frequency (Hz, s�1)
n W power law exponent for eddy diffusivity profile (dimensionless)

nx; ny; nz W x, y, and z component of unit normal vector of a plant element
surface

p W three-dimensional probability of particle position (m�3)
px; py; pz W particle probability distribution in the x, y, and z direction,

respectively (m�1)
p W air pressure (Pa)

pc W partial pressure of CO2 (Pa)
pd W partial pressure of dry air (Pa)
pv W partial pressure of water vapor (Pa)
p0 W background air pressure (Pa)
Qp W pressure perturbation (Pa)

Q W canopy averaging volume (m3)
Q W source strength (kg for instant point sources, kg s�1 for contin-

uous point sources, kg m�1 s�1 for continuous line sources, and
kg m�2 s�1 for area sources)

QA W anthropogenic heat flux (W m�2)
Qs W heat storage (W m�2)

q W specific humidity (g kg�1)
R W universal gas constant (= 8.314 J mol�1 K�1)

Rc W ideal gas constant for CO2 (= 189 J kg�1 K�1)
Rd W ideal gas constant for dry air (= 287 J kg�1 K�1)
Rm W ideal gas constant for moist air (J kg�1 K�1)
Rv W ideal gas constant for water vapor (= 461 J kg�1 K�1)
Rf W flux Richardson number (dimensionless)
Ri W gradient Richardson number (dimensionless)

Ri;min W minimum gradient Richardson number (dimensionless)
RL W Lagrangian autocorrelation
Rn W net radiation flux (W m�2)
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R�
n W apparent net radiation flux (W m�2)

Rn;c W net radiation flux of a plant canopy (W m�2)
Rn;g W net radiation flux of the ground surface in an ecosystem

(W m�2)
Rn;0 W net radiation flux, measured at the land surface (W m�2)
Rn;l W net radiation flux at a leaf surface (W m�2)

r W shape factor for diffusivity and wind profiles (dimensionless)
ra; ra;h W aerodynamic resistance to heat transfer (s m�1)

ra;m W aerodynamic resistance to momentum transfer (s m�1)
ra;v W aerodynamic resistance to water vapor transfer (s m�1)

rc W canopy resistance to water vapor transfer (s m�1)
re W excess resistance to heat transfer (s m�1)
rg W ground or soil resistance to water vapor transfer (s m�1)
rm W radiometric resistance to heat transfer (s m�1)
rT W total resistance to heat transfer (s m�1)
rb W leaf boundary-layer resistance to heat transfer (s m�1)
rs W leaf stomatal resistance to water vapor transfer (s m�1)
S W net shortwave radiation flux (W m�2)

Sc W CO2 source in free air (mg m�3 s�1)
ST W heat source in free air (K s�1)
S� W heat source in free air (K s�1)
Sv W water vapor source in free air (g m�3s �1)

Sc;p W plant canopy CO2 source (mg m�3s �1)
ST;p W plant canopy heat source (K s�1)
Sv;p W plant canopy water vapor source (g m�3s �1)

s W shape factor for diffusivity and wind profiles (dimensionless)
sc W CO2 mass mixing ratio (�g g�1, mg kg�1)
sv W water vapor mass mixing ratio (g kg�1)

sx; sy W mass mixing ratios of two arbitrary trace gases (kg kg�1)
sc;m W column CO2 mass mixing ratio in the boundary layer (�g g�1,

mg kg�1)
sv;m W column mean water vapor mass mixing ratio in the boundary

layer (g kg�1)
sc;C W CO2 mass mixing ratio at the base of the free atmosphere

(�g g�1, mg kg�1)
sv;C W water vapor mass mixing ratio at the base of the free atmosphere

(g kg�1)
Osc;m W long-term mean CO2 mass mixing ratio in the boundary layer

(�g g�1, mg kg�1)
Osv;m W long-term mean water vapor mass mixing ratio in the boundary

layer (g kg�1)
Osc;C W long-term mean CO2 mass mixing ratio at the base of the free

atmosphere (�g g�1, mg kg�1)
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Osv;C W long-term water vapor mass mixing ratio at the base of the free
atmosphere (g kg�1)

sv;o W water vapor mass mixing ratio at a water surface (g kg�1)
< sc >W column mean CO2 mass mixing ratio below eddy covariance

measurement height (�g g�1; mg kg�1)
< sv >W column mean water vapor mass mixing ratio below eddy covari-

ance measurement height (g kg�1)
T W temperature (K, ıC)

