

Artificial

Intelligence
By: Dr. Zied O. Ahmed

Lecture Eight:
 Blind Search

Lecture Eight: Blind search ………….……………………………. By: Zied O. Ahmed

1

Lecture eight: Blind search

8.1 Depth-First and Breadth-First Search

The Depth First Search (DFS) is one of the most basic and fundamental Blind

Search Algorithms.

It is for those who want to probe deeply down a potential solution path in the

hope that solutions do not lie too deeply down the tree.

That is "DFS is a good idea when you are confident that all partial paths either

reach dead ends or become complete paths after a reasonable number of steps.

In contrast, "DFS is a bad idea if there are long paths, even infinitely long paths,

that neither reach dead ends nor become complete paths. To conduct a DFS:

(1) Put the Start Node on the list called OPEN.

(2) If OPEN is empty, exit with failure; otherwise continue.

(3) Remove the first node from OPEN and put it on a list called CLOSED.

Call this node n.

(4) If the depth of n equals the depth bound, go to (2);

Otherwise continue.

(5) Expand node n, generating all successors of n. Put these (in arbitrary order) at the

beginning of OPEN and provide pointers back to n.

(6) If any of the successors are goal nodes, exit with the solution obtained by

tracing back through the pointers; Otherwise go to (2).

Lecture Eight: Blind search ………….……………………………. By: Zied O. Ahmed

2

function depth_first_search;
begin
open := [Start]; % initialize
closed := [];

while open  [] do % states remain
begin

remove leftmost state from open, call it X;
if X is a goal then return SUCCESS % goal found
else begin
 generate children of X;
 put X on closed;
 discard children of X if already on open or closed; % loop check
 put remaining children on left end of open % stack
end

end;
return FAIL % no states left

end.

Lecture Eight: Blind search ………….……………………………. By: Zied O. Ahmed

3

Consider the graph represented in figure below. States are labeled (A, B, C, . . .)

so that they can be referred to in the discussion that follows.

In depth-first search, when a state is examined, all of its children and their

descendants are examined before any of its siblings.

Depth-first search examines the states in the graph in the order A, B, E, K, S, L,

T, F, M, C, G, N, H, O, P, U, D, I, Q, J, R. The backtrack algorithm implemented

depth-first search.

In this algorithm, the descendant states are added and removed from the left end

of open: open is maintained as a stack, or last-in-first-out (LIFO) structure. The

organization of open as a stack directs search toward the most recently generated

states, Assume U is the goal state.

1. open = [A]; closed = []

2. open = [B,C,D]; closed = [A]

3. open = [E,F,C,D]; closed = [B,A]

4. open = [K,L,F,C,D]; closed = [E,B,A]

5. open = [S,L,F,C,D]; closed = [K,E,B,A]

6. open = [L,F,C,D]; closed = [S,K,E,B,A]

7. open = [T,F,C,D]; closed = [L,S,K,E,B,A]

Lecture Eight: Blind search ………….……………………………. By: Zied O. Ahmed

4

8. open = [F,C,D]; closed = [T,L,S,K,E,B,A]

9. open = [M,C,D], (as L is already on closed); closed = [F,T,L,S,K,E,B,A]

10. open = [C,D]; closed = [M,F,T,L,S,K,E,B,A]

11. open = [G,H,D]; closed = [C,M,F,T,L,S,K,E,B,A]

Examples:

Lecture Eight: Blind search ………….……………………………. By: Zied O. Ahmed

5

Lecture Eight: Blind search ………….……………………………. By: Zied O. Ahmed

6

8.2 Breadth-First Search

Breadth First Search always explores nodes closest to the root node first, thereby

visiting all nodes of a given length first before moving to any longer paths. It pushes

uniformly into the search tree.

Breadth first search is most effective when all paths to a goal node are of uniform

depth. It is a bad idea when the branching factor (average number of offspring for

each node) is large or infinite.

Breadth First Search is also to be preferred over DFS if you are worried that there

may be long paths (or even infinitely long paths) that neither reach dead ends or

become complete paths.

The algorithm for Breadth First Tree Search is:

(1) Put the start node on a list called OPEN.

(2) If OPEN is empty, exit with failure;

Otherwise continue.

(3) Remove the first node on OPEN and put it on a list called CLOSED;

Call this node n;

(4) Expand node n, generating all of its successors. If there are no successors, go

immediately to (2).

Put the successors at the end of OPEN and provdie pointers from these successors

back to n.

