2- Vectors

Components of a Vector, Introduction A component is a projection of a vector along an axis.

* Any vector can be completely described by its components.
It is useful to use rectangular components.
* These are the projections of the vector along the x - and y -axes.

Vector Component Terminology

\vec{A}_{x} and \vec{A}_{y} are the component vectors of \vec{A}.

* They are vectors and follow all the rules for vectors.
A_{x} and A_{y} are scalars, and will be referred to as the components of A .

Components of a Vector

Assume you are given a vector \vec{A}. It can be expressed in terms of two other vectors $\overrightarrow{\mathrm{A}}_{\mathrm{x}}$ and $\overrightarrow{\mathrm{A}}_{\mathrm{y}}$ $\vec{A}=\vec{A}_{x}+\vec{A}_{y}$

These three vectors form a right triangle.

The x -component of a vector is the projection along the x -axis.
$\mathrm{A}_{\mathbf{x}}=\mathrm{A} \cos \theta$
The y-component of a vector is the projection along the y-axis.
Ay $=A \sin \theta$
This assumes the angle θ is measured with respect to the x -axis.
The components are the legs of the right triangle whose hypotenuse is the length of A
$\mathrm{A}=\sqrt{A x^{2}+A y^{2}}$ and $\theta=\tan ^{-1} \frac{A y}{A x}$

2-1 Vectors collection

$\vec{A}=\vec{A}_{x} i+\vec{A}_{y} j+\vec{A}_{z} k$
$\vec{B}=\vec{B}_{x} i+\vec{B}_{y} j+\vec{B}_{z} k$
$\vec{A}+\vec{B}=\left(\vec{A}_{x}+\vec{B}_{x}\right) i+\left(\vec{A}_{y}+\vec{B}_{y}\right) j+\left(\vec{A}_{z}+\vec{B}_{z}\right) k$
2-2 Subtract vectors:
$\vec{A}-\vec{B}=\left(\vec{A}_{x}-\vec{B}_{x}\right) i+\left(\vec{A}_{y}-\vec{B}_{y}\right) j+\left(\vec{A}_{z}-\vec{B}_{z}\right) k$

To find the numerical value of the vector A can be:
$|\overrightarrow{\mathrm{A}}|=\sqrt{A x^{2}+A y^{2}+A z^{2}}$
And
Commutative Law for Addition: $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$

2-1 Scalar Product or dot (.) product

The scalar product of two vectors, A and B denoted by A.B, is defined as the product of the magnitudes of the vectors times the cosine of the angle between them, as
 illustrated in Figure.
$\vec{A} \cdot \vec{B}=\vec{A}_{x} \vec{B}_{x}+\vec{A}_{y} \vec{B}_{y}+\vec{A}_{z} \vec{B}_{z}$
$\mathrm{i}=(1,0,0)$
i. $\mathrm{i}=1$
i.j $=0$
$\mathrm{j}=(0,1,0)$
j.j $=1$
j.k= 0
$\mathrm{k}=(0,0,1)$
k.k=1
$\mathrm{k} . \mathrm{i}=0$
$\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}=\mathrm{AB} \cos \theta$

$\cos \theta=\frac{|\mathrm{A} \cdot \mathrm{B}|}{|\mathrm{A}||\mathrm{B}|}$

Note that the result of a dot product is a scalar, not a vector.

Lecture (2): Vectors
Asst. prof. Dr. Basim I. Wahab Al-Temimi
The rules for scalar products are given in the following list:
$1-\vec{A} \cdot \vec{B}=\vec{B} \cdot \vec{A} \quad-----$ (Prof that)

$$
\begin{aligned}
\vec{A} \cdot \vec{B} & =\vec{A}_{x} \vec{B}_{x}+\vec{A}_{y} \vec{B}_{y}+\vec{A}_{z} \vec{B}_{z} \\
& =\vec{B}_{x} \vec{A}_{x}+\vec{B}_{y} \vec{A}_{y}+\vec{B}_{z} \vec{A}_{z} \\
\therefore \vec{A} \cdot \vec{B} & =\vec{B} \cdot \vec{A}
\end{aligned}
$$

