Applications of Group Theory

References:

- Introduction to Modern Abstract Algebra, by David M. Burton.
- Groups and Numbers, by R. M. Luther.
- A First Course in Abstract Algebra, by J. B. Fraleigh.
- Group Theory, by M. Suzuki.
- Abstract Algebra Theory and Applications, by Thomas W. Judson.
- Abstract Algebra, by I. N. Herstein.
- Basic Abstract Algebra, by P. B. Bhattacharya, S. K. Jain and S. R. Nagpaul.

1. The Jordan-Holder Theorem and Related Concepts.

Definition(1-1):

By a *chain* for a group (G,*) is meant any finite sequence of subsets of

 $G = H_0 \supset H_1 \supset \cdots \supset H_{n-1} \supset H_n = \{e\}$ descending from *G* to $\{e\}$ with the property that all the pairs $(H_i,*)$ are subgroups of (G,*).

Remark(1-2):

The integer *n* is called the length of the chain. When n = 1, then the chain in definition (1-1) will called the trivial.

Example(1-3):

Find all chains in a group $(Z_4, +_4)$.

Solution: The subgroups of a group $(Z_4, +_4)$ are :

• $H_1 = (Z_4, +_4)$

•
$$H_2 = (\{0\}, +_4)$$

• $H_3 = (\langle 2 \rangle, +_4) = (\{0, 2\}, +_4)$

Prof. Dr. Najm Al-Seraji, Applications of Group Theory, 2023

The chains of a group $(Z_4, +_4)$ are

 $Z_4 \supset \{0\}$ is a chain of length one

 $Z_4 \supset \langle 2 \rangle \supset \{0\}$ is a chain of length two.

Example(1-4):

In the group $(Z_{12}, +_{12})$ of integers modulo 12, the following chains are normal chains:

$$\begin{split} & Z_{12} \supset \langle 6 \rangle \supset \{0\}, \\ & Z_{12} \supset \langle 2 \rangle \supset \langle 4 \rangle \supset \{0\}, \\ & Z_{12} \supset \langle 3 \rangle \supset \langle 6 \rangle \supset \{0\}, \\ & Z_{12} \supset \langle 2 \rangle \supset \langle 6 \rangle \supset \{0\}. \end{split}$$

All subgroups are normal, since $(Z_{12}, +_{12})$ is a commutative group.

Definition(1-5): (Normal Chain)

If $(H_i,*)$ is a normal subgroup of a group (G,*) for all i = 1, ..., n, then the chain $G = H_0 \supset H_1 \supset \cdots \supset H_{n-1} \supset H_n = \{e\}$ is called a *normal chain*.