Ta W air temperature (K, ıC)
Tg W ground or soil temperature (K, ıC)
Tl W leaf surface temperature (K, ıC)
Ts W canopy or ecosystem surface temperature (K, ıC)
Tv W virtual temperature (K)
Tw W wet bulb temperature (K, ıC)

< T >W column mean temperature below eddy covariance measurement
height (K, ıC)

T W averaging length (s)
T W wave period (s)

TL W Lagrangian integral time scale (s)
t W time (s)

tf W sampling interval (s)
u; v; w W velocity components in the x, y, and z direction, respectively

(m s�1)
uL; vL; wL W Lagrangian particle velocity in the x, y, and z direction, respec-

tively (m s�1)
u0; w0 W background horizontal and vertical velocity, respectively, in

linear instability analysis (m s�1)
u0; v0 W initial x and y component velocity before the onset of inertial

oscillation (m s�1)
ue; ve W x and y component velocity in a new equilibrium state at night

(m s�1)
ug; vg W x and y component of the geostrophic wind (m s�1)

ul W wind speed outside a leaf boundary layer (m s�1)
up W mean plume velocity (m s�1)
u� W friction velocity (m s�1)

Qu; Qw W horizontal and vertical velocity perturbation, respectively
(m s�1)

V: velocity vector
V W magnitude of velocity vector (m s�1)

Vg W geostrophic wind speed (m s�1)
W W mixing velocity in an equilibrium boundary layer (m s�1)
we W entrainment velocity (m s�1)
w� W convective velocity scale (m s�1)
wc W ascending vertical velocity in cumulus clouds (m s�1)
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wf W subsidence vertical velocity outside cumulus clouds (m s�1)
X; Y; Z W position of a Lagrangian particle (m)

x; y; z W Cartesian coordinates (m)
xm; ym; zm W position coordinates of a flux measurement instrument (m)

z1 W tracer source height (m)
z1 W velocity and eddy diffusivity reference height (m)
zg W geometric mean height (m)
zi W boundary-layer height (m)
zo W momentum roughness (m)

zo;h W thermal roughness (m)
zu W height scale for footprint models (m)

˛ W albedo (dimensionless)
˛ W Priestley-Taylor coefficient (' 1:26)

˛1; ˛2 W empirical coefficients in canopy wind profile models (dimen-
sionless)

ˇ W fraction of solar radiation transmission through a surface water
layer (dimensionless)

ˇ W Bowen ratio (dimensionless)
ˇ W angle between wind vector in the boundary layer and the

geostrophic wind vector (degrees)
� W psychrometric constant (= 0.66 hPa K�1 at sea level)
�c W vertical gradient of CO2 mass mixing ratio in the free atmo-

sphere (�g g�1 m�1)
�v W vertical gradient of water vapor mass mixing ratio in the free

atmosphere (g kg�1 m�1)
�� W vertical gradient of potential temperature in the free atmosphere

(K m�1)
�m W non-local closure correction factor for momentum transport

(s�1)
� W slope of saturation vapor pressure (hPa K�1)

�c W jump of CO2 mass mixing ratio across the capping inversion
layer (�g g�1)

�v W jump of water vapor mass mixing ratio across the capping
inversion layer (g kg�1)

�� W jump of potential temperature across the capping inversion layer
(K)

� W emissivity (dimensionless)
� W viscous dissipation of turbulent kinetic energy (m2 s�3)
� W Monin-Obukhov stability parameter (dimensionless)
� W potential temperature (K)

�o W potential temperature at zo;h (K)
�0 W background potential temperature (K)

�C W potential temperature at the base of the free atmosphere (K)
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�m W column mean potential temperature in the boundary layer (K)
Q� W potential temperature perturbation (K)

