Lecture (5) part 2: Motion in two dimensions. Projectile Motion Asst. prof. Dr. Basim I. Wahab Al-Temimi

## First Stage

## Projectile Motion

As we know well, the projectile motion is a particular kind of 2-dimensional motion. Firstly, we will make the following assumptions: The only force present is the force due to gravity. The magnitude of the acceleration due to gravity is $\|g\|=g=9.8 \mathrm{~m} / \mathrm{s}^{2}$. We choose a coordinate system in which the positive y -axis points up perpendicular to the earth's surface. This definition gives us that $\overrightarrow{\boldsymbol{a}_{\boldsymbol{y}}}=-g j=-9.8 \mathrm{~m} / \mathrm{s}^{2}$ and $\overrightarrow{\boldsymbol{a}_{\boldsymbol{x}}}=\mathbf{0}$.

## Initial Conditions:

We choose the coordinate system, so that the particle leaves the origin $\left(x_{0}=0, y_{0}=0\right)$ at time $\mathrm{t}_{\mathrm{i}}=0$, with an initial velocity of $v_{i}$. The Procedure for Solving Projectile Motion Problems are as followings:

1. We will separate the motion into the x (horizontal) part and y (vertical) part.
2. Then we will consider each part separately using the appropriate equations. The equations of motion, for each component, become:
a. x-motion ( $a_{\mathrm{x}}=0$ );

Example: A bullet is fired from a rifle at a speed of $200 \mathrm{~m} / \mathrm{s}$ at an angle of $40^{\circ}$ with horizon, Find:
1- The speed and position of the bullet after 20 seconds.
2 - The range and flight time of the bullet.
Solution:

$$
\begin{aligned}
& 1-\boldsymbol{v}_{\mathbf{o}}=200 \mathrm{~m} / \mathrm{s}, \theta=40^{\circ}, \\
& \boldsymbol{v}_{\mathbf{x o}}=v_{\mathrm{o}} \cos \theta_{\mathrm{o}} \quad=200 \cos 40=153.2 \mathrm{~m} / \mathrm{s} \\
& \boldsymbol{v}_{\mathbf{y o}}=\boldsymbol{v}_{\mathbf{o}} \sin \theta_{\mathbf{o}} \quad=200 \sin 40=128.6 \mathrm{~m} / \mathrm{s} \\
& \boldsymbol{v}_{\mathbf{x}}=v_{\mathrm{xo}}=v_{\mathrm{o}} \cos \theta_{\mathrm{o}}=153.2 \mathrm{~m} / \mathrm{s} \\
& \boldsymbol{v}_{\mathbf{y}}=v_{\mathrm{yo}}-g t=128.6-9.8 \times 20=-67.4 \mathrm{~m} / \mathrm{s} \\
& \mathbf{v}=\sqrt{v x^{2}+\boldsymbol{v} \boldsymbol{y}^{2}}=\sqrt{153.2^{2}+(-67.4)^{2}}=167.4 \mathrm{~m} / \mathrm{s} \\
& \mathbf{x}=v_{\mathrm{xo}} t=v_{\mathrm{o}} t \cos \theta_{\mathrm{o}}=153.2 t=3064 \mathrm{~m} \\
& \mathbf{y}=v_{\mathrm{yo}} t-\frac{1}{2} g t^{2}=v_{\mathrm{o}} t \sin \theta_{\mathrm{o}}-\frac{1}{2} g t^{2}=128.6 \times 20-\frac{1}{2} 9.8 \times 400=612 \mathrm{~m} \\
& \mathbf{T}=\frac{2 v_{0} \sin \theta_{0}}{g}=\frac{2 x 200 \sin 40}{9.8}=26.24 \mathbf{s e c} \\
& \mathbf{R}=\frac{v_{0}^{2} \sin 2 \theta_{0}}{g}=\frac{200^{2} \sin 2(40)}{9.8}=4021 \mathrm{~m}
\end{aligned}
$$

Lecture (5) part 2: Motion in two dimensions. Projectile Motion Asst. prof. Dr. Basim I. Wahab Al-Temimi

First Stage
Q1) A body is thrown at an angle of $30^{\circ}$ to the horizontal with an initial velocity of $8 \mathrm{~m} / \mathrm{s}$. Find

1- The time the body reaches its highest point
2- The maximum height reached by the body
3- The time the body stays in the air
4- The horizontal range.