2- $\vec{A} \cdot(\vec{B}+\vec{C})=\vec{A} \cdot \vec{B}+\vec{A} \cdot \vec{C}$
3- $m(\vec{A} \cdot \vec{B})=(m \vec{A}) \cdot \vec{B}$

$$
=\overrightarrow{\mathrm{A}} \cdot(\mathrm{~m} \overrightarrow{\mathrm{~B}})=(\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{~B}}) \mathrm{m}
$$

prove the cosine law:

$$
\begin{aligned}
& \overrightarrow{\vec{C}}=\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}} \\
& \overrightarrow{\mathrm{C}} \cdot \overrightarrow{\mathrm{C}}=(\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}) \cdot(\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}) \\
& \mathrm{C}^{2}=\mathrm{A} \cdot \mathrm{~A}+\mathrm{A} \cdot \mathrm{~B}+\mathrm{B} \cdot \mathrm{~A}+\mathrm{B} \cdot \mathrm{~B} \\
& \mathrm{C}^{2}=\mathrm{A}^{2}+\mathrm{B}^{2}+2 \mathrm{~A} \cdot \mathrm{~B} \\
& \mathrm{C}^{2}=\mathrm{A}^{2}+\mathrm{B}^{2}+2 \mathrm{AB} \cos \theta:
\end{aligned}
$$

Example2

Let us do an example. Consider two vectors $\vec{A}=2 i+2 j$ and $\vec{B}=6 i-3 j$
Now what is the angle between these two vectors?
Solution: From the definition of scalar products, $\vec{A} \cdot \vec{B}=A B \cos \theta$ we have
$\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}=|\mathrm{A}||\mathrm{B}| \cos \theta$
$\therefore \cos \theta=\frac{|\mathrm{A} \cdot \mathrm{B}|}{|\mathrm{A}||\mathrm{B}|}$
$\vec{A} \cdot \vec{B}=2 i+2 j \cdot 6 i-3 j=6$
$|A|=\sqrt{2^{2}+2^{2}}=\sqrt{8}=2.83$
$|B|=\sqrt{6^{2}+(-3)^{2}}=\sqrt{45}=6.71$
$\therefore \cos \theta=\frac{6}{2.83 x 6.71}=0.316 \quad \therefore \theta=\cos ^{-1} 0.316=71^{\circ} .36^{\prime}$

Question 1: Prove that the two vectors are perpendicular if: A.B $=0$?

Solutions:

$\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}=|\mathrm{A}||\mathrm{B}| \cos \theta$
$\therefore \cos \theta=\frac{|\mathrm{A} \cdot \mathrm{B}|}{|\mathrm{A}||\mathrm{B}|}=\frac{0}{|\mathrm{~A}||\mathrm{B}|}=0$
$\therefore \theta=\cos ^{-1}(0)=90^{\circ}$
$\therefore \mathrm{A} \perp \mathrm{B}$
Question 2: Prove that: $\mathbf{i . i}=\mathbf{j} . \mathbf{j}=\mathbf{k} . \mathbf{k}=1$
Solution: i.i $=$ ii $\cos \theta$

That is, the angle between them is $=0$
$\because \mathbf{i} \mathbf{i} \mathbf{i}=(1,0,0)(1,0,0) \cos \theta$

$$
\mathbf{i . i}=(1,0,0)(1,0,0) \cdot 1=1 \text { so on }
$$

Question 3: Prove that: $\mathbf{i} . \mathbf{j}=\mathbf{j} . \mathbf{k}=\mathbf{k} . \mathbf{j}=\mathbf{0}$ Solution
$\mathbf{i} . \mathbf{j}=\mathbf{i} \mathbf{j} \cos \theta$
$=(1,0,0)(0,1,0) \cos 90$

\because As the angle between them $=90^{\circ}$
$\operatorname{Cos} 90=0$
$\therefore \mathrm{i} . \mathrm{j}=0$