�� W potential temperature scale (K)
�c W molecular diffusivity of CO2 in air (= 1:53 � 10�5 m2 s�1 at

15 ıC)
�T W thermal diffusivity in air (= 2:09 � 10�5 m2 s�1 at 15 ıC)
�v W molecular diffusivity of water vapor in air (= 2:49�10�5 m2 s�1

at 15 ıC)
 W latent heat of vaporization (= 2466 J g�1 at 15 ıC)
 W wavelength (m)

0 W local climate sensitivity (K W�1 m2)

 W ratio of molecular mass of dry air to that of water vapor (= 1.61)
� W kinematic viscosity (= 1:48 � 10�5 m2 s�1 at 15 ıC)
� W air mass density (kg m�3)

�d W dry air mass density (kg m�3)
�c W CO2 mass density (mg m�3)
�v W water vapor mass density (g m�3)
� W Stefan-Boltzmann constant (= 5.67 � 10�8 W m�2 K�4)

�.D �r C i�i/ W complex wave angular frequency (rad s�1)
�c W cumulus cloud fraction (dimensionless)

�x; �y; �z W standard deviations of particle position, also known as disper-
sion parameters (m)

�w W standard deviation of vertical velocity (m s�1)
� W recursive filter time constant (s)

�e W normalized turbulent kinetic energy (dimensionless)
�h W stability function for heat (dimensionless)
�m W stability function for momentum (dimensionless)
�� W normalized TKE dissipation rate (dimensionless)
	c W molar mixing ratio of CO2 (ppm, �mol mol�1)
	v W molar mixing ratio of water vapor (mmol mol�1)
‰h W integral stability function for sensible heat (dimensionless)
‰m W integral stability function for momentum (dimensionless)
� W Earth’s angular rotation velocity (D7:27 � 10�5 s�1)
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A
ABL budget technique, 232–234
acending motion, 221
adiabatic lapse rate, 68
adiabatic process, 19, 26, 68, 226
aerodynamic resistance, 49, 50, 55, 78
air quality model, 6, 130
air quality standard, 6, 146
albedo, 7, 22, 205, 212
amphistomatous, 151
anthropogenic heat, 7, 24, 208, 212
apparent net radiation, 207
area source, 139
atmospheric demand, 196
atmospheric layers, 2, 101, 102, 104, 105,

216
atmospheric stability, 60, 68, 131
autocorrelation, 126
available energy, 47
averaging length, 30, 31

B
baroclinic atmosphere, 110
Beer’s law, 202
bias error, 164, 167, 171, 199, 210
big-leaf model, 195, 196, 211
biophysical factors, 207, 208
blackbody, 199
blending height, 54, 207
block averaging, 30
body force, 13, 14
boundary layer growth, 219, 224–226, 228
boundary layer height, 44, 219, 228
Boussinesq approximation, 91

Bowen ratio, 27, 47, 206
Bowen ratio method, 47
Brunt-Väsäla frequency, 94
buoyancy, 68, 70, 222, 223, 226
buoyancy production, 63, 66–68, 228
buoyancy-driven boundary layer, 63

C
canopy carbon dioxide source, 152
canopy drag, 88
canopy drag coefficient, 87, 91
canopy heat exchange coefficient, 92
canopy heat source, 152
canopy resistance, 196, 197
canopy volume averaging, 82, 150
canopy water vapor source, 152
canopy wind profile, 87, 88
capping inversion, 102, 130, 218, 227
carbon dioxide budget, 229
carbon dioxide profile, 39, 216, 231, 239
carbon dioxide source in canopy, 152
carbon dioxide source in free air, 17
cell membrane, 222
chamber, 154, 184
chemical state, 1
Chicago, 212
climate sensitivity, 206
clockwise rotation, 8
closed chamber, 154, 184, 185
closed-path, 48, 168, 169, 180, 184
closure parameterization, 40
closure problem, 40, 227
cloud evaporation, 219, 226
cloud fraction, 223
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cloud venting, 223
clouds, 18, 19, 37, 219, 223, 225, 229, 233
clumping, 81
coherent eddies, 96
collapse of boundary layer, 75
column mean, 216
commutation property, 83, 85
compression heat, 161
conduction heat flux, 22
conservation of energy, 18, 36
constant-flux layer, 103
continuity equation, 16
continuum hypothesis, 15
convection cells, 163
convection efficiency, 7, 208, 209
convective boundary layer, 2, 72, 101, 216
convective instability, 91
coordinate rotation, 11, 169
coordinate system, 11, 58
Coriolis force, 8, 14
Coriolis parameter, 13, 14
counter-gradient flux, 44
counterclockwise rotation, 8, 108
covariance, 31, 36, 37, 40, 45, 51
cumulus clouds, 223