## Solution:

$1-t=\frac{v_{y_{0} \sin \theta_{0}}}{g}=\frac{8 \sin 30}{9.8}=0.4 \mathrm{sec}$
2- $\boldsymbol{y}=\boldsymbol{h}=\frac{v_{0}^{2} \sin ^{2} \theta_{0}}{2 g}=\frac{8^{2} \sin ^{2} 30}{2 x 9.8}=0.82 \mathrm{~m}$
3- $\mathbf{T}=\frac{2 v_{0} \sin \theta_{0}}{g}=\frac{2 x 8 \sin 30}{9.8}=0.81 \mathrm{sec}$
4- $\mathbf{R}=\frac{8^{2} \sin 2 \times 30}{9.8}=5.65 \mathrm{~m}$
Q2) A projectile is fired at a speed of $600 \mathrm{~m} / \mathrm{s}$ at angle of $60^{\circ}$ with the horizontal, calculate:
1- The horizontal range
2- The maximum height
3- Speed and altitude after 30 seconds
4- The speed and time of the projectile at an altitude of 10 km .
Solution: $\boldsymbol{v}_{\mathbf{o}}=600 \mathrm{~m} / \mathrm{s}, \boldsymbol{\theta}=60^{\circ}$

$$
\begin{aligned}
& 1-\mathbf{R}=\frac{v_{0}^{2} \sin 2 \theta_{0}}{g}=\frac{600^{2} \sin 2 \times 60}{9.8}=31800 \mathrm{~m}=31.6 \mathrm{~km} \\
& \begin{aligned}
2-\boldsymbol{h} & =\frac{v_{0}^{2} \sin ^{2} \theta_{0}}{2 g}=\frac{600^{2}(\sin 60)^{2}}{2 x 9.8}=13800 \mathrm{~m}=13.8 \mathrm{~km}
\end{aligned} \\
& \begin{aligned}
3-\boldsymbol{v}_{\mathrm{x}} & =v_{\mathrm{xo}}=v_{\mathrm{o}} \cos \theta_{\mathrm{o}} \\
& =600 \cos 60=300 \mathrm{~m} / \mathrm{s}
\end{aligned} \\
& \qquad \begin{aligned}
\boldsymbol{v}_{\mathbf{y}}=\boldsymbol{v}_{\mathrm{y} 0}-\boldsymbol{g t} & =v_{0} \sin \theta_{0}-g t \\
& =600 \sin 60-9.8 \times 30=225.6 \mathrm{~m} / \mathrm{s}
\end{aligned} \\
& \qquad
\end{aligned}
$$

Lecture (5) part 2: Motion in two dimensions. Projectile Motion Asst. prof. Dr. Basim I. Wahab Al-Temimi

## First Stage

$4-\mathrm{y}=10 \mathrm{~km}=10000 \mathrm{~m}$
$\mathrm{y}=v_{\mathrm{yo}} t-\frac{1}{2} g t^{2}=v_{0} t \sin \theta_{0}-\frac{1}{2} g t^{2}$

$$
10000=600 \sin 60 \times t-\frac{1}{2} 9.8 t^{2} \Rightarrow \mathrm{t}=25 \mathrm{sec}
$$

$v_{\mathbf{x}}=v_{\mathrm{xo}}=v_{\mathrm{o}} \cos \theta_{\mathrm{o}}=600 \cos 60=300 \mathrm{~m}$
$v_{\mathbf{y}}=v_{\mathrm{y} 0}-g t=v_{\mathrm{o}} \sin \theta_{\mathrm{o}}-g t$

$$
=600 \sin 60-9.8 \times 25=274.6 \mathrm{~m}
$$

$$
\mathrm{v}=\sqrt{v x^{2}+v y^{2}}=\sqrt{300^{2}+274.6^{2}}=406.7 \mathrm{~m}
$$