General Physics 1

Lecture (2): Vectors
Asst. prof. Dr. Basim I. Wahab Al-Temimi

2-2 Vector Product or Cross (x) Product

$\vec{A} \times \vec{B}=A B \sin \theta \quad \sin \theta=\frac{|\mathrm{AXB}|}{|\mathrm{A}||\mathrm{B}|}$
$\mathrm{ixi}=0$
ix $\mathrm{j}=\mathrm{k}$
i $\mathrm{xk}=-\mathrm{j}$
$\mathrm{j} x \mathrm{j}=0$
$\mathrm{jxk}=\mathrm{I} \quad \mathrm{kxj}=-\mathrm{i}$
k x k=0
kxi=j
$j x i=-k$
First Stage

$\vec{A} \times \vec{B}=-\vec{B} \times \vec{A}$

$$
\begin{aligned}
\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}} & =\left|\begin{array}{ccc}
i & j & k \\
A x & A_{y} & A_{z} \\
B x & B y & B z
\end{array}\right| \\
& =(\mathrm{Ay} \mathrm{Bz}-\mathrm{Az} \mathrm{By}) \mathrm{i}+(\mathrm{Az} \mathrm{Bx}-\mathrm{Ax} \mathrm{Bz}) \mathrm{j}+(\mathrm{Ax} \mathrm{By}-\mathrm{Ay} \mathrm{Bx})
\end{aligned}
$$

The vector product or the cross product multiplies two vectors in such a way that the resultant is a new vector.
If $\vec{A}=\vec{A}_{x} i+\vec{A}_{y} j+\vec{A}_{z} k$ and $\vec{B}=\vec{B}_{x} i+\vec{B}_{y} j+\vec{B}_{z} k$ then let $\vec{C}=\vec{C}_{x} i+\vec{C}_{y} j+\vec{C}_{z} k$ be the result of this multiplication.

Let $A=i+2 j+3 k ; B=2 i-3 j+k$. Then the cross product of A and B is
$\overrightarrow{\mathrm{C}}=\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}=|\mathrm{A}||\mathrm{B}| \sin \theta$
$\overrightarrow{\mathrm{C}}=\left|\begin{array}{ccc}i & j & k \\ 1 & 2 & 3 \\ 2 & -3 & 1\end{array}\right|=(2 * 1-3 *(-3)) \mathrm{i}+(3 * 2-1 * 1) \mathrm{j}+(-3 * 1-2 * 2) \mathrm{k}$
$\overrightarrow{\mathrm{C}}=11 \mathrm{i}+5 \mathrm{j}-7 \mathrm{k}$

Question4: If you know that $A=2 i+2 j-k$ and $B=i-j+2 k$,
Find: 1) A $\times \mathrm{B}, 2$) A.B 3) and the angle between them?
Solutions:

1) A . $\mathrm{B}=2-2-2=-2$

Lecture (2): Vectors
Asst. prof. Dr. Basim I. Wahab Al-Temimi
2) $\mathrm{A} \times \mathrm{B}=\left|\begin{array}{ccc}i & j & k \\ 2 & 2 & -1 \\ 1 & -1 & 2\end{array}\right|=(4-1) \mathrm{i}+(-1-4) \mathrm{j}+(-2-2) \mathrm{k}$

Ax $B=3 i-5 j-4 k$
3) $\mathrm{A}=\sqrt{2^{2}+2^{2}+(-1)^{2}}=\sqrt{4+4+1}=\sqrt{9}=3$
$B=\sqrt{1^{2}+1^{2}+2^{2}}=\sqrt{1+1+4}=\sqrt{6}$
$\cos \theta=\frac{|\mathrm{A} \cdot \mathrm{B}|}{|\mathrm{A}||\mathrm{B}|}=\frac{-2}{3 \sqrt{6}} \quad \therefore \theta=\cos ^{-1} \frac{-2}{3 \sqrt{6}}$

Homework

Q1) Prove that $\mathrm{i} x \mathrm{j}=\mathrm{k}, \mathrm{j} \mathrm{xk}=\mathrm{i}$ and $\mathrm{k} \mathrm{xi}=\mathrm{j}$?
Q2) Find the unit vector perpendicular to the plane between the two vectors $\vec{A}=2 i+2 j-k$ and $\vec{B}=i-j+2 k$
Q3) Find the angle between the two vectors $A=2 i+2 j-k$ and $B=6 i-3 j+2 k$?