D
Dalton number, 51
Dalton’s law, 21, 179
deforestation, 207
density effects, 175
desert, 177, 189
diabatic process, 26
diagnostic mode, 233
dispersion of air pollutant, 6, 102
dispersion parameters, 124, 130, 145
dispersive flux, 86
dissipation, 24, 67
diurnal evolution, 105, 236
drag coefficient, 51
drainage flow, 162, 165
drift velocity, 135, 177
dry air, 176
dry air flux, 177
dynamic chamber, 155, 185

E
Earth’s angular velocity, 14
ecosystem health, 6, 130
ecosystem metabolism, 5
eddy covariance, 9, 46, 149
eddy covariance control volume, 156

eddy diffusivity, 41, 122, 126, 137
eddy flux, 45, 157
eddy length scale, 43, 45
eigen mode, 95
Ekamn layer, 103
Ekamn spiral extended, 110
Ekman pumping, 8, 109
Ekman spiral, 107
emissivity, 23
energy cascade, 59, 60
energy imbalance, 161, 171
energy redistribution, 7, 206
energy redistribution factor, 207
entrainment, 102, 222, 223, 225
entrainment ratio, 228
entrainment similarity, 231, 232
entrainment velocity, 221
equilibrium boundary layer, 106, 235, 236,

241
equilibrium state, 111, 114
equivalent potential temperature, 226
error propagation, 181
Eulerain frame, 133
evapotranspiration, 7
excess resistance, 56

F
far field, 127
fetch, 167
Fick’s law, 128, 181
first-order closure, 44
flow divergence, 8, 34, 38, 53, 108, 159, 164,

221
fluid parcel, 15, 156
flux definition, 4
flux Richardson number, 70
flux-gradient method, 46
flux-gradient relationship, 41, 141, 183
footprint, 138
footprint function, 139, 140, 167
footprint model, 143, 144
footprint rule, 142
forced convection, 71
forcing variables, 5
forest, 27, 97, 104, 110, 183, 187
forest edge, 162, 165
form drag, 86
forward problem, 122
Fourier transformation, 31
free atmosphere, 1, 101, 217
free convection, 71
frequency domain, 31
friction velocity, 25, 42, 88, 136, 143
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G
gas constants, 21
Gaussian distribution, 125
Gaussian plume model, 128
genetic contamination, 6
geometric mean height, 47
geostrophic relation, 107
geostrophic wind, 102, 107
global mass conservation, 122
gradient Richardson number, 71, 95
gradient wind solution, 110
gravitational force, 14
green oasis, 211
ground resistance, 201
ground temperature, 201
ground-level concentration, 130, 131

H
Hardley cell, 236
heat advection, 106
heat budget, 227
heat source in canopy, 152
heat source in free air, 18, 19
heat storage, 7, 24, 208, 212
heat stress, 210
heat stroke, 210
heatwave, 106, 116
high pressure, 8, 108, 162
high-frequency loss, 168
high-pass filter, 169
homogeneous turbulence, 125
horizontal advection, 38, 159, 166
horizontal flux, 159, 168
horizontal homogeneity, 38, 87
human health, 7, 130, 210
hydrostatic, 91
hydrostatic equilibrium, 14
hypostomatous, 84, 151