(5) If any of the successors are goal nodes, exit with the solution obtained by tracing back

through the pointers;

Otherwise go to (2)

Lecture Eight: Blind search ………….……………………………. By: Zied O. Ahmed

7

function breadth_first_search;
begin

open := [Start]; % initialize
closed := [];

while open  [] do % states remain
 begin
 remove leftmost state from open, call it X;
 If X is a goal then return SUCCESS % goal found
 else begin
 generate children of X;
 put X on closed;
 discard children of X if already on open or closed; % loop check
 put remaining children on right end of open % queue
 end
end
return FAIL % no states left

end.

Consider the graph represented in figure below. States are labeled (A, B, C, . . .)

so that they can be referred to in the discussion that follows.

Lecture Eight: Blind search ………….……………………………. By: Zied O. Ahmed

8

Breadth-first search, explores the space in a level-by-level fashion. Only when

there are no more states to be explored at a given level does the algorithm move on

to the next deeper level.

A breadth-first search of the graph considers the states in the order A, B, C, D, E,

F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U.

We implement breadth-first search using lists, open and closed, to keep track of

progress through the state space.

open, lists states that have been generated but whose children have not been

examined. The order in which states are removed from open determines the order of

the search. closed records states already examined.

Each iteration produces all children of the state X and adds them to open. Note

that open is maintained as a queue, or first-in-first-out (FIFO) data structure. States

are added to the right of the list and removed from the left. These biases search

toward the states that have been on open the longest, causing the search to be

breadth-first.

Child states that have already been discovered (already appear on either open or

closed) are discarded. If the algorithm terminates because the condition of the “

while” loop is no longer satisfied (open = []) then it has searched the entire graph

without finding the desired goal: the search has failed.

Lecture Eight: Blind search ………….……………………………. By: Zied O. Ahmed

9

1. open = [A]; closed = []

2. open = [B,C,D]; closed = [A]

3. open = [C,D,E,F]; closed = [B,A]

4. open = [D,E,F,G,H]; closed = [C,B,A]

5. open = [E,F,G,H,I,J]; closed = [D,C,B,A]

6. open = [F,G,H,I,J,K,L]; closed = [E,D,C,B,A]

7. open = [G,H,I,J,K,L,M] (as L is already on open); closed =

[F,E,D,C,B,A]

8. open = [H,I,J,K,L,M,N]; closed = [G,F,E,D,C,B,A]

9. and so on until either U is found or open = [].

Lecture Eight: Blind search ………….……………………………. By: Zied O. Ahmed

1
0

BFS DFS

BFS starts traversal from the root node
and visits nodes in a level-by-level
manner (i.e., visiting the ones closest to
the root first).

DFS starts the traversal from the root
node and visits nodes as far as possible
from the root node (i.e., depth wise).

Usually implemented using a queue
data structure.

Usually implemented using a stack data
structure.

Generally, requires more memory than
DFS.

Generally, requires less memory than
BFS.

Lecture Eight: Blind search ………….……………………………. By: Zied O. Ahmed

1
1

Optimal for finding the shortest
distance.

Not optimal for finding the shortest
distance.

Used for finding the shortest path
between two nodes, testing if a graph is
bipartite, finding all connected
components in a graph, etc.

Used for topological sorting, solving
problems that require graph
backtracking, detecting cycles in a
graph, finding paths between two
nodes, etc.

8.3 Depth-limited search

The embarrassing failure of depth-first search in infinite state spaces can be

alleviated by supplying depth-first search with a predetermined depth limit ℒ. That

is, nodes at depth ℒ are treated as if they have no successors.

This approach is called depth-limited search. The depth limit solves the infinite-

path problem.

Depth-limited search can be implemented as a simple modification to the general

tree or graph-search algorithm. Alternatively, it can be implemented as a simple

recursive algorithm.

Notice that depth-limited search can terminate with two kinds of failure: the

standard failure value indicates no solution; the cutoff value indicates no solution

within the depth limit.

8.4 Iterative deepening depth-first search

Iterative deepening search (or iterative deepening depth-first search) is a

general strategy, often used in combination with depth-first tree search, that finds

the best depth limit. It does this by gradually increasing the limit—first 0, then 1,

then 2, and so on—until a goal is found.

This will occur when the depth limit reaches d, the depth of the shallowest goal

node.

Iterative deepening combines the benefits of depth-first and breadth-first search.

Lecture Eight: Blind search ………….……………………………. By: Zied O. Ahmed

1
2

	L8
	Lecture 8