I
ideal gas law, 20, 179
ideal gas law approximation, 65
incoming longwave radiation, 22
incoming solar radiation, 22
incompressibility, 18, 26, 33, 35, 85, 91
incompressibility: strong form, 18, 34
incompressibility: weak form, 35, 36, 66
inertial oscillation, 111, 112
inflection point, 93
inflection point instability, 94
integral stability functions, 77

internal boundary layer, 167
internal energy, 18, 58, 60
internal force, 14
inverse problem, 122, 149
inversion, 70
inversion jumps, 218, 227, 230
inviscid, 91
irrigation, 7
iterative procedure, 47

K
kinematic viscosity, 13, 25
kinetic energy, 57
kinetic energy budget, 63, 89
kinetic energy production, 61, 63, 66–68,

70, 89
kinetic energy redistribution, 62, 67, 68
kinetic energy transfer, 59
kinetic energy transport, 63, 66, 89

L
Lagrangian frame, 18, 123
Lagrangian time scale, 126, 136
lake, 54–56, 162
land surface model, 50
land use, 205
landscape scale, 232, 233, 237
lapse rate, 102
large-eddy simulation, 33, 60, 63, 223
latent heat flux, 22
latent heat of vaporization, 24
leaf area index, 81, 197, 200, 202
leaf boundary layer, 152, 192
leaf boundary layer resistance, 192, 193
leaf dimension, 194
leaf heat exchange coefficient, 194
leaky plate analogy, 222
Leibniz integral rule, 220
lifting condensation level, 223
line averaging, 33
line source, 132, 136, 137, 141
linear detrending, 51
linear instability analysis, 92, 94
linear superposition, 121
local mass conservation, 122
logarithmic wind profile, 25, 43
longwave radiation, 22
longwave radiation feedback, 205
low frequency, 169
low level jet, 3, 114
low pressure, 8, 108, 162
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M
mass conservation, 15, 122
mass conservation of carbon dioxide, 17, 36
mass conservation of dry air, 16
mass conservation of water vapor, 17, 37
mass density, 15
mass flow controller, 186
mass flux, 15
mass mixing ratio, 15, 21
mean flow kinetic energy, 52, 58, 60, 89
mercury, 170
methane, 27
methane flux, 27, 55
micrometeorological coordinate, 11
mirror source, 130, 136
mixed layer, 103, 116, 218
mixing length, 8, 42
mixing velocity, 237
modified Bowen ratio method, 48
molar mixing ratio, 21
molecular diffusivity, 17, 18, 41
momentum conservation, 12, 35
momentum flux, 36
momentum roughness, 25, 43, 53
Monin-Obukhov stability parameter, 73
mosaic scheme, 203
multilayer model, 204

N
near field, 127, 137
near-infrared waveband, 24
net ecosystem exchange, 5, 153
net radiation, 23
nitrous oxide, 27, 170, 187, 240
no-slip condition, 84, 88, 108
nocturnal boundary layer, 3, 105, 115, 233
non-local closure, 44
number density, 125
number sense, 10

O
Obukhov length, 73
oceans, 50, 56, 187, 225, 235
offline mode, 5
ogive analysis, 31
Ohm’s law, 49, 192
one-dimensional equations, 37
online mode, 5, 50
open-path, 180
outgoing longwave radiation, 23
overturning, 226

P
parameterization, 5
partial pressure, 21, 26
particle position, 124
particle trajectory, 123
Pasquill-Gifford, 146
Penman-Monteith, 196
persistence, 128
photosynthesis, 2, 24, 84, 152, 176, 194, 231
photosynthetic mode, 7
physical state, 1
physical units, 10
plane mixing layer, 93
plant area density, 81, 97
plant area index, 81
plant disease, 6
plant seed, 6
plume height, 134, 135
plume velocity, 134, 135
point source, 124, 128, 129, 135
pollen, 6
potential energy, 58, 66
potential evaporation, 197
potential temperature, 19
potential temperature profile, 101, 116, 216
potential temperature scale, 43
power law, 133, 137
Prandtl’s theory, 8
pressure discontinuity, 83
pressure flux, 161
pressure gradient, 3
pressure gradient force, 8, 13
pressure redistribution, 67, 68
Priestley-Taylor equation, 197
prognostic mode, 233
psychrometric constant, 47, 195

R
R-C circuit, 32
radiation flux, 22
radiative cooling, 225, 226
radiative forcing, 207
radiometric resistance, 199
Rayleigh’s theorem, 94
recursive filtering, 32
reference evaporation, 198
reflected solar radiation, 22
remote sensing, 198
residual layer, 105, 116
respiration, 24, 172, 176
return-to-isotropy, 68
Reynolds averaging model, 59
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Reynolds decomposition, 29
Reynolds rules, 9, 30, 51, 82
Rossby number, 118
roughness sublayer, 104

S
sampling interval, 31
saturation vapor pressure, 56
saturation vapor pressure slope, 193
scale gap, 59
sea breeze, 162
second-order closure, 44
secondary circulation, 8
self-heating, 188
sensible heat flux, 22
sensor separation, 168
separation of variables, 92
settling velocity, 6, 98
shear destruction, 63
shear instability, 91
shear production, 67, 68, 90
shear-driven boundary layer, 63
shortwave radiation, 22
sign convention, 23, 24, 153
signficant digits, 10
similarity theory, 73
slab approximation, 216
Slattery’s averaging theorem, 85, 150
smokestack, 129
soil evaporation, 201
solar radiation, 59
spatial averaging, 33
spatial covariance, 86
specific heat, 18, 19
spore, 6
stability functions, 43, 73, 74
standard atmosphere, 26, 102, 175
Stanton number, 51
stationary turbulence, 126
statistical independence, 123
statistical moments, 44
steady state, 224
Stefan-Boltzmann constant, 23
Stefan-Boltzmann law, 198
stoma, 84, 151, 192
stomatal resistance, 193, 194, 197
storage, 157
stratocumulus clouds, 225, 226, 229
sub-cloud layer, 225
subgrid, 54, 203, 208
subsidence, 221, 223, 226
subsidence warming, 218, 227
surface energy balance, 7, 22, 27, 161

surface friction, 3, 8
surface integral, 85, 151
surface layer, 4, 39, 103, 219
surface temperature, 195, 198, 199, 203, 205,

211, 212

T
Taylor expansion, 178, 193
Taylor-Golstein equation, 94
temperature profile, 39
temperature ramps, 96
tethersonde, 234, 239
thermal roughness, 43, 199
Tibetan Plateau, 106
tilt error, 11, 25, 169
top-down mixing, 225
total derivative, 13, 18
total kinetic energy, 52, 57
total water mixing ratio, 226
tracer correlation, 235, 240
transfer coefficients, 51, 56, 78
transition to turbulence, 91
transpiration, 200
transport phenomena, 8
tropical, 115, 119
turbulent kinetic energy, 45, 52, 58, 64,

66, 67
turbulent organized structures, 163
turbulent Prandtl number, 42, 79
turbulent Schmidt number, 42
two-leaf model, 204
two-source model, 201

U
unit line source, 141
upside-down boundary layer, 116
urban, 24
urban heat island, 7, 208
urban heat island attribution, 209
urban heat mitigation, 7

V
vapor pressure deficit, 194
variance, 31, 36
vertical advection, 159, 161, 217
vertical profiles, 3, 39, 43
vertical velocity, 161, 163, 164, 177, 221, 223,

237
virtual temperature, 22
viscous dissipation, 63, 67, 75
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viscous drag, 87
viscous force, 14
viscous sublayer, 103
visible waveband, 24
volume averaging, 9, 33
von Karman constant, 25, 42, 74

W
wake production of turbulence, 90
Walker circulation, 236
water balance, 7
water column, 24
water resource management, 201
water use efficiency, 7, 201
water vapor budget, 232
water vapor pressure, 47
water vapor profile, 39, 216, 239
water vapor source in canopy, 152

water vapor source in free air, 18
wave equations, 91
wave growth, 93
wave perturbations, 91
wave properties, 92, 93
wet bulb temperature, 194, 210
wetland, 27
white oasis, 211
wind direction convention, 25
wind directional shear, 111, 119
wind profile, 39, 101
wind shear, 2

Z
zero-flux test, 177, 182, 185
zero-plane displacement, 44, 75, 98
Zilitinkevich relation, 234
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